Loading...
Thumbnail Image
Item

Magnetic Signature Estimation Using Neural Networks

Bosack, Matthew James
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2012
Group
Department
Electrical and Computer Engineering
Permanent link to this record
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/819
Abstract
Ferrous objects in earth's magnetic field cause distortion in the surrounding ambient field. This distortion is a function of the object's material properties and geometry, and is known as the magnetic signature. As a precursor to first principle modeling of the phenomenon and a proof of concept, the goal of this research is to predict offboard magnetic signatures from on-board sensor data using a neural network. This allows magnetic signature analysis in applications where direct field measurements are inaccessible. Simulated magnetic environments are generated using MATLAB's Partial Differential Equation toolbox for a 2D geometry, specifically for a rectangular shell. The resulting data sets are used to train and validate the neural network, which is configured in two layers with ten neurons. Sensor data from within the shell is used as network inputs, and the off-board field values are used as targets. The neural network is trained using the Levenberg-Marquardt algorithm and the back propagation method by comparing the estimated off-board magnetic field intensity to the true value. This research also investigates sensitivity, scalability, and implementation issues of the neural network for signature estimation in a practical environment.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
Embedded videos