This item is non-discoverable
Loading...
Non-discoverable
Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction
Brandenburg, JG ; Bates, JE ; Sun, J ; Perdew, JP
Brandenburg, JG
Bates, JE
Sun, J
Perdew, JP
Citations
Altmetric:
Genre
Pre-print
Date
2016-09-21
Advisor
Committee member
Group
Department
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
10.1103/PhysRevB.94.115144
Abstract
© 2016 American Physical Society. The strongly constrained and appropriately normed (SCAN) semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.036402] obeys all 17 known exact constraints for meta-generalized-gradient approximations (meta-GGAs), and it includes some medium-range correlation effects. Long-range London dispersion interactions are still missing, but they can be accounted for via an appropriate correction scheme. In this study, we combine SCAN with an efficient London dispersion correction and show that lattice energies of simple organic crystals can be improved with the applied correction by 50%. The London-dispersion corrected SCAN meta-GGA outperforms all other tested London-dispersion corrected meta-GGAs for molecular geometries. Our method yields mean absolute deviations (MADs) for main group bond lengths that are consistently below 1 pm, rotational constants with MADs of 0.2%, and noncovalent distances with MADs below 1%. For a large database of general main group thermochemistry and kinetics (∼800 chemical species), one of the lowest weighted mean absolute deviations for long-range corrected meta-GGA functionals is achieved. Noncovalent interactions are of average quality, and hydrogen bonded systems in particular seem to suffer from overestimated polarization related to the self-interaction error of SCAN. We also discuss some consequences of numerical sensitivity encountered for meta-GGAs.
Description
Citation
Citation to related work
American Physical Society (APS)
Has part
Physical Review B
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu