• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    IN VITRO AND IN VIVO KINETIC MODELING OF DIAZEPAM METABOLISM

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Wang_temple_0225E_14616.pdf
    Size:
    14.23Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2021
    Author
    Wang, Zeyuan cc
    Advisor
    Korzekwa, Kenneth
    Committee member
    Nagar, Swati
    Fassihi, Reza
    Harrelson, John P.
    Department
    Pharmaceutical Sciences
    Subject
    Pharmaceutical sciences
    Atypical kinetics
    CYP enzyme
    Enzyme kinetics and PK modeling
    Hepatocyte with organ-on-chip technology
    Mathematica software
    Sequential metabolism
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/6843
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/6825
    Abstract
    Drug metabolism plays an important role in drug absorption and drug elimination. Therefore, it is crucial to understand the mechanism and kinetics of drug metabolism by various drug-metabolizing enzymes (DMEs). Cytochrome P450 enzymes (CYPs) are responsible for the metabolism of more than 60% of the top 200 prescribed drugs. X-ray and NMR data of CYP enzyme suggest that relatively large and flexible active sites are capable of multi-substrate binding. Due to the multiple substrate-binding, CYP reactions tend to show non-Michaelis Menten kinetics (atypical kinetics), multiple metabolite formation and sequential metabolism.To investigate the complexity of cytochrome P450 kinetics, saturation curves and intrinsic clearances (CLint) were simulated for single substrate and multi-substrate models using rate equations and numerical analysis. These models were combined with multiple product formation and sequential metabolism and simulations were performed with random error. All simulation and model fitting was performed using Mathematica. A concentration-dependent metabolite ratio plot can be observed from multi-substrate binding kinetics. Use of single substrate models to characterize multi-substrate data can result in inaccurate kinetic parameters and poor clearance predictions. It has been shown that use of different substrate concentrations may lead to highly variable in vitro CLint estimations when sigmoidal kinetics are observed. Comparing results for use of standard velocity equations with ordinary differential equations (ODEs) clearly shows that ODEs are more versatile and provide better parameter estimates. It would be difficult to derive concentration-velocity relationships for complex models, but these relationships can be easily modeled using numerical methods and ODEs. The model drug diazepam (DZP) was chosen as the probe substrate to demonstrate complex CYP kinetics with specific CYP enzyme sources, including rat liver microsome (RLM), human liver microsome (HLM), purified CYP enzyme isoforms and rat hepatocytes. All saturation curves display non-Michaelis-Menten kinetics, form multiple primary metabolites, and are sequentially metabolized to secondary metabolites. In addition, the sequential metabolism and disposition would be characterized in hepatocytes incubation under flow conditions. To provide in vivo evidence of the atypical kinetics and investigate CYP-mediated sequential metabolism, preliminary intravascular (IV) dosing PK studies with male rats was performed for DZP. In general, DZP and its metabolites were quantitated by LC/MS/MS. Numerical methods were used to solve ODEs and parameterize micro and macro rate constants for the models. It has been shown that more complex models that include explicit enzyme-product complexes can well characterize the datasets for diazepam sequential metabolism with CYP3A4. Uncommon DZP metabolite PK profiles are observed in rat PK studies. In summary, methods of in vitro data analysis are compared, new assays are developed, and new modeling approaches for complex drug and metabolite pharmacokinetics are being investigated.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.