Loading...
Thumbnail Image
Non-discoverable
Item

A rarefaction-tracking method for hyperbolic conservation laws

Farjoun, Y
Seibold, B
Citations
Altmetric:
Genre
Journal Article
Date
2010-01-01
Advisor
Committee member
Group
Department
Permanent link to this record
Research Projects
Organizational Units
Journal Issue
DOI
10.1007/s10665-009-9338-3
Abstract
A numerical method for scalar conservation laws in one space dimension is presented. The solution is approximated by local similarity solutions. While many commonly used approaches are based on shocks, the presented method uses rarefaction and compression waves. The solution is represented by particles that carry function values and move according to the method of characteristics. Between two neighboring particles, an interpolation is defined by an analytical similarity solution of the conservation law. An interaction of particles represents a collision of characteristics. The resulting shock is resolved by merging particles so that the total area under the function is conserved. The method is variation diminishing; nevertheless, it has no numerical dissipation away from shocks. Although shocks are not explicitly tracked, they can be located accurately. Numerical examples are presented, and specific applications and extensions of the approach outlined. © Springer Science+Business Media B.V. 2009.
Description
Citation
Citation to related work
Springer Science and Business Media LLC
Has part
Journal of Engineering Mathematics
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
Embedded videos