• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    EXTRACELLULAR VESICLES IN THE VASCULATURE: NOVEL MEANS OF COMMUNICATION DURING VASCULAR INSULT

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Boyer_temple_0225E_14151.pdf
    Size:
    137.2Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2020
    Author
    Boyer, Michael cc
    Advisor
    Rizzo, Victor
    Eguchi, Satoru
    Committee member
    Touyz, Rhian M.
    Kishore, Raj
    Autieri, Michael V.
    Scalia, Rosario
    Department
    Biomedical Sciences
    Subject
    Physiology
    Cell Biology
    Extracellular Vesicles
    Vascular Biology
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/284
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/268
    Abstract
    Endothelial dysfunction, present in most cardiovascular disease, results in up-regulation of inflammatory adhesion molecules/cytokines, increases in vascular permeability, and decreased vasoprotective factors leading to vascular dysfunction. A novel means of communication between almost all cells are small vesicles containing biologically active proteins, nucleic acids, and lipids known as extracellular vesicles. Despite the advances in cardiovascular biology, the role of extracellular vesicles between endothelial cells and cells of vascular wall are underexplored. Therefore, we hypothesized that endothelial activation results in the release of pro-inflammatory vesicles that initiate inflammatory remodeling of vascular smooth muscle cells of the aorta. Extracellular vesicles were released from both endothelial cells and vascular smooth muscle cells with characteristic size, shape, and content. However, serum-free collection in endothelial cells resulted in endothelial activation of cell in culture and resulted in altered function in vascular smooth muscle cells, characterized by increased monocyte adhesion, altered protein synthesis/signal transduction, and signs of pro-senescent features. These effects were not recapitulated in any combination of endothelial-vascular smooth muscle cell extracellular vesicle communication. Unbiased mass spectroscopy of vascular smooth muscle cell treated with serum-free endothelial vesicles identified several proteins significantly up- regulated, including high mobility group box 1 and 2. Pharmacologic and genetic inhibition of these molecules significantly attenuated NF-kB activation, VCAM-1 expression, and monocyte adhesion. In summation, we suggest a new axis through which endothelial activation releases vesicles that skew the function of vascular smooth muscle cells to phenotype characterized by inflammatory properties through up-regulation of high mobility group box proteins 1 and 2. This highlights the importance of extracellular vesicles as a novel communication method between cells of the vasculature and how alterations in the host cell function may change the function of these vesicles.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.