• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Using Fracture Flow Modeling to Understand the Effectiveness of Pump and Treat Remediation in Dual Permeability Media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXRodack-temple-0225M-120 ...
    Size:
    15.90Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2015
    Author
    Rodack, Haley Elizabeth
    Advisor
    Toran, Laura E.
    Committee member
    Davatzes, Nicholas
    Davatzes, Alexandra K.
    Department
    Geology
    Subject
    Hydrologic Sciences
    Environmental Science
    Environmental Geology
    Fractured Rock
    Fracture Flow Modeling
    Hydrogeosphere
    Pump and Treat
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3486
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3468
    Abstract
    Pump and treat remediation is the most commonly used method to remediate contaminated aquifers, but the effectiveness decreases when heterogeneities are introduced. Fractures within the matrix cause large differences in hydraulic conductivity. The low hydraulic conductivity of the matrix acts as an area of storage for contaminant, allowing for attenuation of the plume. The attenuation of the plume causes the effectiveness of the system to decrease and cost of remediation to increase. In order to understand what parameters enhance contaminant storage in the matrix, rapid transport in fractures, and both of their influences on the efficiency of the pumping system, a hypothetical model was developed to simulate the release and remediation of a plume using pumping. The code used was HydroGeoSphere, which allowed for the interpretation of parameters influencing contaminant storage during the withdrawal phase of the pump and treat remediation by allowing transport of contaminant within both the matrix and the fractures. Matrix parameters of porosity and hydraulic conductivity influenced the effectiveness of the withdrawal system most. For instance, the difference in percent mass extracted between porosity values of 0.01 and 0.4 was 23.75%, while the difference between fracture lengths of 200 and 400 m was 5.59%. Fracture pattern influenced where the stored contaminant was located within the matrix. Downgradient of the source, six different fracture patterns resulted in a difference in relative concentration of 0.4 at the start of the withdrawal phase. Evaluation of remediation included both percent extraction of contaminant and finer scale remediation of the contaminant specifically within the matrix. Multiple length-scale observations helped determine how fracture and matrix parameters influence remediation in dual permeability media.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.