• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Precision Møller Polarimetry and Applications at Jefferson Laboratory

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXHenry-temple-0225E-13661.pdf
    Size:
    31.46Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Henry, WIlliam Patrick
    Advisor
    Napolitano, Jim
    Committee member
    Jones, Donald C.
    Surrow, Bernd
    Metz, Andreas
    Chopra, Harsh Deep
    Department
    Physics
    Subject
    Physics
    Nuclear Physics and Radiation
    Jefferson Laboratory
    Moller
    Polarimeter
    Polarimetry
    Polarized
    Precision
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/2997
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/2979
    Abstract
    Jefferson Lab's cutting-edge parity-violating electron scattering program has increasingly stringent requirements for systematic errors. Beam polarimetry is often one of the dominant systematic errors in these experiments. A new Moeller Polarimeter in Hall A of Jefferson Lab (JLab) was installed in 2015 and has taken first measurements for a polarized scattering experiment. Upcoming parity violation experiments in Hall A include CREX, PREX-II, MOLLER and SOLID with the latter two requiring < 0.5% precision on beam polarization measurements, a precision which has not been achieved to date. The polarimeter measures the Moeller scattering rates of the polarized electron beam incident upon an iron target placed in a saturating magnetic field. The spectrometer consists of four quadrupoles and one momentum selection dipole. The detector is designed to measure the scattered and knock out target electrons in coincidence. Beam polarization is extracted by constructing an asymmetry from the scattering rates when the incident electron spin is parallel and anti-parallel to the target electron spin. The largest systematic errors associated with Moeller polarimetry comes from the precision that the target polarization and the detector acceptance is known will be discussed. Other errors including the Levchuk effect, beam stability, and target heating will be addressed.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.