• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    BIOINSPIRED SURGICAL NEEDLE INSERTION MECHANICS IN SOFT TISSUES FOR PERCUTANEOUS PROCEDURES

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Gidde_temple_0225E_14561.pdf
    Size:
    3.682Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2021
    Author
    Gidde, Sai Teja Reddy cc
    Advisor
    Hutapea, Parsaoran
    Committee member
    Ren, Fei
    Kim, Albert
    Orrego, Santiago
    Department
    Mechanical Engineering
    Subject
    Biomedical engineering
    Mechanics
    Mechanical engineering
    Insertion Force
    Mosquito-inspired
    Surgical needle
    Tissue damage
    Vibration
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/6836
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/6818
    Abstract
    Needles are commonly used to reach target locations inside of the human body for various medical interventions such as drug delivery, biopsy, and brachytherapy cancer treatment. The success of these procedures is highly dependent on whether the needle tip reaches the target. One of the most significant contributors to the target accuracy is the needle insertion force that causes needle-tip deflection, tissue deformation, and tissue damage. Recently there has been tremendous interest in the medical community to develop innovative surgical needles using biologically-inspired designs. It is well known that insects such as honeybee and mosquito steer their stingers effortlessly to a specific target and release their venom in a certain path through the skin with minimal force. These unique traits inspire this dissertation work to develop bioinspired needles and to study the insertion mechanics of these needles for reducing the insertion force, needle-tip deflection, tissue deformation, and tissue damage. In this work, the insertion mechanics of honeybee-inspired needles with applied vibration in polyvinyl chloride (PVC) tissue phantom and chicken breast tissues was first investigated. It was observed that the insertion force was decreased by 43% and the needle tip deflection was minimized by 47% using honeybee-inspired needles. Furthermore, the insertion mechanics of mosquito-inspired needles in PVC tissue phantom and bovine liver tissues were studied. Design parameters such as maxilla design on the needle body, labrum-tip, vibration, and insertion velocity were considered. It was found that the insertion force was reduced by 60% in PVC tissues and 39% in bovine liver tissues using mosquito-inspired needles. To validate the developed bioinspired needle prototypes, a size scale study was performed using insertion test in a PVC tissue phantom. It was confirmed that the insertion force was decreased by 38% using different needle sizes. An analytical LuGre friction model was used to explain the insertion mechanics and to confirm the experimental results. Lastly, to investigate the effect of the insertion force reduction, the tissue deformation and the tissue damage studies were performed. Using a novel magnetic sensing system, it was observed that the tissue deformation caused by mosquito-inspired needles was decreased by 48%. A histological study was performed to quantify the tissue damage in bovine liver tissues. It was observed that the tissue damage of mosquito-inspired needles was reduced by 27% compared to standard needles. In conclusion, this dissertation study shows that applying bioinspired needle designs and vibration during insertion into tissues reduces the insertion force, the needle-tip deflection, the tissue deformation, and the tissue damage. The outcome of this study will benefit medical communities to advance the bioinspired needles for vibration-assisted clinical procedures.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.