• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Data-Fitted Generic Second Order Macroscopic Traffic Flow Models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Fan_temple_0225E_11543.pdf
    Size:
    17.33Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2013
    Author
    Fan, Shimao
    Advisor
    Seibold, Benjamin
    Committee member
    Szyld, Daniel
    Chidyagwai, Prince
    Piccoli, Benedetto, 1968-
    Department
    Mathematics
    Subject
    Applied Mathematics
    Data-fitted Traffic Models
    Generic Models
    Macroscopic Models
    Model Validation With Data
    Second Order Traffic Models
    Traffic Flow Modelling
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/1188
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/1170
    Abstract
    The Aw-Rascle-Zhang (ARZ) model has become a favorable ``second order" macroscopic traffic model, which corrects several shortcomings of the Payne-Whitham (PW) model. The ARZ model possesses a family of flow rate versus density (FD) curves, rather than a single one as in the ``first order" Lighthill-Whitham-Richards (LWR) model. This is more realistic especially during congested traffic state, where the historic fundamental diagram data points are observed to be set-valued. However, the ARZ model also possesses some obvious shortcomings, e.g., it assumes multiple maximum traffic densities which should be a ``property" of road. Instead, we propose a Generalized ARZ (GARZ) model under the generic framework of ``second order" macroscopic models to overcome the drawbacks of the ARZ model. A systematic approach is presented to design generic ``second order" models from historic data, e.g., we construct a family of flow rate curves by fitting with data. Based on the GARZ model, we then propose a phase-transition-like model that allows the flow rate curves to coincide in the free flow regime. The resulting model is called Collapsed GARZ (CGARZ) model. The CGARZ model keeps the flavor of phase transition models in the sense that it assume a single FD function in the free-flow phase. However, one should note that there is no real phase transition in the CGARZ model. To investigate to which extent the new generic ``second order" models (GARZ, CGARZ) improve the prediction accuracy of macroscopic models, we perform a comparison of the proposed models with two types of LWR models and their ``second order" generalizations, given by the ARZ model, via a three-detector problem test. In this test framework, the initial and boundary conditions are derived from real traffic data. In terms of using historic traffic data, a statistical technique, the so-called kernel density estimation, is applied to obtain density and velocity distributions from trajectory data, and a cubic interpolation is employed to formulate boundary condition from single-loop sensor data. Moreover, a relaxation term is added to the momentum equation of selected ``second order" models to address further unrealistic aspects of homogeneous models. Using these inhomogeneous ``second order" models, we study which choices of the relaxation term &tau are realistic.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      DESIGNS FOR TESTING LACK OF FIT FOR A CLASS OF SIGMOID CURVE MODELS

      Raghavarao, Damaraju; Iglewicz, Boris; Chitturi, Pallavi; Chan, Ivan S. F. (Temple University. Libraries, 2012)
      Sigmoid curves have found broad applicability in biological sciences and biopharmaceutical research during the last decades. A well planned experiment design is essential to accurately estimate the parameters of the model. In contrast to a large literature and extensive results on optimal designs for linear models, research on the design for nonlinear, including sigmoid curve, models has not kept pace. Furthermore, most of the work in the optimal design literature for nonlinear models concerns the characterization of minimally supported designs. These minimal, optimal designs are frequently criticized for their inability to check goodness of fit, as there are no additional degrees of freedom for the testing. This design issue can be a serious problem, since checking the model adequacy is of particular importance when the model is selected without complete certainty. To assess for lack of fit, we must add at least one extra distinct design point to the experiment. The goal of this dissertation is to identify optimal or highly efficient designs capable of checking the fit for sigmoid curve models. In this dissertation, we consider some commonly used sigmoid curves, including logistic, probit and Gompertz models with two, three, or four parameters. We use D-optimality as our design criterion. We first consider adding one extra point to the design, and consider five alternative designs and discuss their suitability to test for lack of fit. Then we extend the results to include one more additional point to better understand the compromise among the need of detecting lack of fit, maintaining high efficiency and the practical convenience for the practitioners. We then focus on the two-parameter Gompertz model, which is widely used in fitting growth curves yet less studied in literature, and explore three-point designs for testing lack of fit under various error variance structures. One reason that nonlinear design problems are so challenging is that, with nonlinear models, information matrices and optimal designs depend on the unknown model parameters. We propose a strategy to bypass the obstacle of parameter dependence for the theoretical derivation. This dissertation also successfully characterizes many commonly studied sigmoid curves in a generalized way by imposing unified parameterization conditions, which can be generalized and applied in the studies of other sigmoid curves. We also discuss Gompertz model with different error structures in finding an extra point for testing lack of fit.
    • Thumbnail

      Predicting peptide structures in native proteins from physical simulations of fragments

      Voelz, VA; Shell, MS; Dill, KA; Voelz, Vincent|0000-0002-1054-2124 (2009-02-01)
      It has long been proposed that much of the information encoding how a protein folds is contained locally in the peptide chain. Here we present a large-scale simulation study designed to examine the extent to which conformations of peptide fragments in water predict native conformations in proteins. We perform replica exchange molecular dynamics (REMD) simulations of 872 8-mer, 12-mer, and 16-mer peptide fragments from 13 proteins using the AMBER 96 force field and the OBC implicit solvent model. To analyze the simulations, we compute various contact-based metrics, such as contact probability, and then apply Bayesian classifier methods to infer which metastable contacts are likely to be native vs. non-native. We find that a simple measure, the observed contact probability, is largely more predictive of a peptide's native structure in the protein than combinations of metrics or multi-body components. Our best classification model is a logistic regression model that can achieve up to 63% correct classifications for 8-mers, 71% for 12-mers, and 76% for 16-mers. We validate these results on fragments of a protein outside our training set. We conclude that local structure provides information to solve some but not all of the conformational search problem. These results help improve our understanding of folding mechanisms, and have implications for improving physics-based conformational sampling and structure prediction using all-atom molecular simulations.
    • Thumbnail

      Influence of multiple-sequence-alignment depth on Potts statistical models of protein covariation

      Haldane, A; Levy, RM (2019-03-05)
      © 2019 American Physical Society. Potts statistical models have become a popular and promising way to analyze mutational covariation in protein multiple sequence alignments (MSAs) in order to understand protein structure, function, and fitness. But the statistical limitations of these models, which can have millions of parameters and are fit to MSAs of only thousands or hundreds of effective sequences using a procedure known as inverse Ising inference, are incompletely understood. In this work we predict how model quality degrades as a function of the number of sequences N, sequence length L, amino-acid alphabet size q, and the degree of conservation of the MSA, in different applications of the Potts models: in "fitness" predictions of individual protein sequences, in predictions of the effects of single-point mutations, in "double mutant cycle" predictions of epistasis, and in 3D contact prediction in protein structure. We show how as MSA depth N decreases an "overfitting" effect occurs such that sequences in the training MSA have overestimated fitness, and we predict the magnitude of this effect and discuss how regularization can help correct for it, using a regularization procedure motivated by statistical analysis of the effects of finite sampling. We find that as N decreases the quality of point-mutation effect predictions degrade least, fitness and epistasis predictions degrade more rapidly, and contact predictions are most affected. However, overfitting becomes negligible for MSA depths of more than a few thousand effective sequences, as often used in practice, and regularization becomes less necessary. We discuss the implications of these results for users of Potts covariation analysis.
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.