Loading...
DESIGN AND ANALYSIS OF CONTROLLERS FOR BOOST CONVERTER USING LINEAR AND NONLINEAR APPROACHES
Guo, Youqi
Guo, Youqi
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2018
Advisor
Committee member
Group
Department
Electrical and Computer Engineering
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/1342
Abstract
Power converters are electronic circuits for conversion, control and regulation of electric power for various applications, such as from tablet computers in milliwatts to electric power systems at megawatts range. There are three basic types of power converters: buck (output voltage less than the input voltage), boost (output voltage higher than the input voltage) and buck-boost converters. The reliability of the power converters has become an essential focus of industrial applications. This research presents modeling and control of DC/DC boost converter using several control methods, such as Proportional-Integral (PI), Linear Quadratic Regulator (LQR) control, and nonlinear control concepts. Based on standard circuit laws, a mathematical model of the boost converter is derived which is expressed as a bilinear system. First a small signal model of the converter is derived to analyze the small deviations around the steady-state operating point which is used to develop closed loop control using the PI and the LQR methods. Simulation results show that the performance of the converter is good for operation around the operating state, however is unacceptable if there are large variations in the load or the reference input. To improve the performance of the closed loop system, the nonlinear control concept is used which shows excellent closed loop performance under large variations of load or setpoint. Comparative simulation results are presented for closed loop performance under various types of disturbances including random variations in load.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu