Loading...
FURTHER CONTRIBUTIONS TO MULTIPLE TESTING METHODOLOGIES FOR CONTROLLING THE FALSE DISCOVERY RATE UNDER DEPENDENCE
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2023-12
Advisor
Committee member
Group
Department
Statistics
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/9494
Abstract
This thesis presents innovative approaches for controlling the False Discovery Rate (FDR) in both high-dimensional statistical inference and finite-sample cases, addressing challenges arising from various dependency structures in the data. The first project introduces novel multiple testing methods for matrix-valued data, motivated by an electroencephalography (EEG) experiment, where we model the inherent complex row-column cross-dependency using a matrix normal distribution. We proposed two methods designed for structured matrix-valued data, to approximate the true FDP that captures the underlying cross-dependency with statistical accuracy. In the second project, we focus on simultaneous testing of multivariate normal means under diverse covariance matrix structures. By adjusting p-values using a BH-type step-up procedure tailored to the known correlation matrix, we achieve robust finite-sample FDR control. Both projects demonstrate superior performance through extensive numerical studies and real-data applications, significantly advancing the field of multiple testing under dependency. The third project presented exploratory simulation results to demonstrate the methods constructed based on the paired-p-values framework that controls the FDR within the multivariate normal means testing framework.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu