• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SOCIAL NETWORK ARCHITECTURES AND APPLICATIONS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXZheng-temple-0225E-13128.pdf
    Size:
    2.760Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2017
    Author
    Zheng, Huanyang
    Advisor
    Wu, Jie, 1961-
    Committee member
    Ji, Bo, 1982-
    Payton, Jamie
    Yang, Wei-shih, 1954-
    Department
    Computer and Information Science
    Subject
    Computer Science
    Friend Recommendation
    Nested Scale-free
    Network Architecture
    Preferential Attachment
    Social Influence Maximization
    Social Network Quarantine
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4097
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/4079
    Abstract
    Rather than being randomly wired together, the components of complex network systems are recently reported to represent a scale-free architecture, in which the node degree distribution follows power-law. While social networks are scale-free, it is natural to utilize their structural properties in some social network applications. As a result, this dissertation explores social network architectures, and in turn, leverages these architectures to facilitate some influence and information propagation applications. Social network architectures are analyzed in two different aspects. The first aspect focuses on the node degree snowballing effects (i.e., degree growth effects) in social networks, which is based on an age-sensitive preferential attachment model. The impact of the initial links is explored, in terms of accelerating the node degree snowballing effects. The second aspect focuses on Nested Scale-Free Architectures (NSFAs) for social networks. The scale-free architecture is a classic concept, which means that the node degree distribution follows the power-law distribution. `Nested' indicates that the scale-free architecture is preserved when low-degree nodes and their associated connections are iteratively removed. NSFA has a bounded hierarchy. Based on the social network structure, this dissertation explores two influence propagation applications for the Social Influence Maximization Problem (SIMP). The first application is a friend recommendation strategy with the perspective of social influence maximization. For the system provider, the objective is to recommend a fixed number of new friends to a given user, such that the given user can maximize his/her social influence through making new friends. This problem is proved to be NP-hard by reduction from the SIMP. A greedy friend recommendation algorithm with an approximation ratio of $1-e^{-1}$ is proposed. The second application studies the SIMP with the crowd influence, which is NP-hard, monotone, non-submodular, and inapproximable in general graphs. However, since user connections in Online Social Networks (OSNs) are not random, approximations can be obtained by leveraging the structural properties of OSNs. The modularity, denoted by $\Delta$, is proposed to measure to what degree this problem violates the submodularity. Two approximation algorithms are proposed with ratios of $\frac{1}{\Delta+2}$ and $1-e^{-1/(\Delta+1)}$, respectively. Beside the influence propagation applications, this dissertation further explores three different information propagation applications. The first application is a social network quarantine strategy, which can eliminate epidemic outbreaks with minimal isolation costs. This problem is NP-hard. An approximation algorithm with a ratio of 2 is proposed through utilizing the problem properties of feasibility and minimality. The second application is a rating prediction scheme, called DynFluid, based on the fluid dynamics. DynFluid analogizes the rating reference among the users in OSNs to the fluid flow among containers. The third application is an information cascade prediction framework: given the social current cascade and social topology, the number of propagated users at a future time slot is predicted. To reduce prediction time complexities, the spatiotemporal cascade information (a larger size of data) is decomposed to user characteristics (a smaller size of data) for subsequent predictions. All these three applications are based on the social network structure.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.