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ABSTRACT

A PROBABILISTIC CHARACTERIZATION OF SHARK MOVEMENT

USING LOCATION TRACKING DATA

Samuel S. Ackerman

DOCTOR OF PHILOSOPHY

Temple University, May 2018

Professor Marc J. Sobel, Chair

Our data consist of measurements of 22 sharks’ movements within a 366-acre

tidal basin. The measurements are made at irregular time points over a 16-

month interval. Constant-length observation intervals would have been desir-

able, but are often infeasible in practice. We model the sharks’ paths at short

constant-length intervals by inferring their behavior (feeding vs transiting),

interpolating their locations, and estimating parameters of motion (speed and

turning angle) in environmental and ecological contexts. We are interested in

inferring regional differences in the sharks’ behavior, and behavioral interac-

tion between them.

Our method uses particle filters, a computational Bayesian technique de-

signed to sequentially model a dynamic system. We discuss how resampling

is used to approximate arbitrary densities, and illustrate its use in a sim-

ple example of a particle filter implementation of a state-space model. We

then introduce a particular model formulation that uses conditioning to in-

troduce unobserved parameters for the shark’s behaviors. We show how the

irregularly-observed shark locations can be modeled by interpolation as a set

of movements at constant-length time intervals. We use a spline method for

generating approximations of the ground truth at these intervals for compar-

ison with our model. Finally, we demonstrate our model’s estimates of the

sharks’ behavioral and ecological parameters of interest on a subset of the
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observed data.
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CHAPTER 1

INTRODUCTION AND

MOTIVATION

A growing area of research in ecology involves the measurement of local

movement and migration patterns of animals through positional tracking de-

vices attached to or implanted in these animals. Use of these devices is called

telemetry, which in general refers to making measurements remotely. Teleme-

try has been successfully implemented with a wide variety of species in different

habitats, particularly recently in fish, which have historically been difficult to

study. Understanding local movement within a habitat can help us learn about

the daily behavior (such as feeding) of individual animals, as well as the com-

munity structure, and is therefore of tremendous practical importance.

Our dataset contains more than 68,000 two-dimensional position observations

of 22 small gray smooth-hound sharks in the full-tidal basin of the Bolsa

Chica Wetlands, an area covering about 0.57 mile2 in Orange County, CA

(see Figure 1.1). Based solely on the position observations and the speed and

directional data derived from them, we believe we can identify two distinct be-

haviors: feeding and transiting. Our general approach will be to use particle

filters, which are sequential simulations of data, in this case the sharks’ move-

ment patterns. The particle filter simulations will distinguish between the two
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hypothesized behavior types and model the movement patterns characterized

by each behavior.

Our particle filter model uses several parameters to describe shark behavior;

we estimate their posterior distributions using sequential Bayesian updates.

We will answer biologically-relevant questions about the sharks’ behaviors.

These include:

• Are sharks more likely to display certain kinds of feeding behaviors in

certain regions of the tidal basin?

• Do sharks that are near each other tend to exhibit similar behaviors be-

yond what is expected from regional association? That is, does behavior

type exhibit statistically-significant spatial-temporal clustering?

Identifying feeding areas is important in general for learning about the

sharks’ overall behavior; these areas may also be ecologically sensitive and

need additional environmental protection. We will compare the regions iden-

tified by our model through shark movements with the regional distribution

of prey populations as measured by ecological surveys.

The paper will proceed as follows:

1. In Section 2.2 we describe our dataset in more detail and define the

relevant variables used in our analysis.

2. In Section 2.6 we explain the basics of state-space models and particle

filters, and present the specification of our model and its Bayesian setup1:

3. In Section 3 we show how results from the model simulations can be used

for inference about parameters of interest, particularly the regional be-

havior type probabilities and movement parameters for the two behavior

types, to answer the biological questions we are interested in.

1See Section 4.1 for an overview of Bayesian statistics.
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Figure 1.1: The Bolsa Chica Full Tidal Basin (courtesy of Google Maps). The

tidal basin covers about 0.57 mile2; sharks can exit the tidal basin to the

Pacific Ocean through an inlet at the southern end.

4. Lastly, in Section 10, we present an extension of the basic model to

jointly infer behavioral interaction effects between sharks.
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CHAPTER 2

DATA

2.1 Abbreviations, notation and symbols

iid independently and identically distributed

m meters

BCRW biased correlated random walk

BRW biased random walk

CDLM conditional dynamic linear model

CRW correlated random walk

EKF Extended Kalman filter

KF Kalman filter

MCMC Markov chain Monte Carlo

ML maximum likelihood

NIG normal inverse-gamma (prior)

OU Ornstein–Uhlenbeck process

PF particle filter

RMSE root mean squared error

R(R/S)WR random (re)sampling with replacement

SIR sequential importance (re)sampliing

SSM state-space model
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UTM Universal Transverse Mercator coordinate system

VM von Mises distribution

VPS VR2-W Positioning System

WN wrapped normal distribution

(n) or (j) (superscript) variable for particle n or j

(r) (superscript) variable for region r

˜ (top tilde) value after resampling

ˆ (‘hat) parameter or value estimate

(underline) smoothed value of parameter or variable

∅ empty or null set

x := y variable x is defined as ‘y’

x
d
; f(·) the random variable x converges in distribution to density f

i : j sequence of integers i, . . . , j

j′ index of same type as j, but to differentiate it from the par-

ticular index j, for instance two particles n and n′ which may

or may not be different. Also denotes posterior updates of a

parameter, such as α′ = α + . . .

| · | set cardinality or absolute value, depending on context

‖ · ‖ Euclidean distance

{·}Jj=1 or {·} set of objects with indices j, or indices dropped for clarity

f a general function

f a vector

fi:j ordered set of vectors f indexed i : j

f(·) vector-valued function

F a matrix, possibly time-indexed

F(·) matrix-valued function, particularly a Jacobian

& and

a(n) particle rescaling factor
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A(·) overall classification accuracy

A(· | k) classification accuracy conditional on the true class being k

Ber Bernoulli distribution

Beta Beta-distribution

c time subscript for variables if measured at time intervals of

constant length

cthresh maximum number of constant intervals c allowed between ob-

served times for simulation

(c, s) ordered pair of time Υc index and shark s for joint modeling

C total number of constant-length time intervals c

d(·) a generic distribution function

d(x | . . . ) density function d(·) with parameters . . . evaluated at the

value x

d̃(·) truncated distribution of d(·)
Dir or DirK K-variate Dirichlet distribution

E(·) expected value

G Gamma distribution

G−1 inverse-Gamma distribution

h(s, j) clock time of shark s’s jth observation

Ht clock time of observation t

I(·) indicator function

k,K indices usually used for categories

`(·) density function of a state-space model state/dynamic equa-

tion, or a likelihood function

`µ mean function of a state-space model state/dynamic equation

`(·)
Lognormal log-normal distribution

m(·) density function of a state-space model measurement equation,

or generally a marginal density
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mµ mean function of a state-space model measurement equation

m(·)
mcurrent marginal density of m(yt | xt) where both are observed up to

the same time index t

minterpk,

minterpt|k

marginal predictive density mpredict for irregularly-observed

data yt (interpolated to constant-length time intervals), con-

ditional on behavioral mode λ = k, or more specifically, the

predictive of the observation y at time t, given behavior λ = k.

mpredict marginal density of m(yt | xt−1) where the next y is predicted

at t based on simulated x up to t− 1

mpredictk marginal density mpredict conditional on the intermediate λt =

k

n particle index

nj particle index at iteration j of smoothing

na,b,i→j cumulative number of transitions between behaviors i and j,

between time steps a and b, 1 ≤ a ≤ b

na,b cumulative number of transitions between time steps a and b,

1 ≤ a ≤ b. By definition, this equals b− a.

n(s) the index of the original particles that is resampled as new

index s (in context of low-variance sampling)

N total number of particles n

Neff particle filter effective size

Nthresh threshold for resampling particles based on effective size

N or N k univariate or multivariate normal distribution or density func-

tion

X ∼ N (µ, σ) random variable X is distributed as normal with mean µ and

standard deviation σ

N (x | µ, σ) normal distribution density with mean µ and standard devia-

tion σ evaluated at the value x

N( · ) spatial-temporal neighborhood
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N
(r)
a,b matrix of cumulative counts of behavior transitions na,b,i→j for

region r between times a and b

O(·) order of

p a distribution function, particularly for the prior

pcurrent predictive density of d(xt | y1:t) where both are observed up to

the same time index t

ppredict predictive density of d(xt | y1:(t−1)) where the next x is pre-

dicted at t based on observations up to t− 1

pi a probability value, such as one drawn from a Dirichlet or Beta

distribution

pi→j or pc,i→j transition probability between behaviors i and j, or this prob-

ability estimate as of time c

p
(r)
0 true foraging probability for region r

P
(r)
c transition probability matrix for region r, at time c

Pr(·) probability of an event

X ∼ Pr(·) categorical distribution of random variable X

qc or qt error term of SSM state/dynamic equation, at time c or t

Qc or Qt covariance matrix of error term of SSM state/dynamic equa-

tion, at time c or t

r region index

R total number of regions

R the real number line

rc or rt error term of SSM measurement equation, at time c or t

Rc or Rt covariance matrix of error term of SSM measurement equation,

at time c or t

R2
C net squared displacement (Marsh-Jones statistic)

s shark index

st the shark s that corresponds to observation yt

S total number of sharks; also index of size of resampling (see

low variance sampling)
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Sxt sufficient statistics of states xt

t general time subscript for variables, specifically if measured at

time intervals of non-constant length

T total number of observations, specifically if measured at time

intervals of non-constant length

t(s, c, j) index t of pooled observations y1:T of shark s’s jth observation

in interval c, if defined; otherise equals ∅
vc or vt velocity at time c or t

wc or wt particle resampling weights (sometimes with superscript (n)),

at time c or t

wj,c particle resampling weights (sometimes with superscript (n)),

at time c for smoothing iteration j

wc|k or wt|k particle resampling weights (sometimes with superscript (n)),

at time c or t, conditional on the behavior λc or λt = k

w̃c, w̃c|k, etc. value of particle weights wc or wc|k, etc. after resampling

w̄n cumulative sum of particle weights up to index n, i.e., w̄n =∑n
j=1w

(j)

W N wrapped normal distribution

W −1 inverse-Wishart distribution

u a random draw from a continuous uniform distribution U

U continuous uniform distribution

xc,i I(λc = i), for purposes of likelihood formulation (see Section 6)

xc or xt unobserved measurements at time c or t

xc or xt smoothed value of state x at time c or t

yt observed measurements at time t

zt, zt, z1,t, z2,t observed spatial location, either as a single value zt (1-D), or

vector (zt) of horizontal (z1,t) and vertical (z2,t) coordinates

Z set of positive integers {1, 2, . . .∞}
αc or αt mean of velocity or log-velocity at time c or t
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α or α(r) vector of Dirichlet parameters, or a single Dirichlet regional

parameter

βc or βt mean of turn angle, in radians, at time c or t

δζ spatial radius in meters of neighborhood N(·)
δΥ temporal length in seconds of neighborhood N(·); all neighbors

(c′, s′) have to be less than δΥ seconds before

∆s,c,j for interpolation, refers to all the observations of shark s in

constant-length interval c (see t(s, c, j)). If j = 1, the gap

from the observation time to Υc; otherwise, it’s the time gap

from observation j − 1 to j in the interval.

∆t the time difference from observation t to t + 1, for varying

interval lengths

∆Υ constant time difference between simulated observations

∆MJ Marsh-Jones statistic

ζt, ζt, ζ1,t, ζ2,t (zeta) unobserved spatial location, either as a single value ζt

(1-D), or vector (ζt) of horizontal (ζ1,t) and vertical (ζ2,t) co-

ordinates; either at t or c

η various subscripts: degrees of freedom parameter for an inverse

Wishart (W −1) distribution

ηk neighborhood behavioral influence parameter for λc = k

θc or θt turn angle (radians) at time c or t

θc or θt vector of state-space model unobserved parameters, at time c

or t

λc or λt latent variable value (particularly behavior), at time c or t

µ or µ generally a mean value or vector

Λ scale matrix for an inverse Wishart (W −1) distribution

Θ(·) wrapping function that wraps input values to the interval

[−π, π]

πc,s,k proportion of spatial-temporal neighbors of (c, s) that have be-

havior λc,s = k
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π normalized eigenvector of square matrix for modeling station-

ary probabilities

ρc spatial-temporal rescaling factor

σ2
c or σ2

t variance of either velocity v or log-velocity ln (v) at time c or t

Σ or Σ a covariance matrix

τ 2
c or τ 2

t variance of turn angle θ (radians) at time c or t

Υc clock time of constant-interval measurement c

ψc or ψt bearing angle at time c or t

Ψ hard domain constraint

Ωc or Ωt prior distribution vector of hyperparameters at time c or t
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2.2 Data

The shark telemetry data we use were collected for the published paper

by Espinoza, Farrugia, and Lowe ([16]). The gray smooth-hound shark is a

small shark which is a major predator–its diet consists mainly of crabs, small

fish, scallops, and other shellfish–in the estuary, whose presence is considered

an indicator of the level of ecological restoration in such a marine habitat. As

part of this paper, the authors detail their efforts to catch several hundred

gray smooth-hound sharks in nets for measurement, and to track 22 of them

with implanted telemetry equipment. They placed 16 evenly-spaced acoustic

receivers in the tidal basin to record the sharks’ positions when sharks passed

within range of the receivers. Shark positions were calculated by triangulation

using the differences in detection times between receivers. Thus, there is sig-

nificant variation in the time gaps between observations. These gaps may have

occurred due to interference from obstacles (such as mud), or if a shark left

the tidal basin out of receiver range. This is a significant modeling challenge

that we will address.

Figure 2.1 shows the time spans recorded for each shark. Three of the

22 sharks died during data collection. In general, sharks were observed for

relatively short time spans, usually around a month or less. The primary

reason, according to the study’s authors, is that the habitat was relatively

new since it was being restored, and food resources could be limited compared

to other habitats. Thus individual sharks had not gotten accustomed to it as a

more permanent habitat and did not stay for extended periods. If a shark left

for another habitat, observation ceased as long as they were out of range of

the receivers. Some sharks, such as shark #17, returned after several months

absence. Furthermore, though the observation spans of sharks tagged in the

same year overlap significantly, the two groups of sharks tagged in different

years (nine in 2008, thirteen in 2009) did not overlap at all; this limits our

ability to infer the degree of inter-shark influence.
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Observation span by shark

Month of observation

S
ha

rk
 ID

22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Aug. Oct. Dec. Feb. Apr. Jun. Aug. Oct. Dec.

2008 2009

shark died

Figure 2.1: Spans of time each of the 22 sharks was observed. Most sharks

were only observed for relatively short periods.
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2.3 Variables

The following variables will be used to model the sharks’ movements. Vari-

ables are specific to a given shark s, but we omit this index for clarity here.

Depth coordinates were not included because the tidal basin is shallow and

we assume depth is not significant in modeling the behavior. In applications

involving marine turtles, for instance, which dive, this would not be true.

Spatial-temporal covariate variables, such as the temperature, presence of veg-

etation, or tide level at a coordinate, were not available to assist in modeling

behavior; other movement models have successfully incorporated such infor-

mation. Also, we do not have acceleration data, which would be helpful in

modeling speed; devices with accelerometers apparently began to be used in

research around the time our data was collected.

• Let t be the time index of a recorded observation for shark s, and let Ht

be the actual time of the observation. The index c will later be used to

index variables simulated at time steps of equal length.

• At time indexed t, shark s is observed at position ζt =
[
ζ1,t ζ2,t

]T
(measured in UTM coordinates) at speed vt (m/s).

• Let ψt ∈ [−π, π] be the bearing angle, the shark’s direction of movement

from ζt (defined relative to a fixed point, here the horizontal axis).

• The turn angle θt ∈ [−π, π] is the change in bearing angles (ψt = ψt−1 +

θt). θt < 0 means the shark is turning clockwise relative to its previous

direction.

• ∆t is the observed time in seconds between observations t and t+ 1 for a

given shark. When observations are pooled, ∆t is still the time difference

between consecutive observations of the same shark, but the next index

after t is not necessarily t + 1 if another shark s′ was observed between

them.
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Example of a trajectory

ζ1,c

ζ 2
,c

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

ζ1

ζ2

ζ3

ζ4

θ2 =
3π
4

ψ1 = −
π
2

ψ2 =
π
4

θ3 = −
π
2

ψ3 = −
π
4

θc = ψc − ψc−1

Figure 2.2: Toy illustration of a trajectory in the ζ-coordinate plane with the

bearing angle ψc and turn angle θc in radians.
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A toy example of a trajectory using these variables is shown in Figure 2.2.

Noting that animal movement patterns depend on the animal’s behav-

ior type (particularly foraging or transiting, i.e., movement between feeding

areas), a common approach for modeling animal movement is to model move-

ment separately for each behavior type. For instance, for some marine animals,

foraging behavior can be characterized by frequent changes in movement direc-

tion (large turn angles between positions) and slower speed, while transiting

is often characterized by faster speed and less change in direction. One ap-

proach to model the overall trajectory is to model it as a mixture of the two

behavior-specific movements. This is illustrated, for instance, in Morales et

al ([36]) with elk, Jonsen et al ([24]) with leatherback sea turtles, and Roever

et al ([43]) with African elephants; these studies use state-space model (SSM)

techniques, discussed in detail in Section 3. Of course, the model specifics need

to be customized to each particular species with biological domain knowledge.

In our case, we denote the behavior type at time t by λt, and use the forag-

ing/transiting paradigm, where

• foraging (λt = 0) is generally when the shark moves with low speed (vt)

and sharp back and forth motion, shown by large turn angles (|θt| is

large), and

• transiting (λt = 1) is characterized by higher speed and straighter move-

ment (|θ| ≈ 0).

We believe the sharks’ movement can be characterized by periods spent

foraging in certain areas and then movement (transiting, essentially all other

type of movement) between these regions.

2.4 Spline interpolation

One of the major challenges of dealing with telemetry data is that often

data are observed at irregularly-occurring time intervals. This is usually due
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to technical limitations of the telemetry equipment, such as limited range or

interference by landscape features, or the behavior of the animals themselves.

For instance, certain marine animals travel long distances into open water or

dive for long periods of time, during which it may be difficult or impossible to

measure their location.

The empirical density of the observed time gaps ∆t in seconds between

observations, for all sharks, is shown in Figure 2.3; the density is restricted

to ∆t < 3600 seconds (1 hour), which is above the empirical 98th percentile

of time gaps. In our data, the raw ∆t have Q1 = 68 seconds, a median

of 130, and Q3 = 299 (5 minutes); the mean is 826 seconds (about 13.75

minutes), but is significantly affected by extreme values. The irregularity of

observation is due to interference (such as from the mud banks near the coast

of the tidal basin) and the pinging rate of the shark VPS (VR2-W Positioning

System) transmitters, which were between 40 and 80 seconds. The pinging

rate measures how often a signal is transmitted, meaning that a shark will not

be observed at time gaps of less than 40 seconds; indeed, the smallest observed

time gap was 43 seconds.

Performing model building and inference on irregularly-observed data is

problematic. It is true that analysis of anything other than completely con-

tinuously observed trajectories requires some abstraction from the true trajec-

tory. For instance, the simplest way to guess the trajectory between a set of

observed locations is to ‘connect the dots’ and assume the animal travels at

straight lines between the locations, when in reality the movement is probably

more sinuous like a spline. Nevertheless, the simplification of using Euclidean

distance between locations often greatly aids model-building and computation.

If we accept this simplification, however, creating a linear interpolation from

irregularly-observed locations—especially if the degree of irregularity, i.e., the

variance of time steps ∆t, is large, as in our case—is problematic for several

reasons. These issues are problematic even if we have regular observations but

with long time gaps (‘long’ depends on the particular species and its typical

range of movement), but are compounded with the case of the irregularly-
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Figure 2.3: Empirical density of time gaps ∆t (seconds), restricted to show

∆t < 1 hour.

observed time points.

The first problem reflects the fact that with increased time gaps, the

amount of uncertainty involving modeling the actual trajectory of the ani-

mal between two locations is increased. The longer the time has elapsed, the

more likely that the animal’s true trajectory between observations is more sin-

uous and involves more back and forth motion, for instance, and thus is more

likely to have departed from the straight line Euclidean simplification. One

can set a reasonable upper bound on the time gaps where beyond this it is

relatively useless to model the animal’s trajectory between two points because

the set of potential trajectories so large.

In sequential Bayesian models (see Section 4.1), which we will discuss in

more detail, model parameters, such as for the distribution of turn angle and

speed, are updated sequentially with each new point of data. The standard

parameter updating formulas assume we are dealing with some random sample

where each data point is equally weighted, or else observations weights must be
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incorporated; in update formulas, earlier-observed point have more influence

in the overall parameter calculation because as more data is observed, we are

more confident in the cumulative sample mean and thus weight new data points

less and less, but this is a separate issue. If we choose to weight observations

differently based on the time elapsed between them, formulating a weighting

scheme can be difficult.

Secondly, irregular observations tend to violate many of the assumptions

of common models. We will examine later the correlated random walk (CRW)

model, a frequently-used model where the turn angles at each step are inde-

pendent and symmetric around 0, so the animal is equally likely to go left

or right. The variance parameter of the turn angle distribution controls the

animal’s directional persistence, meaning its tendency to continue in roughly

the same direction over successive time points.

Accepting the Euclidean distance simplification, if the data are irregularly

observed, we cannot treat the empirical distributions of speed (v̂t), calculated

as the Euclidean distance between locations divided by the time gap, and of

the turn angles (θ̂t), calculated as the angular change at a location between

its previous bearing direction ψt−1 and its new direction ψt, assuming straight

lines, as representing an approximation of reality. Since Euclidean distance

is the lower bound on the potential distance actually traveled between two

points, the longer the time gap ∆t, the worse of an approximation of real-

ity this straight line becomes, since the shark may have actually traveled a

more sinuous, and thus longer, path between them. Thus, the actual average

speed along the true trajectory is likely to be much higher than the Euclidean

estimate v̂t. Similarly, trying to calculate turn angles at irregular or large

time gaps is unreasonable. As noted by Gurarie ([19], p. 28), one cannot

assume that the distributions of turn angles θt and speeds vt are identically

distributed when the gaps are irregular, but rather their distributions depend

on the length of the gaps ∆t. Thus, fitting a CRW to, or performing diagnostic

tests to determine the appropriateness of a CRW model, using highly irregular

observations, is invalid.
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Thirdly, the irregular observations are especially problematic in our case

when trying to model the shark’s behavioral state (λt) at a point in time.

A natural approach is to use a probability transition matrix to model how

often the shark is likely to stay in the same behavior or change between them.

Speed vt is the primary way to differentiate between the slow foraging and

fast transiting behaviors1. However, using the average speed v̂t (assuming

Euclidean distance) between locations to determine the behavior λt at that

point is unreliable because at longer gaps the Euclidean distance becomes a

worse approximation of the true distance traveled, and also, over longer gaps

the shark is more likely to switch behaviors and its true (unobserved) speed is

likely to vary. Thus, our approach, discussed later, will be to specify a constant

and small time gap ∆Υ at which we will model movement by interpolating the

irregular timesteps t to constant-length ones c. This way we can model the

relative frequencies of behaviors and their switching probabilities and perform

inference on the relevant parameters.

Thus, to describe the distributions of the dataset variables to justify our

CRW approach, we will not use the raw distributions of speed and turn an-

gle, but rather the distributions from a version of the dataset interpolated

to regular time intervals. As a note, we do not claim that the interpolated

locations accurately represent the true unobserved locations, but rather that

this approach is better than the raw data approach which weights irregularly-

observed points as if they represent equal amounts of time, and assumes that

the average speed over irregular intervals can describe the shark’s behavior

over the whole interval. Also, our modeling approach (discussed later) does

not make use of these regular interpolations as inputs or for comparison, but

rather for illustration.

To do exploratory data analysis, we will interpolate the observed loca-

tions using Bézier (pronounced ‘beh-zee-ay’) spline2 curves. Like other splines,

Bézier curves use a set of observations as control points to guide the curve

1We also use turn angles θt to differentiate the behaviors, but these distributions are
centered around 0 and thus are harder to use for discrimination.
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through a convex hull of the points. The spline will begin and end at the

beginning and ending observation, and it will pass near but not through the

intermediate control points. We will use this particular spline technique be-

cause they were demonstrated by Tremblay et al. ([51]) to be more effective

than several other spline methods for interpolating animal trajectories. We use

the implementation of Bézier splines in the bezier package by Olsen ([39]) for

the R software language.

A Bézier spline is a piecewise polynomial of degree one less than the number

of control points; for instance, two control points trivially give a line connecting

them, and four control points give a cubic spline, which we use. Figure 2.4

illustrates interpolation of a quadratic (second-degree) polynomial with three

control points. For the case of three control points, lines are drawn to connect

the three points in order (in our case, the order in which they were observed).

Consider a set of values t ∈ [0, 1] (in the illustration, t ∈ {0.00, 0.25, 0.50,

0.75, 1.00}); points are marked along the line segments connecting the control

points at the fractions of t. Then, line segments connecting each of the pairs

of points at the same fractions are drawn; in the illustration, these are the

blue, green, and red line segments. Then, assuming enough points t are used,

the spline is a smooth curve along the hull of these line segments. Points at

fractions t along the spline are found by marking points at the corresponding

fraction t along these new line segments.

One key feature of the Bézier spline illustrated above is that selecting

equally-spaced fractions t along the interval [0, 1], as in the figure, does not

give equally-spaced points along the spline, as long as the control points are

not on a single line. Where the spline curvature is higher, such as at the 50%

point in Figure 2.4, the t points are spaced closer together, and the distance

between them is longer where the spline is less curved, such as near the first

and last control points. The advantage of this is that if we take the t fractions

to represent time, if these fractions are equally spaced, we can generate a set

2Kamermans’ online book ([25]) provides an extensive background on the mathematics
of Bézier curves.
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Figure 2.4: Illustration of a quadratic Bézier curve interpolation for three con-

trol points located at (70, 250), (20, 100), and (250, 60). Source: Kamermans

([25]).

of predicted locations that are not equally spaced along the spline, as if the

shark is slowing down as it turns around the high-curvature sections of the

spline (since the distance between these spline points is small but the time

gaps in t are equal).

We choose to use Bézier splines instead of other available spline methods,

such as B- or X-splines, which may more truthfully represent a curved path

between observations that can be forced to pass through all of the control

points. The reason is that Bézier splines, despite the fact that they do not

pass through all control points, provide a natural way to generate locations

along the spline that may be used to represent locations equally spaced in

time but not in distance along the spline. Many software implementations of

splines do not allow user control over returning locations along the spline, such

as in number of points desired. Furthermore, the points along the spline that

these methods generate are often simply those used to construct the spline,

and there is no practical interpretation of them in terms of the time elapsed.

Thus, they are an improvement from simple Euclidean distance in modeling

speed, in that they lengthen the distance between observations, but we cannot

use them to approximate changing speed of movement along the spline path.

As we have mentioned, we want to model the irregularly-observed shark
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data at regular time intervals, so to analyze some features of the observed

data we will generate regularly-spaced time intervals on piecewise cubic Bézier

splines. As an example, the points will be spaced at ∆Υ = 120 seconds (2 min-

utes) along sequences of observations where each observation is spaced no more

than 10∆Υ seconds (20 minutes) away from each other. We do not claim that

these spline-interpolated points accurately represent the actual locations of the

shark at constant intervals of ∆Υ = 120, but rather that for our exploratory

analysis these represent a better alternative. The Bézier spline interpolation

results both in a nonlinear trajectory and varying speeds of travel between

observations, which is more realistic than constant-speed linear Euclidean in-

terpolation of the observations. Also, since the speed slows around sharp

curves, this matches our model of foraging being represented by slower speeds

and more curved movement. Especially since by definition, the Bézier spline

does not go through the middle control point observations used in the piece-

wise spline, we do not use this interpolation as a ground truth either as direct

input into our algorithm or as a metric to evaluate our results, but rather

simply for exploratory analysis.

Figure 2.5 shows each shark’s observations, with ∆t < 20 minutes inter-

polated with (naive) Euclidean linear interpolation and with Bézier spline

interpolation. To differentiate regular steps from irregular steps, we will use

the following notation:

• t will be used to index irregular steps H. We consider a set of T

(irregularly-spaced) observations at times H1 < H2 < · · · < HT . Here

the time gap is ∆t = Ht+1 −Ht.

• c will be used to index regular steps Υ, where the time gap is a (relatively

small) constant ∆Υ. The C + 1 constant-length timesteps are Υ0 <

Υ1 < · · · < ΥC , where Υ0 = H1 − ε (a small number so that the first

observation time H1 falls in a regular interval that is open on the left)

and Υc = H1 + c∆Υ, c = 1, . . . , C, where C = argmax
c
{Υc ≤ HT} (i.e.,

enough regular steps to cover the set of irregular observations).
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Based on the spline interpolation to regular steps, we can calculate the

speed the shark would have traveled between these points, then take the nat-

ural log. This is done so that the resulting density plots can be modeled as

a mixture of Gaussian distributions, as shown in Figure 2.6. As the figure

shows, roughly half of the shark spline-interpolated trajectories have what can

be modeled as a mixture of normals, with the division between the two compo-

nents at ln (vc) ≈ −3 or so. Thus, for instance, for our data exploration we can

tentatively label behaviors λc = 0 (foraging) if ln (vc) < −3, otherwise λc = 1.

Figure 2.7 shows the analogous log-speed densities when the observed points

are interpolated to constant-length intervals of 2 minutes using the Euclidean

distance (i.e., a Bézier spline with degree 1). The results are not too different
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Figure 2.5: Actual shark observations in sequences with ∆t < 20 minutes

between observations, connected by Euclidean interpolation (top) and cubic

spline interpolation to regular steps ∆Υ = 2 minutes.
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Figure 2.6: Density plot of log-speed ln (vc) between Bézier spline-interpolated

points.

in terms of the density estimates, but with Euclidean interpolation the speed

is assumed to be constant between the observation, which we want to avoid.

As mentioned before, the approach of modeling the animal’s different behavior

types as a mixture distribution with switching probabilities between the types

has been used by other authors such as Morales et al. ([36]) and Jonsen et al.

([24]). Additional relevant theory about CRWs is reviewed in Section 3.2.

Figure 2.8 shows the joint density of the distributions of calculated log-

speed (ln (vc) and ln (vt)) and turn angle in radians (θc and θt) from the regular

interval spline interpolated positions (at left) and the raw observations (right).
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Figure 2.7: Density plot of log-speed ln (vc) between Euclidean-interpolated

points.
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As mentioned earlier, examining these variable distributions from intervals of

irregular time gaps is not very valid as a data exploration or modeling exercise.

For the interpolated data (left), the turn angles are tightly concentrated around

θc = 0, due to the fact that the time gaps are small and the Bézier spline, by

its nature, forces the trajectory to be smooth, and most of the turn angles are

small, even if the speed is low around the peak of the curve. Our animal model

posits that low speeds tend to represent foraging, that animals that forage will

have larger turn angles, based on domain knowledge. We will maintain this

model and keep in mind that the interpolation is only a guide.

For the irregular steps (right), which we acknowledge are not valid to use

for the distributions of the speed and turn variables, we note that there is a

concentrated area of observations with higher speeds and small turn angles,

and a region with lower speeds and wide turn angles. These tend to arise when

there are large time gaps.

2.5 Empirical resource distribution data

One of our primary questions is whether our model can infer from the shark

movements that foraging behavior is more likely to occur in some regions than

others. The details of the regional modeling will be discussed in Section 6.

Shark behavior type is unobserved and we we infer it based on the movement

patterns. To support this hypothesis, we will compare empirical data on the

spatial distribution of the sharks’ prey with our inference of regions where

foraging is most likely. If, according to our model, foraging behavior tends to

take place in regions where common species of shark prey can be found, this

will lend support to our hypothesis.

In a second paper, Farrugia, Espinoza, and Lowe ([17]), the authors of the

original study, collected samples of other fish and invertebrates in seine nets

in the tidal basin over the same period, to measure the species’ spatial distri-

bution. By using counts of the number of specimens of each species collected

in each seine net, we can calculate a spatial measure of relative abundance



29

−6

−4

−2

0

− π − 0.5π 0 0.5π π
turn angle (radians)

lo
g−

sp
ee

d 
(p

er
 s

ec
on

d)

0.0
0.1
0.2
0.3
0.4
0.5

density

Heatmap of log−velocity and turn angles from spline interpolation

−6

−4

−2

0

− π − 0.5π 0 0.5π π
turn angle (radians)

lo
g−

sp
ee

d 
(p

er
 s

ec
on

d)

0.00

0.05

0.10

0.15

0.20density

Heatmap of log−velocity and turn angles from observed data

Figure 2.8: Joint distribution of log-speed and turn angle in radians for all

observations, for the spline interpolated positions (left, (θc, ln (vc))) and the

raw observations (right, (θt, ln (vt))). The raw observations are at irregular

time gaps from each other, so examining the distributions of speeds and turn

angles between them is not very valid. In each, a horizontal dashed line is

drawn at the value of ln (vc) or ln (vt) that tentatively divides foraging from

transiting behavior.
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(i.e., spatial distribution of presence) of that species. The relative abundance

measure adjusts the counts of specimens by the surface area of the seine nets

at each location and the length of time each net was erected to estimate the

number of specimens caught per unit of net area per unit time. Assuming

that species are caught (by a fixed size net and over a fixed amount of time)

in proportion to their actual abundance at a location, the relative abundance

measure should estimate the spatial distribution of species locations.

The relative abundance was calculated for crabs, scallops, and shrimp,

three common species of prey that our sharks eat. The measure is calculated

separately for each type of prey because of their differing sizes, and it is diffi-

cult to combine species of different sizes into a composite measure of species

distribution.3 The relative abundances are shown in Figure 2.9 for each of

these species. Note that in the images the density scale colors are normalized

to each plot and thus cannot be compared across plots.

We wish to see how our model of foraging vs transiting behavior based on

movement corresponds to the estimated spatial distribution of prey. Thus, we

will use the spline interpolation of the observations to regular time intervals

and the tentative labeling of intervals as corresponding to foraging or transiting

behavior to estimate the spatial probability of foraging. Ideally, we should see,

keeping in mind that the splines provide a tentative guess of the behavior, that

sharks are more likely to forage in areas where the relative abundance of species

is higher.

Figure 2.9 indicates that the sharks’ prey tend to be found in the coast

on the northeast side of the tidal basin (see the dark red regions in the crab

and scallops plots) and in the southwest coast of the main tidal basin, above

the narrower inlet to the ocean (see the shrimp and crab plots). As shown in

3There are techniques in ecology that combine the abundance counts of different-sized
marine species into a composite measure of biomass (i.e., the volume of flesh) that can be
used to estimate the spatial distribution of the species in terms of the physical mass of the
species. For instance, ecologists use samples of species specimens to estimate the average
physical dimensions—for instance, length, width, and weight—of a species, and then use
simple geometric formulas to estimate the typical ‘volume’ a particular fish represents. See
for instance Kimmerer et al. ([28]).
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Figure 2.9: From left to right: relative abundance of crabs, scallops, and

shrimp–three main food sources of our sharks–based on species samples caught

in seine nets. Darker red indicates the given species is more likely to be found at

that location. Red scales are relative abundance normalized to each particular

species, and thus colors cannot be compared across plots.

Espinoza et al. ([16]), the areas along the diagonal coastal edges of the tidal

basin correspond to mudflats, and the gray smooth-hound shark is believed to

forage there because the mudflats tend to flood during incoming and high tides,

which bring in prey. As Figure 2.10 shows, for both 2008 and 2009 (since the

sampled sharks are observed for separate periods in these two years, as shown

in Figure 2.1) our spline interpolation model shows that these same coastal re-

gions have the highest spatial distribution of foraging, as approximated by the

estimated speed.4 That we see good correspondence between prey abundance

and our behavioral model gives credence to this approximation.

4The spatial distribution of foraging was calculated by taking a sample of spline locations
equally spaced by time, converting it to a marked (categorical label) Poisson point process,
interpolating locations to a regularly spaced grid of coordinates, and estimating the spatial
relative ‘risk’ of each behavior at each coordinate. See the spatstat package for R by
Baddeley et al. ([3]).
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Figure 2.10: Estimated relative spatial probability of foraging based on ran-

dom sample of 10,000 from 2-minute spline interpolation of each year’s obser-

vations (out of approximately 50,000 per year). A sub-sample was used due to

computational expense of estimating the relative spatial distribution, which is

exponential in the number of points.
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2.6 Modeling approach

Our basic approach is to model individual sharks’ movements as a corre-

lated random walk (CRW), which is commonly used in biology (see Codling et

al., [12]) to model animal movements. In the following discussion, we will use

the time subscripts t, which denote the unequally-spaced observations, even

though ultimately we use constant-length intervals c, for consistency with lit-

erature. In a CRW, the turn angle (θt), meaning the change of direction, of

movement, at a specific time t is random. As mentioned, the turn angle is the

difference between consecutive bearing angles ψt−1 and ψt. A small turn angle

means the animal tends to maintain roughly the same direction over multiple

steps. The CRW is in contrast to a simple random walk (considered unrealistic

for animals), where the direction (ψt) itself is random and independent of the

previous direction (ψt−1).

Furthermore, we can perform the same test on the binary sequence of our

guesses of the shark behavior λt. As the table shows, the p-values for this test

are essentially zero for all sharks, except for shark 21, which had the fewest

observations (70). Thus, the sequence of inferred behaviors are not random,

and the sharks tend to remain in the foraging or transiting states rather than

immediately switching between states. This is sensible if λt can reasonably

represent a behavioral mode and if sharks forage continuously in one area for

a long time before searching for prey elsewhere.

In our SSM, we use probability transition matrices to model the sharks’

switching between the foraging and transiting behaviors (λt = 0, 1). A major

goal of our paper is to see if sharks tend to forage more often in certain regions

of the tidal basin than others. We will partition the tidal basin into several

roughly equally-sized regions; to test this hypothesis, each region will have its

own transition probability. To demonstrate that this regional model would be

appropriate, we do the runs test on the sequence of behaviors λt separately

for each shark and each region, for several different partition configurations.

These tests confirmed that each shark’s behavior type in each region (for re-
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gions that they visited for enough observations) was not a random sequence.

This supports the use of a transition probability matrix (i.e., with sequen-

tial correlation) for each region, rather than, for instance, randomly selecting

the behavior in each region, even with different foraging probabilities for each

region.
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CHAPTER 3

STATE-SPACE MODELS

(SSMs), KALMAN (KF), AND

EXTENDED KALMAN

FILTERS (EKFs)

3.1 State-space models

Using the CRW paradigm of animal movement, we will model the overall

movement of the sharks with a discrete-time state-space model (SSM). In

an SSM, we have observed variables y that are assumed to be measured with

error; these are sequentially modeled based on unobserved (‘state’) variables x,

which may include hypothesized ‘true’ values of the observed y. The sequential

evolution of x and y is modeled based on specified densities `(·) and m(·),
which may also depend on a vector of parameters θ.

Prior on initial state: x0 ∼ p(x0)

State/dynamic equation: xt ∼ `(xt | xt−1, θt)

Measurement equation: yt ∼ m(yt | xt, θt)

(3.1)

Each of the equations has its mean given by corresponding functions `µ(·)
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and mµ(·), so we have

State/dynamic equation: E(xt | xt−1) = `µ(xt−1)

Measurement equation: E(yt | xt) = mµ(xt)

The purpose of an SSM is to extract the signal (error-free unobserved vari-

ables xt) from the noisy (measured with error) observations yt. In the simplest

formulation, the exact distributions of the state and measurement equations

densities `(·) and m(·) as well as their mean functions `µ(·) and mµ(·), are

known, and thus no parameters need to be estimated. Usually, however, an

SSM depends on a vector of parameters θt whose values and distributions we

want to sequentially estimate by the SSM. values. In our model, we are par-

ticularly interested in modeling the distributions of the movement parameters

(speed vt and turn angle θt) and the behavior type λt, since this is the focus

of our ecological questions of interest.

3.2 Correlated random walk (CRW) theory

As mentioned earlier, a correlated random walk (CRW) is a model com-

monly used for animal movement, where the turn angle θt at each step is

random, centered at 0, and uncorrelated with the previous turn θt−1. The an-

imal’s direction of movement (ψt) at a given time depends on the cumulative

sequence of turns; at a given point, if the angle is small in magnitude (θt ≈ 0),

the animal does not change its direction very much. As discussed in Sec-

tion 2.4, we use a Bézier spline interpolation to generate estimated locations

that are regularly-spaced in time from the irregularly-occurring observations,

because CRWs cannot generally be formulated properly if the time steps are

irregular. We also emphasize that the spline interpolation is a reasonable ap-

proximation of the ground truth unobserved locations, as long as the time gap

∆Υ is small enough, and that we use this interpolation only to characterize the

data and the dual-behavior model, and not as inputs or classification labels of

the behaviors by which to judge our algorithm’s performance.
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Several statistical tests are employed in the modeling literature to test the

appropriateness of the CRW assumption. One is the Wald-Wolfowitz runs

test for randomness (see Zar, [55] p. 416–419; Brownlee, [7] p. 224–231).

A key assumption of the CRW is that the turns {θt} themselves are serially

uncorrelated, and thus so is the turn direction (left/right). In general, the runs

test is used on a sequence of binary-valued observations (of which left/right

is an example) to see if like values tend to be grouped consecutively in the

sequence, forming ‘runs’ of like values. Consider two sequences of binary values

A,B

1. AAAAABBBBBBBAAAAB

2. AABBBAABBABBAABAA

Note that both sequences are of length 17 and have 9 A’s and 8 B’s. A run

is an uninterrupted sequence of a given binary value. For instance, in the

first sequence, the runs are AAAAA, BBBBBBB, AAAA, and B, which have

lengths 5, 7, 5, and 1, respectively; here there is a tendency for the A’s and

B’s to group. The second sequence has runs of lengths 2, 3, 2, 2, 1, 2, 2, 1, and

2, so the like values tend not to form runs of significant length. The runs test

determines if the binary values tend to appear randomly in the sequence in

proportion to their overall share of the sequence. Thus, the sequence need not

be balanced in the proportions of the binary values, as long as, say, the less

frequent values do not group together more than is likely by random chance.

In the runs test, the null hypothesis H0 is serial randomness of the binary

sequence, while the alternative is non-randomness. As mentioned by Zar ([55]),

randomness may be violated either if (1) there are fewer observed runs than

would occur at random (more grouping), a quality called ‘contagious’, or (2)

there are more observed runs than would occur at random, meaning the binary

values tend to be distributed uniformly, in proportion to their overall share.

The contagion alternative, under which there are fewer than expected runs

under randomness, seems to be a more significant violation to the CRW model,
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so we conduct a one-sided lower-tailed rather than two-sided hypothesis test.

In this and the following tests, the test is done separately by shark. Also,

because the regular steps were interpolated with a limit of a maximum observed

time gap ∆t, the tests must be done piecewise on each uninterrupted sequence

of variables. For instance, if we have two sequences of turns separated by a

large time gap, we will not jointly consider the end of the first sequence and

beginning of the second when determining runs, since we assume the beginning

of the second sequence is unrelated to where the first ended. Rather, runs are

determined piecewise on each sequence.1

As noted before by Gurarie ([19]), these tests need to be done on data

observed at constant-length time intervals, which is why we created the cubic

spline-interpolated regular steps. The piecewise runs test on each shark’s spline

interpolated trajectory gives near-zero p-values for all sharks, rejecting the

non-randomness hypothesis in favor of contagion or runs of grouped left and

right turns. The test statistics are highly negative, confirming our choice to

conduct the lower-tailed hypothesis tests.

This result is not very surprising, however, since the very assumption of the

spline interpolation causes the sequence regular steps along the same spline

curve to curve in the same direction and thus have turn angles that are either

all left or right. Figure 3.1 shows a toy example of a cubic Bézier spline of

equal time-intervals fitted to seven observed control points. As the illustration

shows, the cubic spline is fit piecewise to each group of four points and passes

through the first and fourth points only. Here, the regular time interval ∆Υ

is shorter than the typical time gap ∆t between observations, so there tend

to be multiple constant-time intervals along each piecewise spline. If it is

significantly shorter, as tends to be the case with the observed shark data, the

spline interpolations tend to feature unbroken sequences of left (L) and right

(R) turns due to the smoothness of the spline curve. Since we are using the

1The runs test is implemented by Caeiro and Mateus ([9]) in the randtests package for
the R language. The runs.test function needed to be modified to make it combine the
piecewise results.
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Figure 3.1: Toy Bézier spline interpolation with seven control points. “R” and

“L” indicate if the turn is to the right or left at a given spline point. The

smoothness of the spline causes longer sequences of left and right turns.

spline as an exploratory guide and not absolute ground truth, as we assume

the unobserved regular step trajectory will not actually follow a smooth spline

of the irregular observations, we do not take this test result as a rejection of

the CRW model entirely.

Another aspect of the movement that statistical tests attempt to determine

is whether a given trajectory exhibits directional persistence in movement (i.e.,

such as a CRW, where the animal tends to continue moving in the same general

direction as long as the turn angles are small) or external bias or attraction

towards a particular direction. Two common models that incorporate bias are

the biased random walk (BRW), where an animal’s movement displays external

influence in that the animal prefers to move towards a target, or the biased

correlated random walk (BCRW), if there is bias in the direction but also some

directional persistence or correlation in the bearing. Biased directional models

tend to be more complicated because one generally has to determine what the

direction of bias is and account for the possibility of the bias changing over

time or being spatially dependent (see Codling, Plank, and Benhamou ([12])

for a thorough overview).

Several tests are proposed to detect directional bias. Among the most
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basic of these tests is the ∆MJ statistic proposed by Marsh and Jones ([34]).

Assuming constant-length time steps c, let

• ∆z1,c = z1,c+1 − z1,c and

• ∆z2,c = z2,c+1 − z2,c

be the changes is the horizontal (z1,·) and vertical (z2,·) coordinate locations

(here assuming z are the true, constant-interval measurements), respectively,

from step c to c+ 1. The total (Euclidean) distance traveled is

lc =
√

∆z2
1,c + ∆z2

2,c

The changes in the horizontal and vertical position can also be expressed

as ∆z1,c = lc cos (ψc) and ∆z2,c = lc sin (ψc), in terms of the bearing angle

−π ≤ ψc ≤ π.2 The net displacement Rψ, the total net distance traveled after

C steps due to directional persistence of the animal, is thus

Rψ =
C−1∑
c=0

√
(lc cos (ψc))2 + (lc sin (ψc))2

A similar quantity, Rθ, captures the net displacement after C steps due to

turning angles (there are C−1 of them between locations), and thus the effect

on displacement due to external bias:

Rθ =
C−1∑
c=1

√
(lc cos (θc))2 + (lc sin (θc))2

Marsh and Jones’ test involves the distribution of the net squared displacement

R2
C = R2

ψ − R2
θ and calculating its mean. On any given dataset, the statistic

∆MJ = R2
C is the observed sample mean of R2

C (factoring out the distances `c,

2Marsh and Jones’ original paper uses θ to stand for the direction, which we call ψ, and
ζ to stand for the turn angle, which we call θ, so the discussion above is reformulated in our
notation.
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which are the same in each sum), namely

∆MJ =
1

C2

(C−1∑
c=0

cos (ψc)

)2

+

(
C−1∑
c=0

sin (ψc)

)2
+

1

(C − 1)2

(C−1∑
c=1

cos (θc)

)2

+

(
C−1∑
c=1

sin (θc)

)2


If ∆MJ > 0, external bias, as evidenced from the turn angles, has a higher

effect on the animal’s displacement than does the animal’s directional persis-

tence, as evidenced by the bearing angles. If, on the other hand, ∆MJ < 0, the

dataset indicates that on average the directional persistence is the stronger

effect, which indicates a CRW may be more appropriate than a biased random

walk (BRW). Recall that ∆MJ is simply the sample mean of a realization of

a theoretic distribution of net squared displacement R2
C , so the distributions

are usually approximated by simulation from a model. As shown in in Ta-

ble 3.1, the ∆MJ statistic, calculated on the spline regular step approximation,

is negative for all sharks, indicating a CRW is the more appropriate model,

and hence we will not incorporate a directional bias term.

To illustrate the population distribution of ∆MJ, we take repeated samples

(without replacement) from the spline steps and calculate ∆MJ on each sub-

sample, and estimate the combined density of the sample statistics. This is

shown in Figure 3.2, where we see the estimated densities are firmly over the

negative values, not just that ∆MJ calculated on the shark’s entire trajectory

are all negative, as shown in Table 3.1. This further supports the results of

the Marsh-Jones statistic that the true shark trajectories are better modeled

with a CRW than as a biased movement model.

The ∆MJ statistic does have a few drawbacks. For instance, as Turchin

([53], p. 164) notes, Marsh and Jones’ test only distinguishes between pure

directional persistence (CRW) and pure external bias (BRW), but not bias

with persistence (BCRW), which may be a valid model. One of the other

tests he mentions, which do allow for the alternative hypothesis to specify a

BCRW requires the horizontal axis to be aligned with the bias, whereas we
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Shark num. spline obs. ∆MJ Shark num. spline obs. ∆MJ

1 8,361 -0.582 12 907 -0.734

2 5,629 -0.691 13 1,672 -0.711

3 4,707 -0.561 14 781 -0.814

4 3,114 -0.476 15 1,181 -0.756

5 25,728 -0.521 16 1,271 -0.759

6 3,950 -0.735 17 168 -0.581

7 7,553 -0.498 18 2,649 -0.703

8 2,231 -0.621 19 27,629 -0.545

9 2,371 -0.593 20 266 -0.806

10 1,426 -0.712 21 100 -0.795

11 3,771 -0.606 22 420 -0.705

Table 3.1: Marsh and Jones’ ∆MJ statistic on the spline interpolated regular

steps, with the number of spline observations and value of the ∆MJ statistic.

In each case, the statistic is negative, favoring a CRW over biased models.

may not know a priori the origin of the bias. Benhamou ([5]) mentions that

the variances of the mean net squared displacements R2
C in Marsh and Jones’

test can be high if the number of trajectory steps is low, making it difficult to

distinguish between the model types. He proposes an alternative test that does

not restrict the bias direction but seems to require a cumbersome procedure of

individually testing various potential bias directions over various time spans.

3.3 Review of animal telemetry literature

Improvements in telemetry technology have enabled gathering of movement

data on animals of various size, even small fish and insects like butterflies,

and thus development of models for the movement patterns. The CRW and

other derivatives feature prominently in this literature. As McClintock et

al. ([35]) noted in their 2012 paper, the development of theory for animal
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Figure 3.2: Density plot of ∆MJ statistics from subsamples of the spline-

interpolated data.

movement models has lagged behind the technological progress in development

of telemetry devices. Particularly given the relatively recent technological

ability to track diverse kinds of animals, many different approaches have been

proposed and there is not yet firm scholarly consensus on the best ones, as

there is in other biological applications. For instance, as they mention, models

have been proposed in each combination of discrete or continuous time/space

formulations.

Since we attempt to describe the different behavioral modes of the sharks,

we focus on reviewing scholarly work on models with this feature. Skalski

and Gilliam ([46]) developed an early movement model for animals with two

behavior modes, though it was based on differential equations rather than

state-space models. The use of SSMs and the Bayesian approach to modeling

animal (here, marine turtles) movement trajectories specifically was advocated

by Jonsen, Myers, and Flemming ([23]) to separately account for model error

due to measurement error of positions and inherent variability in the move-
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ment process. Morales et al. ([36]) proposed a several versions of SSMs with

behavioral switching probabilities based on the animal’s habitat, where the

trajectory was a mixture of two or more CRWs, each representing a behavior.

This paper tracked four elk whose locations measured once a day were used to

infer the animals’ turn angles and speeds, which seems to be a weakness given

the infrequency of the data.

Jonsen, Flemming, and Myers ([22]) also used a behavior-switching SSM to

model marine movements of seals. They introduce the idea of predicting the

values of the (irregularly) observed locations y by modeling the unobserved

state locations x as occurring at fixed time intervals, and then interpolating

to estimate y. Many of the models mentioned here are fit using off-the-shelf

programs like JAGS or WinBUGS, which uses Gibbs sampling to fit data with

user-specified Bayesian priors. One weakness is that this tool appears to allow

limited customization, unlike our models which are hand-coded.

Beyer, Morales, Murray, and Fortin ([6]) are one example of using a ‘patch’

model, where each region or ‘patch’ represents a different habitat, and behav-

ioral probabilities differ in each type of habitat. For the habitat-specific behav-

ior transition probabilities, they use a Poisson-like model where the probability

of transitioning out of a state decreases explicitly the longer the animal has

stayed in its current state; this tends to decrease the frequency of behavioral

changes. An important aim in animal movement modeling is to quantify the

animal’s home range, or main area of habitat, to reflect the fact that animals

do not tend to wander aimlessly.

Roever, Beyer, Chase, and van Aarde ([43]) likewise use a behavior-switching

SSM with food sources distributed in different patches. Their model incorpo-

rates geographic covariates, such as distance to water or presence of vegetation,

to inform their identification of the behavior. To spatially estimate the prob-

ability of foraging, they use a kernel density estimation based on the modeled

locations. We would like to do so in a more statistical way with interpretable

parameters.

An interesting approach to modeling the animal’s home range is given in
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Van Moorter et al. ([54]), who model the animal’s home range by initializing

patches (regions) that serve to provide utility (e.g., food) to the animal. When

an animal spends time in a patch, it decreases the available utility (e.g., by

eating the food); if it depletes the utility, it will move away from the patch,

which in the meantime will replenish its utility (e.g., prey returns, food supply

regenerates). On the other hand, animals tend to remember patches previously

visited and will tend to return there; this is the main idea behind the concept

of home range. The animal’s movement between patches is balanced between

being attracted to visited patches and being repelled by newly empty patches.

This is a mechanistic model because these explicit instincts in the animal’s

behavior are modeled. We are not aiming to make such explicit biological

assumptions about the sharks’ behavior choices.

As mentioned, our approach will be to build an SSM to model the loca-

tions and behavior at regular steps {Υc} (of fixed length ∆Υ seconds) using

the irregular time observations {Ht}. This is done mainly for proper updating

of movement parameters, which generally cannot be done well directly if the

observations are irregular. Several other techniques besides interpolation are

commonly used to modify data collected at irregular time gaps for use in build-

ing models. For instance, random walk models built off of regular intervals

generally assume some serial statistical independence, such as that the distri-

bution of the speeds at each time are statistically independent. If the data are

collected non-uniformly in time, particularly if there are many observations

within short time intervals of length ∆Υ, the distributions may violate the

assumption of serial non-correlation. The data may be sub-sampled to obtain

a set of observations that are at roughly equal time intervals that are large

enough so they can be assumed to be statistically independent. Alternatively,

data may be aggregated to a lower time resolution of equal but longer time

intervals, for instance by setting the speed at the interval as the average of the

speeds of the observations within it.

Criticism of interpolation or discretization of irregular observations to reg-

ular time intervals is often focused on the fact that these techniques distort
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the true nature of the animal’s movement, which occurs in continuous time.

In our CRW model with regular time intervals, at the beginning of each inter-

val, the animal ‘chooses’ its speed and turn angle, which dictate the movement

path along a straight line for the duration of the interval. However, as Turchin

remarks, this representation is problematic because “artificial ‘moves’ equated

to steps do not correspond to actual behavioral events” ([53], p. 129). This

means that since we are modeling a continuous path by discrete segments,

then we should limit the degree to which we take the predicted discrete path

as representing the animal’s true behavior. For instance, if an animal’s true

trajectory approximately follows a straight line (i.e., with no turns) over sev-

eral intervals, which we model piecewise as consisting of several straight lines

with potential turns in between, when the animal’s only real turning ‘decision’

was at the beginning of the straight movement, then we have created several

artificial decisions that do not correspond to the true behavior. Depending on

the time length of the animal’s typical (if there is such a thing) time interval of

step, our modeled regular time intervals may be too short, as in the previous

example, or too long, in which case we have aggregated several short distinct

behavioral decisions into one. Though we choose to use the CRW despite

these shortcomings, this does motivate our choice to have a low variance on

the distribution of turn angles to avoid aggressive zig-zag movement patterns,

which is likely unrealistic.

Another criticism is that the observed data should be instead modeled as

a discrete-time realization of the continuous movement process, rather than

discretized to regular intervals; this avoids the need for techniques such as sub-

sampling and aggregative. For instance, Johnson et al. ([21]) adapt the CRW

model to a continuous-time3 correlated random walk (CTCRW), using a model

called an Ornstein–Uhlenbeck (OU) process. The process is a continuous-time

autoregressive process on the locations, as done in Jonsen, Flemming, and

Myers ([22]). Thus, the data that is being modeled are actually the changes

in location coordinates (in our notation, ∆zt) by modeling the horizontal and

vertical axis velocities (i.e., rates of change ∆z1,· and ∆z2,· over time), rather
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than the actual location of the animal. Though this approach is common in

many tracking applications, we believe that our model, which focuses on the

animal’s turning and angular speed, rather than the speed in each direction, is

more appropriate for describing the animal’s behavior process. For instance,

the modeled speeds along each axis would not be invariant to a rotation of axes.

Nevertheless, we acknowledge the potential advantages of a continuous-time

model, and suggest it as a future research avenue.

McClintock et al. ([35]) present an attractive discrete-time model that

extends Morales’ two-behavior switching model by adding several features.

Firstly, they adopt Jonsen’s interpolation approach to model regular time in-

tervals from irregular observations, and also allow for more than two behavior

modes. Their model also allows for partial directional bias by specifying several

coordinates of attraction for the animal; such points could represent foraging

areas or other landmarks, for instance. When the animal is at a far distance

from the attraction point, the animal travels at a roughly straight bearing

angle to the point, but when it nears the attraction point, the turn angles

are modeled to grow. This models the animal’s tendency to travel to reach a

foraging spot and then forage around in the surrounding area (at large turn

angles).

One important feature is that they allow the locations of these attraction

points to be learned algorithmically. The user pre-specifies how many attrac-

tion points there should be (usually only three or so), and initial coordinates

of the attraction points are selected by a discrete uniform prior on the ob-

served locations, since intuitively the animal should be observed visiting such

attraction points sometime, if they exist. At each iteration of their algorithm,

3Durbin and Koopman ([15], p. 57–60) illustrate how the Kalman filter (discussed below)
can be adapted to treat the irregularly-spaced observations as occurring in continuous time,
allowing one to predict the state variable values (x(t), see Equation 3.2) at specified times
t∗ that were not observed. Essentially, the observation at t∗ is treated as missing and then
estimated by the Kalman filter and smoother by maximum likelihood (ML), conditional on
the full set of observations. Presumably, if one wanted to use a particle filter approach, as
we do, such estimation would only use the past observed values, rather than the future ones
as well.
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a Metropolis-Hastings step proposes to jitter the coordinates a bit (by select-

ing observed coordinates within a specific radius) and the algorithm randomly

chooses to accept or reject the change. This is similar to Heikkinen and Ar-

jas’ ([20]) algorithm to iteratively estimate spatial density (mentioned later in

Section 6). We consider this a potential improvement to our model in the fu-

ture. McClintock et al. also address the enthusiasm of Johnson and others in

the continuous-time Ornstein–Uhlenbeck processes, arguing that though these

continuous models may be mathematically attractive, their parameters, which

model instantaneous processes, are difficult to interpret biologically and may

be “prohibitively technical for many non-statisticians.”

3.4 Kalman filter (KF)

One of the simplest versions of an SSM is the Kalman filter (KF), where

the state and measurement equations are linear functions of their inputs; these

relations are allowed to change over time. The error covariances of these

relations are usually Gaussian, making the densities `(·) and m(·) Gaussian,

for which exact well-known recursive updates for the density parameters can

thus be used. A Kalman filter setup is shown in Equation 3.2, where matrices

Lt and Mt, specifying linear relationships, can depend on time t4.

State/dynamic equation: xt = Ltxt−1 + qt; qt ∼ N (0, Qt)

Measurement equation: yt = Mtxt + rt; rt ∼ N (0, Rt)

(3.2)

4An important note here is that the parameters (L,M, etc.) in the KF’s state and
measurement equations are indexed to the same t. Some authors (for instance [45], p. 56)
have the state equation indexed to t − 1, for instance xt = Lt−1xt−1 + qt−1 rather than
Lt and qt. Technically, the indexing is an arbitrary relabeling. However, in the model we
will ultimately adapt (CDLM, see Equation 4.3), there is conditioning on a latent λt that
needs to be marginalized over, and hence it is crucial to have the same index t for both the
state and measurement equations. Thus, for consistency, we have used this form in all of
our examples and have modified the Kalman filter update equations as given in [45] and
other references, to match.
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As a simple illustration of a Kalman filter, consider the case of a robot

moving in one-dimensional space along the real line. At time t, its true (unob-

served) location is ζt ∈ R; its sensor returns (with error) position measurement

zt. Assume, for simplicity, that the time difference between measurements is

a constant value ∆Υ. The robot moves from position ζt to ζt+1 with random

velocity vt ∈ R. Note that here vt is velocity and that a negative velocity

means the robot moves backwards, whereas in modeling sharks we use vt > 0

to be the speed, since direction is accounted for by turn angles. Let

xt =
[
ζt vt

]T
be the unobserved true position and velocity at time t, and

yt =
[
zt+1

]
be the robot’s observed position at the next time t+ 1

A simple Kalman filter SSM to describe the relationships is given by

xt =

[
ζt

vt

]
=

[
1 ∆Υ

0 1

][
ζt−1

vt−1

]
+ qt; qt ∼ N 2(0,Σ).

yt =
[
zt+1

]
=

[
1 ∆Υ

] [ ζt

vt

]
+ rt; rt ∼ N 2(0, σ2).

(3.3)

giving, the scalar equations

ζt = ζt−1 + ∆Υvt−1 + qt[1]

vt = vt−1 + qt[2]

zt+1 = ζt + ∆Υvt + rt

In this setup, the next true location ζt = ζt−1 + ∆Υvt−1, plus a random error

qt[1]. The velocities at each time point are on average the same as the previous,

plus random error (vt = vt−1 + qt[2]).

3.5 Extended Kalman filter (EKF)

The Extended Kalman filter (EKF) is an approximation of the KF when

the dynamic or measurement equations are nonlinear functions. The approxi-

mation uses a first-order Taylor expansion of the functions’ Jacobians (matrices
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of first-order partial derivatives). The Jacobians themselves are thus matrices

of functions of vector x’s mean vector, µ, rather than a constant matrix (that

may change over time). This linearizes the filter so the linear KF recursive

formulas for posterior distribution updates can be used. Justification for the

linear approximation, by using the multivariate Delta Method, is as follows:

Let z ∼ N (µ,Σ), and f(·) be a vector-valued function with

Jacobian matrix F(x) =
[
Fi,j

]
=

[
∂fi(x)

∂xj

]
, where f(·)i and xj

are, respectively, the ith element of f(·) and the jth element of the vector x.

By the multivariate Delta Method, f(z)
d
; N

(
f(µ), F(µ) Σ F(µ)T

)
.

(3.4)

The 1-D linear robot KF model as given above in Equation 3.3 has fixed

values for all parameters (such as the normal errors) and hence cannot model

unknown parameters. The following illustration will give a simplified example

as to how the shark modeling works. Assume that for the robot, the only

unknown parameter of interest is the mean velocity, which we call α, and

that the velocities have the common distribution vt ∼ N (α, 1), assuming for

simplicity that the variance is known. By modeling the unknown true locations

ζ by knowledge of the observed locations z, we can model the distribution of

velocity, and hence learn α. To do this, we have to tweak the KF formulation in

Equation 3.3 to have vt depend on α rather than its previous value vt−1. Thus,

we need to reformulate the state equation for xt | xt−1 to be a function `µ(·),
and thus have density ` (see Equation 3.1) rather than matrix multiplication,

so that it is an EKF with linear functions:

xt =

[
ζt

vt

]
= `µ(xt−1) + qt =

[
ζt−1 + ∆Υvt−1

α

]
+ qt

yt =
[
zt+1

]
= mµ(xt) + rt =

[
ζt + ∆Υvt

]
+ rt

(3.5)
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We would thus set the covariance matrix Σ of the error qt so that Σ2,2 = 1.

The Jacobian matrices L(·) and M(·) of the robot EKF functions `µ(·) and

mµ(·) are:

L(xt−1) =

[
1 ∆Υ

0 0

]
and M(xt−1) =

[
1 ∆Υ

]
The second row of L(·) are both zero since these are the partial derivatives

∂α
∂ζt−1

and ∂α
∂vt−1

, which are both zero since α is a constant. Note that in this

particular case, the Jacobians end up being constant matrices (since ∆Υ is a

constant as well) rather than functions of the states xt.
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CHAPTER 4

PARTICLE FILTERS (PFs)

AND RESAMPLING

4.1 Introduction to Bayesian statistics

Before discussing filters in more mathematical detail, we will review the

basic concept of Bayesian statistics. Generally, statistical modeling involves

formulating a mathematical model for variables, which may be observed or not

(latent), and often represent some practical quantity of interest, such as speed

of ocean currents or the price of a share of stock over time, as depending on

the values of underlying parameters. These mathematical models are in the

form of statistical distributions.

As an example, let y be a univariate random variable modeled as having

some distribution y ∼ `(y | θ), where θ is (possibly a vector) parameter. Let

y1:n be the set of observed values of y indexed 1, . . . , n. We will later take

n, replaced by t, as representing time, and hence the values have a particular

ordered sequence governed by time. In general, the observations may simply

be a random unordered sample of the variable.

In a standard parametric statistical approach, we may assume we know

the form of the distribution `(·) (for instance Gaussian, Poisson, etc.) and

try to estimate the value of the parameter θ given the observed data y1:n
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accordingly, for instance by maximum likelihood (ML) techniques. In the

Bayesian approach, we do not simply estimate the parameter values given the

data only, but rather will assume we have some prior knowledge about the

likely values of the parameter θ. This philosophy has the advantage of being

more realistic in many scenarios where we may have external information about

the value of something.

For instance, say y represented the height in feet of an adult male, and we

had a random sample y1:n of n adults’ heights from some population. We may,

for instance, assume that `(·) is the Gaussian distribution, so the population

distribution is y ∼ N (α, 1) (where here θ is just 0 < α), and we seek to

estimate α, the population mean height. A traditional ML approach would

simply estimate α by the data, taking its sample mean ȳ. In a Bayesian

approach, we might first say that we have some idea from previous experience

of what α might be. For instance, it is very unlikely that α is either 1 or 10

feet because these would be unrealistic given our knowledge of adult males in

the world. Rather, we express our prior knowledge of likely values of α in a

prior distribution. In general, for a parameter θ (here, α), the prior takes

the form

θ ∼ p(θ | Ω0)
prior

where θ is modeled as having its own distribution with hyper-parameters (i.e.

parameters of a parameter’s distribution) Ω, which may also be a vector. For

instance, we may assign the prior α = θ ∼ N (µ, σ2), where Ω = (µ, σ2).

We may reasonably take µ = 5.5 feet for instance, based on our real world

experience. In general, assigning a prior will bias the estimated values of the

parameter θ toward values predicted by its prior, but the approach also allows

one to specify non-informative priors which do not have this feature, but still

provide other advantages within the Bayesian framework.

We now return to the time-indexed case, so we replace the index n by the

time index t. Once one has a prior distribution on the parameter and observed
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data that are assumed to depend on the parameter, in the Bayesian approach

we learn more about the value of θ based on the sample (i.e., d(θ | y1:t),

where d(·) denotes an arbitrary distribution) by learning the likely values of

the hyper-parameters Ω of θ’s prior distribution. This happens in two steps:

1. Calculate the marginalized likelihood m(·) of y1:t (over θ):

m(y1:t | Ω0)
marginal

=

∫
`(y1:t | θ)
likelihood

p(θ | Ω0)
prior

dθ

2. Update the posterior distribution, improving our knowledge of θ,

combining the data y1:t and prior parameters Ω0 to update to new values

Ωt of its parameters:

p(θ | Ωt)
posterior

=
`(y1:t | θ) p(θ | Ω0)

m(y1:t | Ω0)
=

likelihood× prior

marginal

3. Assuming we now encounter a new value yt+1 from the same population,

we calculate the predictive posterior distribution, using the newly-

constructed posterior as the prior on θ to predict yt+1:

d(yt+1 | Ωt)
predictive posterior

=

∫
`(yt+1 | θ)
likelihood

p(θ | Ωt)
prior

dθ

Thus, the prior distribution of θ, through its hyper-parameters Ω, is con-

tinuously updated in the face of new data. This formulation is particularly

attractive in cases called conjugate distributions, where the prior distribution

p remains in the same form after being updated, since we may be interested

in statistical inference on the values of posterior distribution to infer the likely

values of θ. Eventually, the more data (t is bigger), the effect of the original

prior values p(θ | Ω0) diminishes, and our knowledge of θ, in terms of its

parameters Ωt, is increasingly learned from the observed data y1:t.

4.2 Bayesian filtering

Although we have previously mentioned the concept of a filter, in the KF

and EKF, we did not formally define it. A filter is a statistical method to
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recover a signal (i.e., the true values of some variable) from noisy measure-

ments. Specifically, we aim to estimate the distribution of the unobserved, true

xt values from the noisy observed yt. This is done sequentially, at each time

step, by alternating prediction and update operations. The state-space model

(SSM) as formulated earlier in Section 3 described how a set of unobserved

variables xt evolve over time, and how the observations yt might be a function

of the underlying unobserved xt, but we did not demonstrate how statistical

learning is achieved.

Using the Bayesian steps described above, a Bayes filter allows us to

sequentially learn the unobserved signal values from successive noisy observa-

tions. Given the history of unobserved x and observed y up to t− 1, we want

to predict the distribution of the next xt:

ppredict(xt | y1:(t−1)) =

∫
`(xt | xt−1) pcurrent(xt−1 | y1:(t−1)) dxt−1 (4.1)

Now, given observation yt, we update the parameter estimates of xt. In

our case, this amounts to finding the best movement parameters (xt) that

predict the next observed location yt = zt+1.

pcurrent(xt | y1:t) ∝ mcurrent(yt | xt) ppredict(xt | y1:(t−1))

We then continue to the next prediction step, estimating ppredict(xt+1 | y1:t).

4.3 Introduction to particle filters (PFs)

Particle filters (PFs) are computational simulations of SSMs that have

two general advantages over the simple KF and EKF approaches to SSMs.

Firstly, they allow us to include a parameter vector θ as part of the SSM

formulation, which we can sequentially learn and perform Bayesian inference

on. Secondly, they are more flexible because we are not limited to modeling

Gaussian relations, as in the KF or EKF.

PFs use computational techniques to approximate the integration in the

prediction and update steps of the Bayes filter (see Section 4.2) for an SSM
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when the densities are not necessarily Gaussian. This technique, called re-

sampling, refers to replacing a random sample with a set of random draws

with replacement from that sample. PFs simulate a SSM with N independent

simulations of the process, each of which is called a ‘particle’.

As an illustration, consider the following mixture Gaussian distribution,

restricted to have support 20 ≤ x ≤ 29:

m(x) = 0.6N (x | µ1 = 22.5, σ1 = 0.8) + 0.4N (x | µ2 = 26, σ2 = 1.15)

This bimodal distribution is shown as the black curve in Figure 4.2. Note

that the density of m outside of the interval [20, 29] is negligible, so we will

ignore values of x outside this interval. Let {20, 21, 22, . . . , 29} represent a dis-

cretization of the distribution’s domain, and assign each of x
(n)
0 , n = 1, . . . , N =

10 to be one of these values, so x
(1)
0 = 20, . . . ,x

(10)
0 = 29. Each x

(n)
0 is called a

particle.

We wish to use this discretization to approximate a draw from the distri-

bution m. Note that in this case we have specified a parametric form of the

distribution, but this technique applies equally in more difficult cases where,

for instance, we may not be able to directly draw from the desired density

(such as through functions in R like rnorm), or where the distribution does not

have a specific parametric form and may be known only through the densities

(up to a constant factor) at particular discrete values in the domain. The fact

that the densities can be known up to a constant factor means we do not need

to compute the normalizing constant in the denominator when calculating the

density, which is difficult or intractable in many applications. In this distri-

bution, the density values of m at {x(n)
0 }10

n=1 are approximately {0.002, 0.052,

0.246, 0.251, 0.082, 0.097, 0.139, 0.095, 0.031, 0.005}, shown as the heights

of the black dots in Figure 4.2. When normalized to have a sum of 1, we can

denote these density values as representing weights {w(n)
0 }10

n=1≈ {0.002, 0.052,

0.247, 0.251, 0.082, 0.097, 0.139, 0.095, 0.031, 0.005}. In this case, the weight

values are essentially unchanged after normalization, but this is not generally

the case, particularly for higher N .
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20 21 22 23 24 25 26 27 28 29

0.002 0.052 0.247 0.251 0.082 0.097 0.139 0.095 0.031 0.005

22 22 23 23 23 24 24 25 26 27new
particles

normal−
ized
weights

original
particles

Figure 4.1: Discrete particle values {x(n)
0 }10

n=1 = {20, 21, 22, . . . , 29} resampled

with replacement by their weights from the density m. Weights do not add up

to 1 due to rounding. The resampled set will approximate the density of the

desired distribution m.

To approximate a random sample, say of size N = 10, from m, we use the

original densitiy values, or equivalently, the normalized weights {w(n)
0 }10

n=1, as

weights when making N independent draws with replacement from the original

set {x(n)
t }Nn=1 = {20, 21, 22, . . . , 29}. Note that in this illustration, we have

set the number of discretization points (i.e., particle values {x(n)
0 }) N = 10

the same as the size of the desired sample. If all we want is a approximate

random sample, then they do not have to be the same; in fact, we may want a

larger sample size than the original points N , in order to better approximate

the desired distribution. Here we set them the same because in a PF, the

particles set {x(n)
t }Nn=1 are sequentially replaced by an equal-size resampled

draw {x̃(n)
t }Nn=1.

Figure 4.1 shows one possible result of resampling with replacement from

the original set {x(n)
0 }10

n=1 = {20, 21, 22, . . . , 29}. The resampled set is

{x̃(n)
0 }10

n=1 = {22, 22, 23, 23, 23, 24, 24, 25, 26, 27}, where the original

values should appear roughly in proportion to their weights. For instance,

low-weighted values 20 (w
(5)
0 = 0.002) and 21 (w

(2)
0 = 0.052) do not appear in

the resampled set, but 22 (w
(3)
0 = 0.247) and 23 (w

(4)
0 = 0.251) appear two and

three times each. Due to the inherent randomness in sampling, and in our case,

the roughness of the discretization (we only have N = 10 particles) causes the
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resampling result to not be perfectly proportional in all cases. For instance, the

value 24 (w
(5)
0 = 0.082) was resampled twice, more than the higher-weighted

value 26 (w
(7)
0 = 0.139), which was resampled once; it is also resampled the

same number of times as 22, whose weight (0.247) is more than three times its

weight (0.082). Techniques that modify the resampling mechanism to reduce

such variance in results are described in Section 4.7.

Figure 4.2 shows the density of the desired mixture Gaussian distribution m

(see Section 4.3); the resampling weights {w(n)
0 }10

n=1, scaled by the appropriate

normalizing factor, lie along this curve. The red dashed line shows the density

estimate of m based on only the resampled values {22, 22, 23, 23, 23, 24,

24, 25, 26, 27}. We see that this small sample roughly captures the bimodal

aspect of m, but is unlikely to be very close to the true density due to the

small size. The thin red line shows a density estimate based on resampling

with replacement, but based on a finer discretization of the domain {x(n)
0 } to

N = 91—rather than 10—points {20, 20.1, 20.2, . . . , 28.9, 29}. In general,

the discretization points need not be equally spaced. In fact, the sampling

would improve if there was a higher concentration of discretization points x(n)

in areas of the domain with higher or more variable density to better capture

the curvature.

Increasing the resolution of the domain discretization and the size of the

sample will result in a more accurate approximation of the desired density,

particularly if the density is multivariate. In our PF, this will be done by

controlling N , the number of particles, but increasing N increases the total

computation linearly because all calculations generally need to be repeated for

each particle. For computational ease and timely simulations we will generally

use N = 100 in our experiments.

By approximating a random sample from a desired density by resampling

values by their weights (which are proportional to the density evaluated at that

value), we can approximate an integration calculation that may be difficult

to do in closed form. Say we have a desired moment g(x), for instance the

mean (g(x) = x) or variance (g(x) = (x − E(x))2), that we want to evaluate
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Figure 4.2: Comparison of the true density of the desired distribution (black)

m with resamplings based on discretizations of the domain with N = 10 (red

dashed line) and N = 91 (thin red solid line) of increasing resolution. The

higher the resolution and resampling size, the closer the resampling approxi-

mates the desired density m.
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for the distribution m. In closed-form integration, this calculation would be∫
g(x)m(x)dx. However, by using a discrete sum, we can approximate this as∫

g(x)m(x) dx

≈
N∑
n=1

g
(
x̃(n)

) 1

N

where

• the sum is the discrete approximation of a continuous integral,

• using the particle values resampled by their weights (x̃(n), n = 1, . . . , N)

replaces the weighting of the function values g(·) at each of the density

values m(·) for each value x ∈ domain(m) in the product g(x)m(x), and

• the fraction 1
N

, which has limit lim
N→∞

1

N
= 0 as the number of particles

N grows, takes the place of dx ≈ 0 which is the limit of the width of the

‘rectangles’ in Riemann summation. This term also rescales the sum by

the number of particles N used.

We will see later that PFs perform particle learning by repeatedly updating

particle estimates and resampling sets of particle samples to approximate their

distribution given the observed values.

4.4 Particle filters and the Conditional Dy-

namic Linear Model (CDLM)

Particle filter formulations generally follow the basic SSM setup but differ

in their resampling schemes and statistical assumptions as they try to achieve

simulations with certain properties, such as specific independence structures

(see Section 4.8). As shown earlier, the general form of a state-space model

is shown in Equation 4.2, where unobserved states xt evolve over time based

on their previous value (state equation), and then the observations yt are
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a function (measurement equation) of the unobserved values xt at the same

time t. For instance, the observed noisy variables yt may have error-free

corresponding variables be a subset of the states xt.

State/dynamic equation: xt ∼ `(xt | xt−1, θt)

Measurement equation: yt ∼ m(yt | xt, θt)
(4.2)

Let d(·) denote an arbitrary density function. Particle filters are generally

formulated to approximate the distribution d(xT | y1:T ), known as the filtering

density. That is, the distribution of the unknown states given the full set of

observations yt up to time T . This is achieved by sequential learning so that at

time T , we have a set of N particle values {x(n)
T }Nn=1, with final values present

in the set roughly in proportion to their density values d
(
x

(n)
T | y1:T

)
. At each

step, the set of particles are usually resampled by weights w
(n)
t calculated to

achieve the desired integration.

The traditional form of the PF, also called the sequential importance re-

sampling (SIR) algorithm (see [45], 124) propagates (draws sample values of

xt from their distributions and stores them in the sequence’s ‘history’), then

resamples them according to their density value predicting the observations:

General outline of sequential importance sampling (SIR) PF algo-

rithm:

1. For each particle n = 1, . . . , N :

(a) Initialize values x
(n)
0 ∼ p(x0) from the prior p(·).

2. End iteration over particle indices n.

3. For observations t = 0, . . . , T − 1:

(a) For each particle n = 1, . . . , N :

i. Propagate state values x
(n)
t+1 ∼ `

(
xt+1 | x(n)

t , y0:(t+1)

)
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ii. Calculate resampling weight1 w
(n)
t ∝

m
(
yt+1 | x(n)

t+1

)
`
(
x

(n)
t+1 | x

(n)
t

)
`
(
x

(n)
t+1 | x

(n)
t , y1:T

) .

(b) End iteration over particle indices n.

(c) For each particle n = 1, . . . , N :

i. Resampling: Draw one index j with replacement from the set

{1, . . . , N}, with probabilities {w(n)
t }Nn=1.

ii. Set particle x̃
(n)
t+1 = x

(j)
t+1.

(d) End iteration over particle indices n.

(e) Replace the set {x(n)
t+1}Nn=1 with the resampled set {x̃(n)

t+1}Nn=1.

4. End iteration over times t.

The important aspect of the SIR is that at each step, the next particle value

xt+1 is propagated for each particle based on the state equation `
(
xt+1 | x(n)

t

)
.

Note that at this point, the set of propagated particles contains N unique val-

ues. Then, each propagated x
(n)
t+1 has a weight w

(n)
t reflecting the density of the

measurement equation m
(
yt+1 | x(n)

t+1

)
, that is, weighted by how likely that

particle value at t + 1 ‘predicts’ the actual observed value yt+1. When the

particles are resampled by these weights, the resulting set of values {x̃(n)
t+1}Nn=1

have values present approximately in proportion to their density in the filtering

density (xt+1 | y0:(t+1)). Note that at this point, if any particles were resampled

more than once, our set has fewer than N unique values. The resampling has

thus conducted a discrete approximation of the continuous integration calcu-

lation in Equation 4.1. The approximation is used because such multivariate

integration in closed form is often impossible except for the most simple cases

of distributions, which are still complicated to calculate by hand.

1For simplicity, we assume particles are resampled at each step t. More generally, the
resampling weights would be calculated by multiplying the factor shown above by the pre-

vious weight w
(n)
t−1, then calculating the effective size (see Section 4.6). In our illustration,

the weights w
(n)
t−1 are each reset to 1 after they are used to resample, since now the particles

are each equally weighted.
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In addition to the fact that PFs can approximate filtering with non-Gaussian

(or more generally, non-conjugate) densities by resampling particles, the re-

sampling also PFs improve their predictions by acting as an ensemble. In

the data mining and machine learning literature, ensembles, or collections of

models, are often used in classification and prediction tasks, based on the

recognition that combining multiple models’ predictions often results in a bet-

ter outcome than a single model’s prediction, even if some of the models in

the ensemble overall perform worse than the single model. For instance, the

random forest algorithm is an ensemble method that creates a collection of

decision trees, each of uses a subset of the variables and a subset of the ob-

servations to classify observations. The predicted class of a test observation is

decided by majority vote of the trees in the forest; the multiplicity of trees is

used so depending on the observation, some trees that have stronger accuracy

can compensate for those that are weaker.

Similarly, in a PF, each of the particles to learn values of the parameters

independently, meaning our PF consists of N individual models. The tradi-

tional Kalman filter is a single model, and it uses each observation to adjust

the estimated density of the states xt; however, a single outlier, in which case

the filter’s prediction error is likely to be large, can impact the entire future

performance of the filter by, for instance, making the values state covariance

matrix too large. In a PF, if this happens to a given particle, that particle is

less likely to be resampled in the future, so the effect of a single particle on

the ensemble’s overall predictive success or failure is small. In fact, particles

that perform well are more likely to be resampled, hopefully improving, rather

than worsening, the future performance.

The conditional dynamic linear model (CDLM), formulated by Carvalho

et al. ([10]), is a particle filter formulation that introduces conditioning the

SSM densities on a latent variable λt. For our case, λt represents the inferred

behavioral class, allowing us to model shark movement separately for each of

the foraging and transiting behaviors. The conditioning is done by modifying

the generic KF formulation (Equation 3.2) by subscripting the linear relation-
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ship matrices Lt and Mt by λt, allowing them to depend both on the latent

variable (behavior) and on time, as shown in Equation 4.3:

State/dynamic equation: xt ∼ N (Lλtxt−1, Qλt | θt)
Measurement equation: yt ∼ N (Mλtxt, Rλt | θt)

(4.3)

CDLM in basic linear Kalman Filter form.

Here, as in the general SSM (Equation 4.2), θt is an optional vector of

latent, unobserved parameters. As discussed later, we will adapt this CDLM

framework to be an EKF rather than a KF, in which case the linear relation

matrices Lλt and Mλt , as well as the noise covariance matrices are replaced

by functions such `µ(·) and mµ(·) (as in Equation 3.5, the 1-D robot EKF).

Rather than changing the functions themselves based on the value λt, the

conditioning on λt will be done by having separate hyper-parameter values Ω

for the distributions of the parameter vector θt for each value of λt.

For instance, in the 1-D robot example, consider a robot with two move-

ment modes, fast (λt = 0) and slow (λt = 1), and velocity vt ∼ N (αt, 1); for

simplicity, assume αt > 0 is high enough so that Pr(vt < 0 | αt) ≈ 0. We can

modify this to have vt ∼ N (αλt , 1) so that the velocity distribution depends,

by definition, on the movement mode. For instance, we may have αλt=0 = 10

miles per hour (mph) for the slow mode, and αλt=1 = 30 mph, then use the

respective value of αλt when drawing random velocities vt for each movement

mode. Thus, our modification of the CDLM KF (Equation 4.3) to an EKF is

the following:

State/dynamic equation: xt ∼ N (`µ(xt−1 | θλt), q(θλt))

Measurement equation: yt ∼ N (mµ(xt | θλt), r(θλt))
(4.4)

CDLM adapted to EKF form.

Note that in the above Equation 4.4, we have written the parameters con-

ditioned on the behavior λt as θλt for notational simplicity, when really we
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mean θt ∼ p(· | Ωλt). That is, what depend on the latent λt are actually the

hyper-parameters Ω of the distributions p of the underlying parameters θ. For

instance, for the robot, we may have a prior distribution on the velocity mean

αt such that αt ∼ N (Ωλt), where Ωλt = (µλt , σλt). If α is the parameter (i.e.,

αt = θt) for the distribution of velocity vt, then the distribution of vt depends

on λt through the hyper-parameters Ωλt of the distribution of velocity mean

αt. The goal of our particle filter will be to learn the optimal values of the

hyper-parameters Ωλt for each behavior λt.

In addition to allowing conditioning on the latent λt, the CDLM addresses

two main inefficiencies in the SIR formulation. These are:

• In the SIR, N unique values of xt+1 are propagated based on how they

predict the observation yt+1 at the same time index. If resampled with

replacement, these N values are replaced with a set of values, some of

which are likely repeated. Even though they are resampled to approxi-

mate the filtering density, ideally we would want a sample of N unique

values from this density. Instead, the CDLM uses the prediction density

one step ahead to resample. Particles {x(n)
t }Nn=1 are assigned a weight

w
(n)
t based on how well they predict yt+1, integrating over the interme-

diate xt+1; thus the resampling weights are different.

Once {x(n)
t }Nn=1 are replaced with the resampled set {x̃(n)

t }Nn=1, and then

stored, the values x
(n)
t+1 ∼ `

(
xt+1 | x̃(n)

t

)
are propagated, thus giving N

unique values. This modification reduces the problems of degeneracy

and impoverishment (see Section 4.6) due to duplicated particles that

reduce the diversity. It also improves efficiency by avoiding propagating

values of x
(n)
t+1 that may not be resampled and thus discarded.

• Like other PFs, the CDLM formulation will sequentially update the pa-

rameters of the state and measurement equation densities `(·) and m(·);
in the linear multivariate Gaussian case, as in Equation 3.2, these are the

matrices Lt and Mt+1 and their associated error covariances. The CDLM

formulation allows these parameters to be recursively updated using only
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the sufficient statistics (notation Sxt ) of these parameters. Since PFs can

potentially thousands or millions of particles or timesteps, it is impor-

tant that the updates scale with time and that computer memory is not

wasted, and thus the entire history of particle values does not need to

stored, but only the sufficient statistics, which do not grow in dimension

over time.

The general algorithm of the CDLM is illustrated below in Section 4.4.

Here we illustrate the difference between it and the SIR in terms of the resam-

pling scheme. The CDLM includes conditioning on the latent λt, which in-

volves the transition probabilities between the behaviors λt. Here we omit this

for simplicity. The main difference is that while the SIR propagates xt+1 | xt
and then resamples the set {xt+1}, the CDLM first resamples the set {xt},
giving {x̃t}, and then propagates xt+1 | x̃t from these values.

General outline of conditional dynamic linear model (CDLM) algo-

rithm:

1. For each particle n = 1, . . . , N :

(a) Initialize values x
(n)
0 ∼ p(x0) from the prior p(·).

2. End iteration over particle indices n.

3. For observations t = 0, . . . , T − 1:

(a) For each particle n = 1, . . . , N :

i. Calculate parameters of marginal density mpredict

(
yt+1 | x(n)

t

)
,

which is proportional to m(yt+1 | xt+1)`
(
xt+1 | x(n)

t

)
. Pre-

dict the observation yt+1 one step ahead of the current x
(n)
t ,

marginalizing over the next potential intermediate xt+1.

ii. Calculate resampling weight w
(n)
t ∝ mpredict

(
y = yt+1 | x(n)

t

)
by evaluating the predictive density at the observed value.
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(b) End iteration over particle indices n.

(c) For each particle n = 1, . . . , N :

i. Resampling: Draw one index j with replacement from the set

{1, . . . , N}, with probabilities {w(n)
t }Nn=1.

ii. Set particle x̃
(n)
t = x

(j)
t .

iii. Propagate x
(n)
t+1 ∼ `

(
xt+1 | x̃(n)

t

)
using the resampled particle

value. This generates a final sample of N unique values for

xt+1.

(d) End iteration over particle indices n.

(e) Replace the set {x(n)
t }Nn=1 with the resampled set {x̃(n)

t }Nn=1.

4. End iteration over times t.

The basic idea of the CDLM is that at each time t−1, it tries to predict the

next observed value yt through the intermediate unobserved xt conditional on

each potential value of the latent λt. The predicted densities of yt conditional

on each potential value λt = k are evaluated at the observed value of yt;

whichever value of λt = k gives higher density at the observed yt is deemed

the most likely for λt. Essentially we are trying to determine which behavior

(given the parameter values we have learned) is the most likely to result in

the shark ending up at the observed future location. Resampling particles by

these conditional densities (weights), which for each particle n depends on the

particle’s latent parameter values θ(n), is how the particle filter should learn

optimal values for the parameters.

The algorithm below expands on the general outline to add conditioning on

λt, which can take any value k ∈ {1, . . . , K} for a positive integer K. Assume

that the particle filter has N particles and learns from the T + 1 observed

values y1:T :
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General outline of the CDLM including latent variable:

For observations t = 0, . . . , T − 1:

1. For each particle n = 1, . . . , N :

(a) For each potential value k = 1, . . . , K of λt (here, shark behavior):

i. Determine the state-conditional densities of the observed value

yt, marginalizing over the potential xt | (λt = k):

m
(n)
predict

(
yt | x(n)

t−1, λt = k, λ
(n)
t−1, θ

(n)
t−1

)
∝

d
(
yt | x(n)

t−1, λt = k, λ
(n)
t−1, θ

(n)
t−1

)
× Pr

(
λt = k | λ(n)

t−1, θ
(n)
t−1

)
The first component is the predicted density of the observation

at the value of λt = k, and the second is the behavior transition

probability into that λt.

ii. Let w
(n)
t|k = m

(n)
predict(yt | . . . , λt = k) be the above marginal

density evaluated at the observed yt; these define behavior (λt)-

specific weights for each particle. The overall weights for each

particle are w
(n)
t =

∑K
k=1 w

(n)
t|k .

End iteration over k.

End iteration over n.

2. Resample the set of particles x
(n)
t−1 (and all their associated parameters)

in proportion by the overall weights {w(n)
t }Nn=1. Let {x̃(n)

t−1}Nn=1 represent

the resampled set. Higher weights indicate the parameter values match

the observed data better. Let the weights of the resampled particles now

be w̃
(n)
t and w̃

(n)
t|k .

3. For each particle n = 1, . . . , N :
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(a) Propagate values of λt by the switching probabilities (from the

weights) of the resampled particles by the discrete distribution

λ
(n)
t ∼ Pr

(
λt = k | λ̃(n)

t−1

)
= w̃

(n)
t|k /w̃

(n)
t

so the weights are normalized to represent probabilities.

IfK = 2, this reduces to the bivariate case so λ
(n)
t ∼ Ber

(
w̃

(n)
t|1 /w̃

(n)
t

)
(b) Propagate states x

(n)
t ∼ N

(
Lλtx̃

(n)
t−1, Q̃λt | θ̃t−1

)
and update each

particle n’s sufficient statistics Sxt for only the behavior λ
(n)
t that is

observed.

(c) Update the posterior distribution hyper-parameters of parameters

θ̃
(n)
t |

(
x

(n)
t , θ̃

(n)
t−1

)
and draw a new value of θ

(n)
t from them.

End iteration over n.

End iteration over t.

4.5 1-D robot CDLM illustration

In the CDLM setup, parameters are modeled by seeing which values best

predict the observed yt given unobserved xt−1 (note, not xt) by simulating

the intermediate xt. In this case that means we have simulated xt−1 (starting

location ζt−1 and velocity vt−1 from there), and from this we can predict the

next unobserved location ζt (first component of xt). Then we see what velocity

vt from ζt best predicts the observed location at the next time, zt+1 = yt.

From the EKF linearization through the Jacobian (see 3.4), we can derive the

following distributions:
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xt−1 | data ∼ N 2(µt−1,Σt−1), µt−1 =
[
E(ζt−1) α

]
xt | xt−1 ∼ N 2(`µ(xt−1), Pt), Pt = L(xt−1)Σt−1L(xt−1)T + qt−1

yt | xt ∼ N 2(mµ(xt), Dt), Dt = M(xt)PtM(xt)
T + rt

yt | xt−1 ∼ N 2(mµ(`µ(xt−1)), St), St = M(`µ(xt−1))PtM(`µ(xt−1))T + rt

Denote yt | xt as yt ∼ mcurrent (·|xt, α)

and yt | xt−1 as yt ∼ mpredict (·|xt−1, α)

Here Σt−1 represents the covariance of xt−1 conditioned on all the previous

states x0:(t−1) and observations y1:(t−1). The function `µ(xt−1) includes a new

simulation of vt ∼ N (α, 1) which we will use to update the value of α.

Since we assume that the standard deviation of vt (= 1) is known, we

specify a prior on the values of the mean velocity α. Let Ω0 = (µ0, σ
2
0) denote

the initial values of the prior hyper-parameters. Here, αt (with a subscript)

is a draw from the prior on α (which is a fixed number) at time t; thus our

initial prior draw is α0 ∼ N (Ω0). Let N be the number of particles used in

the simulation.

CDLM outline for 1-D robot:

Initialization of particle values: Let {α(n)
0 }Nn=1 be N iid draws of

α from the prior N (Ω0), and independently draw v
(n)
0 ∼ N (α

(n)
0 , 1), n =

1, . . . , N . Set all initial locations ζ
(n)
0 = z0, the first observed value. Set

x
(n)
0 =

[
ζ

(n)
0 v

(n)
0

]T
, n = 1, . . . , N .

Iterate over t = 0, . . . , T − 1, where T + 1 is the number of observations:

1. We want to see which particle’s parameters (particularly α
(n)
t ), were we to

simulate x
(n)
t+1 |

(
x

(n)
t , α

(n)
t

)
(i.e., the velocity v

(n)
t+1 ∼ N (α

(n)
t , 1)), would

best predict yt+1 (the observed location zt+2, two timesteps ahead).

2. For particle n = 1, . . . , N :
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(a) Marginalize over the potential x
(n)
t+1 to get the desired resampling

density for predicting the location zt+2:

m
(n)
predict

(
yt+1

∣∣∣x(n)
t , α

(n)
t

)
∝∫

m
(n)
current

(
yt+1

∣∣∣x(n)
t+1, α

(n)
t

)
× `(n)

(
x

(n)
t+1

∣∣∣x(n)
t , α

(n)
t

)
dx

(n)
t+1

(b) Assign a weight w
(n)
t+1 to each particle, where w

(n)
t+1 ∝ m

(n)
predict(yt+1),

the density evaluated at the observed value. Particles whose pa-

rameters give higher likelihood to the observed y1 = z2 get higher

weights.

End iteration over n.

3. Create a new set of N particles by random resampling with replace-

ment (RRWR) of the particle values {x(n)
t }Nn=1, by their overall weights

{w(n)
t+1}Nn=1. Let {x̃(n)

t }Nn=1 represent the resampled set.

4. For particle n = 1, . . . , N :

(a) Propagate (draw the next value) of x
(n)
t+1 |

(
x

(n)
t , α

(n)
t

)
.

(b) Given ζ
(n)
t ⊂ x

(n)
t , update the posterior distribution of α(n) |

(
x

(n)
t+1, α

(n)
t

)
by updating the hyper-parameters Ω

(n)
t+1 |

(
x

(n)
t+1,Ω

(n)
t

)
.

(c) Draw a new mean velocity α
(n)
t+1 ∼ N

(
Ω

(n)
t+1

)
and v

(n)
t+1 ∼ N

(
α

(n)
t+1, 1

)
for x

(n)
t+1.

End iteration over n.

End iteration over t.

As illustrated in Figure 4.2, resampling values xi by their density m(xi)

generates a discrete approximation of a random sample from the density. In

step 3 we want to generate a sample of predictions ζ1 of the observed location

z2. This is a draw from the density m
(n)
predict. By resampling original particles
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{x(n)
0 }Nn=1 by the weights w

(n)
1 ∝ m

(n)
predict

(
y1

∣∣∣x(n)
0 , α

(n)
0

)
, and then drawing

a value of x
(n)
1 (which includes ζ

(n)
1 ) from the density `(n)

(
·
∣∣∣x(n)

0 , α
(n)
0

)
from

the resampled particle set, the resulting set of predictions {ζ(n)
1 }Nn=1 should be

distributed around the observed z2, with more values close to z2.

Figure 4.3 illustrates the use of prediction likelihoods as resampling weights.

Here, we have a toy example of three particles at time t − 1 with simulated

locations ζt−1; using the draw of the velocity αt−1 for each, the observed lo-

cation yt = zt+1 (the vertical dotted line) two steps ahead is predicted by

marginalizing over the next true location ζt. Each particle predicts of the lo-

cation zt+1 from the distribution mpredict (see 4.5). The confidence interval of

the prediction is indicated by the left and right ends of of the gray rectangle,

and the vertical line is the mean of the prediction, the best guess of its value.

The confidence interval takes into account the errors from ζt−1 to ζt and then

to zt+1 (see 4.5). The confidence interval is symmetric since the errors are

Gaussian.

The resampling weights zt are each particle’s density functions m
(n)
predict eval-

uated at the observed yt = zt+1. Of course, this measure of accuracy accounts

for the density’s mean and standard deviation. So, in Figure 4.3, particles 2

and 3 have the highest weights (0.4 and 0.5) because their predictions (end of

the right arrow) are most likely near the observed value (dotted line); their

confidence intervals have high density at the observed value. However, parti-

cle 3 has a higher weight because it has a smaller standard deviation of the

error (width of the rectangle) and hence is more certain. Particle 1 has a low

weight because its prediction is both far from the observed value and has low

standard deviation, so it is confident in its inaccurate prediction.

This example illustrates the importance of appropriate prediction error in

the PF in learning model parameters well. This is true of Bayesian inference

in general, of course. The prior distribution we set on a parameter expresses

our prior knowledge. If the distribution has too low standard deviation, it sets

an inflexible prior with high confidence in our guess, which will fail to learn
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Illustration of CDLM for robot

ωt

0 yt−1 = wt 4 8 yt = wt+1 12

ωt−1
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ωt−1
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ωt−1
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ωt
(1) | αt−1

(1)

ωt
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(2)

ωt
(3) | αt−1
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πt
(1) = 0.1

πt
(2) = 0.4

πt
(3) = 0.5

Figure 4.3: Toy illustration of 3 particles for a 1-D robot, predicting the next

observed location yt given simulated locations at ζt−1. Particle weights wt

reflect the particle’s accuracy in predicting the next location. The width of

the gray boxes represent 95% predictive intervals for the particle’s density

estimate of the observed location zt+1.
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from data values that are far from the distribution’s center. In the case of the

1-D robot, this corresponds to the error distributions, and thus the confidence

intervals of predictions being too narrow. In the extreme case, nearly all of the

particle predictions have low density at the observed values, and hence have

low weights w
(n)
t . In this case, the PF may fail to discriminate between decent

and bad guesses of, say, the velocity, and thus cannot identify good particles.

It will thus resample only a few, or resample all particles at roughly the same

(low) weight.

Similarly, if the error distributions are too wide, giving wide confidence

intervals, the PF cannot identify good particle guesses because they are all

roughly bad (since the confidence intervals are too wide). Thus, a good PF,

like a good prior distribution, should allow a reasonable amount of error. A

too-small error means our estimates of the velocity distribution will have have

too big a variance after updating.

4.6 Effective sample size

In a particle filter, resampling of particles by their weight w
(n)
t serves the

dual purpose of (1) removing particles with low weights (i.e., low predictive

power) and replicating particles with higher weight, and thus also (2) weighting

the set of particles so that they form a discrete approximation of the desired

density. When particles are resampled, the set of parameter values they have

learned over the process, as well as the particle history, are completely replaced.

If a particle is not resampled, its parameter estimates are lost completely.

Resampling is thus well-known to cause particle filters to be unstable for the

following related reasons:

• Degeneracy is a situation when a few particles have very high weight

and most have very low weight. Resampling particles in this situation

causes

• Impoverishment, which is when the diversity of particle estimates for
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parameters is very low, meaning many particles have learned the same

or similar values for a parameter. In the most extreme case, there is no

diversity because all particles have been resampled with a single particle.

These problems illustrate the importance of particle diversity. On the one

hand, while a particle filter should favor particles whose parameter estimates

perform best. On the other hand, it is dangerous to completely discard par-

ticles with estimates that do not perform as well. The true values of the

parameters may evolve over time; in general, even if the distribution is fixed,

variable values, for instance, a shark’s speed, may vary due to randomness.

Because particle filters are a sequential learning algorithm, a particle whose

current estimate of the mean speed, say, predicts the observed shark location

well, may not perform as well in the future. This is strongly related to the

fact that prior distributions on parameters should not be point masses but

rather incorporate uncertainty (i.e., have variance). Thus, it is important to

maintain some diversity of particle parameter values throughout the process

so the filter does not get stuck trying to predict an observed value that all its

particles believe is very unlikely.

One way to address this is to limit resampling. For instance, one may

want to resample for the first time after a certain number of initial steps have

passed, to let the particles evolve a bit. A commonly-used measure proposed

by Liu ([33]) involves the effective sample size (Neff), which measures particle

degeneracy based on the set of weights. It is approximated by the following

calculation N̂eff:

Neff ≈ N̂eff =
1∑N

n=1

(
w

(n)
t

)2 , where
N∑
n=1

w
(n)
t = 1

This formulation ensures that 1 ≤ N̂eff ≤ N . In the extreme case of

absolute degeneracy, for one particle n, its weight w
(n)
t = 1 and the rest are 0,

so N̂eff = 1. On the other hand, if all weights are equal (w
(n)
t = 1/N,∀n), then

N̂eff = N , the number of particles; this is the case of perfect diversity, since all
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particles are equally likely to be resampled. The effective sample size expresses

the (weighted) diversity of sample values, since if N̂eff is low, then only a few

unique particles will be resampled. Resampling every so often is necessary to

prevent degeneracy and the effective sample size from falling to its minimum

of 1, but resampling too often can hurt the filter’s ability to learn parameter

estimates effectively. To avoid resampling too soon when the particles and

their weights have not begun to diversify enough, one may pick a threshold

1 < Nthresh < N and only resample if the degeneracy is bad enough, that is,

if N̂eff < Nthresh (Doucet, [14]). One particular choice is setting Nthresh = N/2,

suggested by Grisetti et al. ([18]).

4.7 Low-variance sampling

Traditionally, given a set of weights {w(n)
t }Nn=1 that are normalized so∑N

n=1w
(n)
t = 1, the indices of particles to be resampled are drawn by indepen-

dent random sampling with replacement (RSWR) from the set {1, . . . , N} in

proportion to their weight. RSWR can be termed ‘roulette wheel sampling’ it

is analogous to a a gambler making N repeated rolls of a roulette wheel, each

roll giving one number as a result, just as each draw from the particle indices

is independent and results in one index. If we denote xn as the number of

times particle x
(n)
t is resampled in the set {x̃(n)

t }Nn=1, these values (x1, . . . , xN)

jointly have a multinomial distribution with number of trials N and probabil-

ity vector (w
(1)
t , . . . , w

(n)
t ). Thus, with RSWR, particle x

(n)
t is resampled on

average E(xn) = Nw
(n)
t times with variance Nw

(n)
t (1 − w(n)

t ). The weakness

here is that this variance can be high, depending on the value of the weight.

Furthermore, particles with low weight are likely not to be resampled at all

since it is not guaranteed they will be resampled in proportion to their weight,

but some of these particles are essential to avoiding degeneracy.

Alternative methods of resampling, such as low-variance or universal stochas-

tic resampling, developed by Baker([4]), ensure particles are resampled pro-

portionately to their weight each time, not just on average. Imagine a roulette
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wheel now with N spaces, each with area proportionate to a weight w
(n)
t . In-

stead of N independent and identically distributed (iid) draws from the set

{1, . . . , N}, the concept is similar to placing N equally spaced marks on the

wheel above and spinning once, which guarantees that colors will be rolled

(a mark falls in them) proportionately to their area on the wheel, except in

the case of particles imagine that each of the N slots has area proportion to

its weight w
(n)
t . This reduces the variance associated with resampling while

preserving the randomness.

The basic algorithm for low-variance sampling can be formulated as follows:

• Consider N particles {x(n)}Nn=1 with indices n = 1, . . . , N with weights

{w(n)}Nn=1 ≥ 0 normalized so that
∑N

n=1w
(n) = 1. Note the weights do

not need to be in a specific order.

• Let w̄n =
∑n

i=1 w
(n) be the cumulative sum of the first n weights, so

w̄N = 1, and define w̄0 = 0.

• We wish to draw a low-variance sample of size S; for particle resampling,

we will have S = N . Let s ∈ {1, . . . , S} index the resampled particles,

and let n(s) ∈ {1, . . . , N} be the index of the original N particles that

is resampled in new particle index s. For instance, if N = 10 and we

want a resampled set of size S = 3, then we may have n(1) = 2, n(2) =

2, n(3) = 5; this means the resampled set of size 3 consists of the values

of the second (replicated twice) and fifth original N particles.

• Draw u1 ∼ U(0, 1/S). Now specify S partitions of the interval [0, 1],

where the first is [0, u1] and the others are of equal length 1/S, cor-

responding to (s/S, (s + 1)/S]. For, instance if we resample a set of

size S = 3, say u1 ∼ (0, 1/3) is drawn, then the other intervals are

(u1, u1 + 1/3] and (u1 + 1/3, u1 + 2/3]. In general,

for s = 1, . . . , S, set n(s) = argmin
j
{j : u1 + (s − 1)/S ≤ w̄j}, or equiv-

alently n(s) = {j : w̄j−1 < u1 + (s − 1)/S ≤ w̄j}; note we may have

n(i) = n(j) for i 6= j, so some indices may be repeated.
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• The low-variance resampled set is {x̃(s)}Ss=1, where x̃(s) = x(n(s)).

An illustration of the difference between low-variance sampling and RSWR

is shown in Figure 4.4. Visually, we can imagine creating N intervals parti-

tioning [0, 1], with interval n having width w(n). The assignment of particle

indices above by assigning n(s) = j if the sth uniform draw falls in the jth

interval (w̄j−1, w̄j] is logical because the probability of falling in this interval is

proportional to the width of that interval and to the weight w(j). Thus, higher

weighted particles are more likely to be resampled.

Resampling particles by independent RSWR is equivalent to making S

(which we will take as N , the same as the number of particles) independent

draws {u1, . . . , uS} ∼ U(0, 1), and assigning n(s) = j if us is in the jth interval

(w̄j−1, w̄j]. Because these are independent draws—in the metaphor of roulette,

they are S repeated individual spins of the wheel—they will not necessarily be

equally spaced along (0, 1). This means that while the particles are on average

resampled proportionately to their weight, a single instance of resampling will

not necessarily contain the particles in proportion to their weights, meaning

a single draw will not necessarily approximate the desired distribution well

(see Figure 4.1). Low-variance sampling proceeds by a random draw u1 ∼
U(0, 1/S) (which provides the randomness) but thereafter {u2, . . . , uS} are not

each drawn uniformly U(0, 1) but rather equally spaced after u1. The equal

spacing guarantees resampling that is as close to proportional as possible and

that the resulting number of times each particle n is likely to be resampled

has low variance compared to N iid draws.

Figure 4.5 shows the proportions of the indices {n(s)}Ss=1 corresponding to

each of the original particle indices {1, . . . , N} in Figure 4.4, from one draw

each using low-variance sampling and RSWR. The horizontal lines indicate

the normalized weights w(n) of each particle. We see that the proportions

under low-variance sampling (black dots) are almost always closer to the true

weights or proportions than are the proportions under RSWR (hollow dots).

With a larger number N of particles, the low-variance proportions would be
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Figure 4.4: Resampling of the N = 10 particle values {20, 21, . . . , 29} by their

weights (see Figure 4.1). The low-variance resampling draws (black dots) are

equally spaced, but the independent RSWR draws (hollow circles) are not,

and hence do not guarantee proportional resampling on a given draw. For

instance, particle n = 2 is over-sampled.

much closer to the weights.

4.8 Posterior parameter inference

In the end, each particle (simulation) in a PF learns its own posterior

distribution of each parameter. Ultimately, we want to make posterior infer-

ence on the parameters (for instance, to approximate the mean velocity in

each behavioral state) by combining estimates across the particles. Normally,

Bayesian (or other) inference assumes that the sampled values are generated

independently, but this is not strictly true for the PF. While it is true that

at every step, each particle’s simulations of say, the shark’s velocity, are in-

dependent, the entire particle histories are not independent of each other.

This is because, for instance, if at step t particle x
(1)
t is resampled to replace

both particles 1 and 2 (i.e., x̃
(1)
t = x̃

(2)
t = x

(1)
t ), then those two new particles

n = 1 and 2 have identical histories and parameters, so their posterior dis-

tributions at that point are not learned independently. At any given point t,
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Figure 4.5: Proportions of the resampled indices corresponding to the original

indices, under low-variance sampling and RSWR. The horizontal lines indicate

the weights w(n), which are the proportions of the resampled set that each

particle n should occupy, on average. The low-variance resampling makes a

given resampling closer in index distribution than if RSWR were used, which

is important since the resampling is supposed to represent a random draw from

the desired distribution.
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draws from the distributions are independent, however.

There have been some attempts to develop PF algorithms that generate

conditionally independent samples in various ways (see Lin et al. [32]; Lam-

berti et al. [31]), but generally the practice is to treat the posterior distri-

butions as independent, even though they are not. Crisan and Mı́guez ([13])

demonstrate that kernel density estimates of PF densities, treating them as

independent, are generally reasonable asymptotically.

In PF inference, at the final time T each particle n’s states x and param-

eters θ have distribution d
((

x
(n)
T , θ(n)

)
| y1:T

)
. In order to do joint infer-

ence using all the particles, we need to approximate their joint distribution

d

({(
x

(n)
T , θ(n)

)}N
n=1
| y1:T

)
, which in the case of independence reduces to a

product of the individual distributions. Nevertheless, it is customary to ap-

proximate the joint by a weighted sum of the individual particle distributions

N∑
n=1

w
(n)
T × d

((
x

(n)
T , θ(n)

)
| y1:T

)
where the weights w

(n)
T weight each of the n distributions to represent the

desired joint density we want to approximate a draw from. In traditional SIR

algorithms where propagation precedes resampling, we need to resample the

particles x
(n)
T by the weights to approximate the desired joint density. In the

case of the CDLM, the particles x
(n)
T−1 were resampled by their weights w

(n)
T ∝

m
(n)
predict

(
yT | x(n)

T−1,θ
(n)
T−1

)
and then x

(n)
T |

(
x

(n)
T−1,θ

(n)
T−1

)
are propagated. Thus

the propagated {x(n)
T }, after parameters θT−1 are updated, should be equally

weighted to represent the joint density, since they were resampled according

to this density, and thus propagation should not change their weighting.

Therefore, to perform posterior inference we will simply draw samples of

the desired parameter from all the particles at equal weight, and perform

density estimation; this will also give us estimates of the posterior intervals.

We will generate a sufficient number K (e.g., 100) independent draws from

each posterior of each parameter θ ∈ θ: θk ∼ d(· | x(n)
0:T , y1:T ), k = 1, . . . , K,

and estimate a population density of θ by a density estimate on these draws
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combined. Ideally, due to the inherent randomness in Markov Chain Monte

Carlo (MCMC) algorithms, the entire process of the PF should be repeated a

number of times to account for possible bad estimates early in the simulation

that affect the rest of it.

As a toy illustration, say our PF involves a variable with distribution x ∼
f(x | µ) (not necessarily normal); for instance x could represent speed and µ

its mean parameter. We wish to perform posterior inference on µ, based on

the posterior distributions for this parameter learned by all the particles. As

a further example, in Section 6.4 we propose a model for a parameter η to

capture the behavioral effects of inter-shark influence, which is an input into

another element of the particle filter. We have its priors and posteriors as

η ∼ N (η0, τ0), and we wish to do posterior inference on η. Returning to the

general case of a parameter µ, say the posteriors are the normal distribution

µ ∼ N (µ∗, σ∗).

Figure 4.6 shows the posterior densities of N = 10 such particles, with

various values of µ∗ and σ∗, but centered roughly around 0, which we would

hope is close to the true value of µ. To obtain, say, an estimated 95% posterior

interval of µ, we can draw 100 samples of µ(n) from each particle’s posterior

distribution of µ, pool the samples (using the approximation of independence),

and construct a 95% empirical posterior interval from the combined N sam-

ples. The pooled sample can also be used to construct a posterior density

estimate of µ, by combining estimates across all particles. In this case, the

estimated density is essentially an estimate of a mixture normal density with

N components N
(
µ

(n)
∗ , σ

(n)
∗

)
that are equally weighted. This approach to

posterior inference for parameters is flexible and can be used with any poste-

rior distribution. Remarkably, based on our exposure to the particle filtering

literature, researchers seem much more interested in the overall filter perfor-

mance and accuracy of modeling the states x
(n)
t rather than doing inference

on the underlying parameters θ.
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Figure 4.6: Toy illustration of posterior PF inference for parameters. Left:

ten particles n = 1, . . . , N , each with a different posterior distribution of the

parameter µ ∼ N
(
µ

(n)
∗ , σ

(n)
∗

)
. Right: density estimate of µ combining samples

of size 100 from each of N = 10 particles, along with a 95% posterior interval

based on the empirical samples.
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4.9 Connections with robotics and tracking al-

gorithms

In Section 4.5, we used the simple example of a one-dimensional robot with

a location sensor in order to illustrate the basic mechanics of SSMs in general,

and the CDLM particle filter in particular, which we will use to model the

shark movement. One might wonder why the analogy from sharks to robots

is appropriate at all. After all, sharks move on their own free will, whereas

robots do not. However, the analogy is apt because particle filters and similar

probabilistic models are widely used in robotics.

Sebastian Thrun, who founded the self-driving car division at Google, pro-

vides an overview of probabilistic algorithms for robotics in [48]. In summary,

autonomous robots move by taking various readings of their surrounding by

using sensors, such as camera readings, laser range scans, or odometer read-

ings. Due to the inherent imperfections inherent in real life measurements, any

sensor reading should be treated as having a certain degree of error associated

with it. Similarly, the VPS transmitters on the sharks also provide measure-

ments with error. In the SSM setup, xt are unobserved true values (say, of

location), for which yt are the observed measurements taken with associated

error qt, often modeled by a Gaussian distribution.

Autonomous robots are designed to perform a variety of tasks while mov-

ing around an area, particularly localization (determining their location on a

map after a sequence of moves and sensor readings), mapping (exploring their

environment and determining the map or layout of it, including the locations

of obstacles and walls, doors, etc.), and navigation (planning a route between

their location and a desired destination). Robots may need to be able to re-

cover from a disturbance or localization failure, such as being suddenly moved

to a new location, and then reorient themselves and find their way back; this

is known as the ‘kidnapped’ robot problem.

As Thrun shows, due to both the error inherent in the sensors, and factors
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such as a dynamic environment (for instance a robot that is surrounded by

crowds of people whose position may change, or doors that may open or shut),

the best algorithms for solving these problems are probabilistic. This means,

for instance, when performing localization, a robot calculates a probability dis-

tribution (2-D Gaussian confidence ellipses, for instance) around a prediction

of its location; the robot quantifies the degree of uncertainty it has in its mea-

surements, similar to how a prior distribution on a model parameter expresses

our uncertainty of its value. The fact that a robot expresses uncertainty about

its location or obstacles helps it perform better in navigation and recovery. For

instance, if a robot is somewhat uncertain about obstacles nearby it may be

more cautious in moving around them. In mapping, a robot needs to deter-

mine the location of obstacles, say by gridding the area and determining if the

grid is occupied or not; if it can assign each grid a probability of occupation

rather than a binary classification of occupied or empty, the map may be more

accurate. Also, having some uncertainty lets the robot learn and modify its

beliefs in the face of new sensor measurements.

The main difference between the robots and the sharks is that robot navi-

gation models have to work in real time, whereas we are trying to model the

shark data sequentially but after the fact. But if you take robot data that

has already been observed (yt) and model the unobserved locations (xt) that

generated these observations, that is what we are doing with the sharks. If

we formulate a probabilistic filter model, each new observed location yt can

be incorporated probabilistically into our parameter learning. If a particle’s

parameters assign low density or probability to an observation, we can express

lower confidence in that particle’s values by resampling it at a lower weight.

Robots are a specific example of the use of the Kalman filter and its exten-

sions to the problem of localization. More generally, the literature on tracking

deals with the task of an observer—for instance, a SONAR technician on a

submarine, or a surface-to-air missile defense system—estimating the location

and velocity of a moving object (target). The object’s motion must be esti-

mated by sensors, such as rangefinders (which include RADAR and SONAR),
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which may be located at the observer’s location or elsewhere; the measure-

ments made by the sensors are assumed to have a certain degree of error.

Tracking algorithms have been adapted to many situations, such as tracking a

maneuvering target, meaning one that may re responsive or evasive to move-

ments by the observer, such as an enemy submarine, or the non-maneuvering

case; the observer’s sensor may also be moving (e.g., a submarine), or station-

ary.

Naturally, estimating the velocity and location of the moving target in-

volves estimating the direction of movement (bearing) and the distance from

the sensor (range). Often, algorithms are made to address the situation where

the sensor measures only one of these aspects (bearings- or range-only track-

ing). In a bearings-only algorithm, for instance, the range is unobserved and

this error, as opposed to sensor measurement error, and can only be measured

if the observer maneuvers (see [42] for more details). This illustrates another

key difference between tracking and our setup: since we are not using sensor

data in real-time, but rather are retroactively using location data from VPS

transmitters, which should not be significantly affected by the range and bear-

ing sensor issues, we can ignore some of these complications from the tracking

literature.
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CHAPTER 5

SHARK EKF SETUP

5.1 Specification of the state-space model

In our SSM, the unobserved state vector xt models the unobserved true

location coordinates ζt =
[
ζ1,t ζ2,t

]
, as well as the log-speed (ln (vt) and

bearing angle ψt (radians) characterizing the shark’s movement at time t from

ζt. The state xt depends on the previous xt−1 by the density `(·)—generally

through a mean function `µ(xt)—in the state equation as follows. The speeds

vt at each time t are independent of the previous speed vt−1 and depend only

on the behavior λt at that point. The bearing angle (direction) ψt depends on

the previous angle ψt−1 through the turn angle θt. The coordinates ζt depend

on the previous coordinates, speed, and bearing at t − 1 in a straightforward

way.

Given the state xt, our SSM will predict yt = zt+1 =
[
z1,t+1 z2,t+1

]
, the

observed coordinates at time t+1, through the measurement equation function

mµ(·) using the same method as in `µ(·):
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xt =


ζ1,t

ζ2,t

ln (vt)

ψt

 = `µ




ζ1,t−1

ζ2,t−1

ln (vt−1)

ψt−1



+ qt =


ζ1,t−1 + vt−1∆t−1 cos (ψt−1)

ζ2,t−1 + vt−1∆t−1 sin (ψt−1)

ln (vt)

ψt−1 + θt

+ qt

yt =

[
z1,t+1

z2,t+1

]
= mµ




ζ1,t

ζ2,t

ln (vt)

ψt



+ rt =

[
ζ1,t + vt∆t cos (ψt)

ζ2,t + vt∆t sin (ψt)

]
+ rt

qt ∼ N 4(0,Qt), rt ∼ N 2(0,Rt)

(5.1)

Here N k denotes a k-variate normal distribution. In `µ(·) and mµ(·), tech-

nically the function relating location and log-speed ln (vt) should be written

as exp (ln (vt)), for instance, since log-speed is actually the variable, but we

have omitted this for clarity.

The Jacobian matrices L and M of the SSM equation functions `µ(·) and

mµ(·) are:
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L(xt−1) =


1 0 vt−1∆t−1 cos (ψt−1) −vt−1∆t−1 sin (ψt−1)

0 1 vt−1∆t−1 sin (ψt−1) vt−1∆t−1 cos (ψt−1)

0 0 0 0

0 0 0 1



M(xt) =

 1 0 vt∆t cos (ψt) −vt∆t sin (ψt)

0 1 vt∆t sin (ψt) vt∆t cos (ψt)


5.2 Wrapped normal distribution

In order to use the EKF formulation and its recursive update formulas,

which are based on the Delta Method’s first-order linear approximation, the

underlying variables in our model must be formulated to have a multivariate

normal distribution. As mentioned before, we model the log-speed ln (vt) using

a normal distribution and then convert to raw speed to predict future locations.

The turn angle θt and bearing angle ψt, however, require slightly modified

treatment because unlike the normal distribution which has support Rd, these

variables are restricted to the interval [−π, π]. This restriction requires the use

of circular (wrapped) distributions, which are distributions d with domains

x ∈ [−π, π] and for which the statistics and densities are the same at the

boundaries ±π, since these are equivalent angles. Such distributions include

the wrapped normal, wrapped Cauchy, and von Mises (which resembles the

normal).

Like their respective unwrapped versions, the wrapped densities have a

mean µ ∈ [−π, π] (technically, we can have µ ∈ R, but it is easier to assume

µ is restricted to the function’s domain) and a parameter σ > 0 or κ > 0 that

controls the spead or concentration within the interval. Letting σ →∞ for the

normal, for instance, causes it to converge to U(−π, π), also known as a circular

uniform distribution. A uniform angular distribution would not generally be
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appropriate for animal models because in our models the turn angle tends to

unimodal and be centered around a value (usually 0), which causes directional

persistence in correlated random walks (CRWs, see Section 3.2). A circular

unform distribution means any direction is equally likely—as is the case in a

simple random walk, where bearings ψt are serially uncorrelated—which we

dismissed as unrealistic for most animals.

For modeling the angle distribution, we use the wrapped normal (WN)

because it fits naturally with the multivariate normal setup of the EKF. The

probability density function of the WN distribution W N (µ, σ) with domain

−π ≤ x ≤ π, location parameter µ ∈ [−π, π] and concentration parameter

σ > 0 is given by

d(x | µ, σ) =
1√
2πσ

∞∑
k=−∞

exp

(
−((x+ 2kπ)− µ)2

2σ2

)
(5.2)

Here, µ and σ are the mean and standard deviation parameters of the

unwrapped distribution. Define the wrapping function Θ(x∗) = x, where x

is the result of adding or subtracting 2π to x∗ ∈ R until x∗ ∈ [−π, π]; if

x∗ ∈ [−π, π] already, then Θ(x∗) = x∗. A value x ∼W N (µ, σ) can be drawn

randomly from the wrapped distribution by first drawing x∗ ∼ N (µ, σ) from

the unwrapped distribution and then applying the wrapping function Θ(·).
The density function above for the WN relects the fact that for an un-

wrapped angle x∗ = x+2kπ, for an x ∈ [−π, π] and any integer k, is angularly

equivalent to the wrapped x = Θ(x∗), due to the 2π-periodicity of the unit

circle in radians. Consider the mean parameter µ ∈ [−π, π]; if x ∈ [−π, π],

then x∗ = x + 2kπ for integers k of increasing magnitude becomes increas-

ingly far from the wrapped value x, and thus exp (−(x∗ − µ)2) → 0. Since

the (unwrapped) normal distribution has unrestricted domain, angular val-

ues x∗ /∈ [−π, π] in the unwrapped normal that are equivalent to a given

x ∈ [−π, π] are still possible but have increasingly small density. Hence, a

complete representation of the WN density requires all integers k, but for

practical purposes, the infinite sum in Equation 5.2 can be replaced with a
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sum over integers |k| < K for K > 0 sufficiently large, assuming σ is not

unreasonably large.

Figure 5.1 shows examples of WN densities W N (µ, σ) for various values

of µ and σ. For W N (µ = 0, σ = 1) in this figure, the density is nearly

the same as an unwrapped normal because most of the unwrapped normal

domain falls in [−π, π] anyhow. Once σ = 2, more values of the unwrapped

N (µ = 0, σ = 2) fall outside this interval, so when wrapped, these densities

near the domain boundaries ±π increase relative to the unwrapped normal.

Even though unwrapped normal draws can be wrapped to draw WN sam-

ples, this feature makes using the unwrapped normal density function itself

a bad approximation for the WN density function when σ is large. As Kurz

et al. ([29]) show, the Kullback-Leibler distance—which measures the dissim-

ilarity between two probability density functions—between the wrapped and

unwrapped normal densities with the same µ and σ, diverges when σ increases.

The divergence between the wrapped and unwrapped normal density func-

tions motivates research into how to properly use the wrapped normal and

other circular distributions in filtering applications, since they are so impor-

tant in applications such as navigation and robotics (see Section 4.9). Kurz,

Gilitschenski, and Hanebeck are three researchers who have released a series

of papers on this topic. In [30], they review other approaches to filtering with

SSM involving circular distributions; many of them use density approximations

that may result in poor predictions, or they are limited because the SSMs they

formulate are simplistic in that their state or measurement equations are iden-

tity relations (i.e., E(xt+1) = E(xt)). The main difficulty in these methods is

that they often attempt to use Kalman filter update formulas, which are based

on the normal distribution, which doesn’t apply if the variable is wrapped nor-

mal. An example is in [49], which proposes a univariate SSM for an angle θt;

the normal approximation in the KF is used for simplicity, but a correction

using the the discrete approximation of the wrapped normal (Equation 5.2) is

used for the Kalman Gain update (see Section A.2) of the state xt covariance

matrix so the KF recursive updates can be used. Unfortunately, the state
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Figure 5.1: Wrapped normal distribution densities W N (µ, σ) for various com-

binations of the parameters. Note that if the mean µ is close to the domain

boundaries ±π, or σ is large, the unwrapped normal N density becomes a

bad approximation of the wrapped density W N due to the wrapping at the

boundaries.
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equation update for xt+1 | xt still uses the normal approximation for what is

really a WN distribution.

Kurz et al. ([30] and [29]) propose a complex solution for filtering with SSM

noise distributions and state/measurement equations involving circular distri-

butions without resorting to the unwrapped normal approximation, which they

say is a naive approach resulting in issues with mis-identification of the den-

sity due to the wrapping. The unwrapped normal distribution is closed under

both multiplication and addition, meaning multiplying or adding two normal

densities—operations that are required for the filtering equations—results in

another normal density. In contrast, adding WN-distributed noise to a vari-

able with a WN distribution does not result in another WN distribution, but if

they are multiplied, a WN density results. The von Mises (VM) distribution,

another circular distribution, has exactly the opposite pair of properties as the

WN.

They thus propose an algorithm to convert the WN to von Mises and then

back to update the WN parameters, thus bypassing the unwrapped normal

approximation. In the case of an identity state relation xt = xt−1 + qt (where

the noise qt ∼W N (µ, σ)), as [29] show, the resulting conditional density of xt

is W N (xt−1 +µ, σ), simply a location shift of the noise distribution, and thus

no transformation to the von Mises is required. This is the case for our bearing

angle ψt, which evolves by (linear) relation of WN-distributed turn angle noise.

They show an example of a model of a robot arm where the state variable angle

θt evolves by nonlinear trigonometric functions, in which case the von Mises

transformation is required to model the resulting WN distribution of the new

θt.

In our EKF setup (Equation 5.1), the state equation involves adding WN-

distributed noise (the turn angle θt, which may have nonzero mean) to a vari-

able with a WN distribution (the previous bearing ψt) to obtain the new bear-

ing ψt, which should have a WN distribution as well since it is a circular vari-

able. Therefore, we can estimate the WN distribution of the turn θt (and thus

the bearing) directly without Kurz et al.’s transformation to von Mises, since
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this transformation is not needed when the state equation xt+1 | xt involves a

linear transformation (such as simple addition) of the WN-distributed variable.

We adapt the technique of Traa and Smaragdis ([49]), which estimates the WN

distribution of their state variable θt by modifying the KF update equations

to account for the wrapping aspect. For a sample {x∗i }ni=1 ∼ N (µ, σ), the

wrapped version of the sample, {xi}ni=1 = {Θ(x∗i )}ni=1 ∼ W N (µ, σ), will not

have the same sample variance and mean (sufficient statistics of the sample

usually used to update the posteriors) if any of the original unwrapped sample

{x∗i }ni=1 fall outside of the interval [−π, π]. Thus the normal posterior update

formulas cannot be used directly, as the summary statistics of the wrapped

sample will not reflect the underlying spread σ of the wrapped distribution.

However, care must be taken so that the standard deviation σ does not get

over-estimated, leading to the distribution being mis-identified.

Let θt ∼ W N (µ, σ), so E(θt) = µt, and the state equation be θt =

Lθt−1 + qt; for the EKF, we would have θt = `µ(θt−1) + qt, replacing matrix

multiplication with a function `µ. Traa and Smaragdis’ wrapped KF esti-

mates the new mean as E(θt | µt−1) = µt = Θ(Lµt−1), applying the KF linear

transformation to estimate the new mean, and then wrapping if necessary to

ensure µt ∈ [−π, π]; this has the additional benefit of helping protect the vari-

ance from being over-estimated. Their measurement equation is yt = Mθt+rt.

To estimate the density of the observation yt, we use the Kalman Gain (see

Section A.2), which involves calculating the prediction error yt −Mµt (also

called ‘innovation’). Since the state and equation are both circular, the raw dif-

ference does not capture the true difference, which would be Θ(yt)−Θ(Mµt),

but also does not account for the fact that any predictions ŷt = M(µt)±2π—if

ŷt /∈ [−π, π]— when wrapped are equivalent to a ŷt = M(µt) ∈ [−π, π]. Thus,

the Kalman Gain formula needs to be adjusted to reflect the the posterior

variance of the wrapped measurement in the case that the variance is large or

the mean µt−1 is near the boundary ±π. To adjust for the wrapping in the

Kalman Gain, they create weights ηt,k = N (yt+2kπ |Mµt, rt)—the densities

of the prediction yt shifted by several integer multiples of 2π on either side,
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normalized to have a sum of 1—which are then used to weight the differences

(yt + 2kπ)−Mµt in the Kalman Gain calculation.

In our EKF setup for parameter updates (see Section 5.4) we will place

a normal prior µ
(n)
c ∼ N (µc, Vcσ

2
c ) on the mean of the turn angle θ

(n)
c ∼

W N
(
µ

(n)
c , σ

(n)
c

)
; the variance

(
σ

(n)
c

)2

will also have an inverse Gamma dis-

tribution (discussed later). We will update the posterior of the distribution of

µ (which may be done after several steps rather than at each step) based on

simulated particle values θ
(n)
c . The update will proceed as follows:

• Calculate WN weights ηc,k = N
(
θ

(n)
c + 2kπ | µ(n)

c , σ
(n)
c

)
, for k = −K,

. . . ,K for a sufficient integer K (2 or 3 is enough in general). Normalize

the weights by dividing by the sum
∑K

k=−K ηc,k.

• The updated posterior mean turn angle µc | θ(n)
c involves θ

(n)
c . Rather

than use the raw value θ
(n)
c in the calculation, we use a weighted adjust-

ment θ̂
(n)
c =

∑K
k=−K ηc,k(θ

(n)
c + 2kπ).

• The posterior variance of the turn angle θ
(n)
c update involves its square(

θ
(n)
c

)2

, so let the weighted approximation be
(
θ̂

(n)
c

)2

=
∑K

k=−K ηc,k(θ
(n)
c +

2kπ)2, by weighting the squared values rather than squaring the weighted

adjustment θ̂
(n)
c .

To illustrate that this update formulation works successfully, we run the

following simulation:

• Simulate C = 100 (unwrapped) sample values {θ∗i }Cc=1 ∼ N (µ, σ = 1.5),

where µ = 0 or −2, and apply the wrapping function to obtain {θi}Cc=1 =

{Θ(θ∗i )}Cc=1 ∼W N (µ, σ = 1.5). A reasonably-sized σ and nonzero mean

µ ensures that the wrapping will affect the distribution of sample values

θ compared to that of the unwrapped θ∗.

• Initialize priors σ2 ∼ G−1(a0 = 6, b0 = 4) and µ ∼ N (µ0 = −2, V0σ
2),

where µ0 = 0 or −2 and V0 = 4.
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• Update the posteriors in blocks of 3 observations, since our PF should

be able to update posteriors in blocks in addition to at each step c. We

will

– use the wrapped observed data {θ1, θ2, θ3} etc. to update the µ and

σ for the posterior of θ assuming (1) an unwrapped normal, and

(2) a WN distribution with the weighting formulations above for

updating the mean. And

– use the un-wrapped version {θ∗1, θ∗2, θ∗3} of the observed data, and

update the posterior of θ assuming an unwrapped normal posterior.

Note that this is an unrealistic scenario because when observing

angular measurements they are wrapped, so we do not know for

certainty where in the unwrapped normal distribution (i.e., θ±2kπ)

the wrapped value comes from. This is the challenge of working

with wrapped distributions.

Figure 5.2 shows density estimates for the wrapped normal θ given the

posterior parameters of µ and σ, estimated by either

1. assuming an (unwrapped) normal distribution for the observed wrapped

θ and following the normal-inverse gamma updates (thin dashed line),

2. modeling the wrapped θ as a WN distribution and updating the poste-

riors according to the procedure above (thin solid line), or

3. using the unwrapped observed θ∗, which is unrealistic, and updating the

posterior according to usual normal distributions, and then simulating

from this posterior and wrapping (thick dashed line).

The thick black line shows the density estimate of the sampled θ. As we

see, if θ has mean µ = 0, the normal and WN approaches are both comparable,

because most of the density θ ∼W N (µ, σ) is already in the interval [−π, π].

However, for µ = −2, the wrapping of the θs makes the unwrapped normal

estimate perform weakly, whereas the WN approach works very well; as we see,
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Figure 5.2: Density estimates of θ ∼ W N (µ, σ) for µ = 0 (left) and µ = −2

(right), where the posteriors of µ and σ are estimated either assuming θ is

unwrapped (N) or wrapped normal (WN). The WN model greatly outperforms

the normal for a nonzero mean µ or if σ is relatively large.

the normal density in the right figure mostly fails to capture the bimodality of

the density around π, which is caused by the wrapping and the nonzero mean.

However, if µ = 0 and σ was higher, the WN would still outperform the normal.

However, it is important to for the prior distribution of µ to be close to the

true value; for the shark turn angle it is reasonable to assume µ = 0, but the

model should be flexible. The success of the WN estimation on the wrapped

observations vs the normal estimation on the unwrapped observations seems

to also be sensitive to the value of the parameter V0 in the NIG joint prior.

5.3 Shark EKF CDLM formulation

Following the setup of the CDLM, at each regular interval c = 0, . . . , C the

shark’s movement is conditioned on the behavior variable λc. We thus want to

model xc | (xc−1, λc) and yt | (xc, λc) if there is an observation in the interval

(c, c+ 1], where the length of each time interval c is a constant ∆Υ. At each c,
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the unobserved state variables xc have the following conditional distribution,

composed of a tri-variate normal distribution (N 3) and a univariate wrapped

normal (W N , discussed in Section 5.2), which are independent.


ζ1,c

ζ2,c

ln (vc)

λc

 ∼ N 3

( 
ζ1,c−1 + vc−1∆Υ cos (ψc−1)

ζ2,c−1 + vc−1∆Υ sin (ψc−1)

αλc

 ,
 Σζc

0

0

0 0 σ2
λc


)

[
ψc λc

]
∼W N

( [
ψc−1 + θc

]
,
[

τ 2
λc

] )
For the 1-D robot, Figure 4.3 visually illustrated how the CDLM (in this

case, with one behavioral mode) learns parameter values. In that illustration,

for each particle n, the location ζ
(n)
t−1, was simulated. There, the mean velocity

parameter α for velocity vt was learned by simulating the next location ζ
(n)
t |(

ζ
(n)
t−1, v

(n)
t−1

)
, evaluating the prediction density for the next observed location

zt+1 |
(
ζ

(n)
t , v

(n)
t

)
, given the measurement noises r

(n)
t , where the new velocity

v
(n)
t was simulated using each particle’s estimate of the mean velocity α(n).

The weights w
(n)
t represented each particle’s predictive density evaluated at

the observed value zt+1, where higher weight means the particle’s parameters

better predict what was observed. Ultimately the value of α (along with other

potential parameters) is learned by resampling these particles by their weights.

Figure 5.3 shows a toy illustration of the two-behavior CDLM for a shark

and one particle; multiple particles were omitted for clarity. For generality,

this figure uses subscripts t for both observations yt and states xt. In the 1-D

robot we assumed the observations yt are recorded at constant-length intervals

∆Υ, which is not true in general. Later, in Section 7.1 we discuss the details

of the interpolation model where observations yt occurring at irregular times

are used to simulate the trajectory at constant-length intervals (Υc,Υc+1].

Figure 7.3 is the corresponding image with interpolation for Figure 5.3 below.

The CDLM algorithm including the latent variable λ, here the behav-

ior, is illustrated in Section 4.4. At time t − 1, xt−1, defining movement
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Figure 5.3: Toy illustration of one particle predicting the next observed loca-

tion yt = zt+1 given simulated locations at ζt−1. Note the shark travels further

when transiting, and at smaller turn angles, compared to foraging.
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from location ζt−1, has already been simulated. The algorithm marginalizes

over the intermediate ζt ∼ `(· | xt−1,θt−1), where the prediction estimate is

ζ̂t = E(`µ(xt−1)). The algorithm then marginalizes over potential movement

parameters, particularly speed and turn angle (vt, θt) | (λt = k) for each po-

tential behavior type k at time t. In the figure, these are shown by the pair of

straight lines, since we assume the shark moves in a constant direction at each

time t, forking out from location ζ̂t. The predictive density mpredictk for each

behavior, with error covariance shown by the error ellipses around each loca-

tion ζ̂t+1 | (λt = k), is then evaluated at the observed value yt = zt+1. The

behavior k with highest value wt|k ∝ mpredictk(yt)pλt−1→k is the most likely.

Furthermore, particles n whose overall weight w
(n)
t =

∑
k w

(n)
t|k have the high-

est overall likelihood and therefore the best overall predictive accuracy at that

step t.

As an aside, we note that the PF and SSM tools are extremely general. We

have chosen the movement model for sharks that focuses on the turn angles

and speeds as the main features determining the behavior type. We have also

chosen a two-behavior model for its simplicity, but also because we believe

it adequately captures shark biology, but the setup can be extended to more

behaviors. As an example of a different type of animal movement model, we

turn to the continuous-time model in Johnson et al. ([21]), which they apply

to movement of harbor seals. As they note, the CRW model is inappropriate

for harbor seals because they are not in motion continuously, but rather they

occasionally ‘haul out’ of the water onto land. Thus, we cannot describe the

seal’s behavior on land, during which it is stationary for periods of time, in

terms of speeds and turn angles, as we could when it is in the water.

The CDLM setup can be tweaked to accommodate this setup. In our EKF

specification of the SSM, we have a single state equation function `µ that

governs the conditional distribution of xc | xc−1, in our case in terms of the

turn angle and speed from the previous location ζc−1. The state equation

function `µ is the same for both behaviors λc, but the behaviors different in

terms of the parameters of the speed vc and turn angle θc distributions. A
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potential difficulty is that the states xc must contain the same set of state

variables (speed, bearing, etc.) at each step c regardless of the behaviors

λc. Assuming these states, or at least a subset of them, are meaningful for

each behavior λc (for instance, haul out vs mobile for the seal) a different

state equation function `µ and measurement equation function mµ that has

a different functional form of xc−1 at each behavior λc, and not just different

parameter values θc, can be specified, to define movement for each behavior.

Then each observation yt (for instance, an observed location zt+1, as in our

setup) can be predicted from state xc for each behavior λc using its separately-

defined measurement equation mµ.

5.4 Prior setup for parameter means and vari-

ances

The transformation of log-speed ln (vc) to normality is to use the CDLM

and thus EKF formulations, which depend on the variables having underlying

normal distributions so that SSMs of them are normal.

We assign the means and variances of ln (vc) independent normal-inverse-

gamma (NIG) priors, again depending on the behavior λc. The turn angle

θc is modeled by a wrapped normal (WN) distribution, which, because it has

the same form as an unwrapped normal, can use the same prior distribution

setup. The posterior update formulas are shown in Section A.2. As noted in

Section 5.2, the update formulas are modified for the wrapped normal distri-

bution of the turn angle θc.

ln (vc) ∼ N (αλc , σ
2
λc

)

p(αλc , σ
2
λc

) ∼ N (αλc | αc,λc , κ1c,λc
σ2
λc

) × G−1(σ2
λc
| ac,λc , bc,λc)

θc ∼W N (βλc , τ
2
λc

)

p(βλc , τ
2
λc

) ∼W N (βλc | βc,λc , κ2c,λc
τ 2
λc

) × G−1(τ 2
λc
| cc,λc , dc,λc)
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Note: a variable X follows the inverse-gamma distribution G−1(a, b) if X =

Y −1 and Y is gamma-distributed G(a, b). The inverse-gamma density is as

follows:

f(x | a, b) =
ba

Γ(a)
x−(a+1)e(−b/x), x, a, b > 0, with mean E(X) =

b

a− 1
, a > 1.

For all the prior distributions which depend on behavior λc, parameters are

only updated for the prior for the λc simulated to have occurred at time t.

Equation 5.3 showed that the four components of xt were modeled as two

blocks

ζc =
[
ζ1,c ζ2,c ln (vc)

]T
and

[
ψc

]
the first of which is distributed tri-variate normal, with log-speed independent

of the other two components, and the bearing ψc has a WN distribution.

Focusing now on the unobserved spatial coordinates in the first block, we thus

have [
ζ1,c

ζ2,c

]
∼ N 2

([
ζ1,m−1 + vc−1(∆Υ) cos (ψc−1)

ζ2,m−1 + vc−1(∆Υ) sin (ψc−1)

]
, Σζc

)

Σζc ∼W −1
2 (Λζc , ηζc)

This distribution, unlike that of the movement parameters ln (vc) and ψc,

is independent of the behavior λc. This means that knowing the coordinates

ζc−1 and the movement from there in terms of the speed vc−1 and bearing

ψc−1, the error of this prediction to the next true unobserved coordinates ζc

does not depend on the behavior λc (it may depend on the previous behavior

λc−1, on which the movement parameters depend). This is sensible because

the coordinates in either case are unobserved.

As opposed to the variances σ2 and τ 2 of the log-speed and bearing, which

are modeled independently, the elements of the covariance matrix Σζc are not

modeled individually, but rather the entire matrix has a prior distribution.

This prior is called an inverse-Wishart distribution, a multivariate analogue

of the inverse-Gamma distribution. A square p× p matrix X that follows the

inverse-Wishart distribution W −1
p (Λ, η) is parametrized by a positive-definite
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square scale matrix Λ of dimension p × p and degrees of freedom η > p − 1.

In our setup, the scale matrix Λζc of the prior is updated at each time step

using the error sum of squares, regardless of the behavior λc, and the degrees

of freedom (ηζc = ηζc−1 + 1) reflect how many observations we have at c. One

of the main functions of having this particle error between consecutive values

ζc−1 and ζc, instead of assuming that the position ζc is perfectly predicted by

the values in the previous xc−1, is that in Section 7.1 we will be interpolating

the shark movement to regularly-occurring time intervals, and thus simulating

the shark movement over intervals without observed recordings. In absence of

observations, the uncertainty of the predictions (expressed by Λζc) increases

over time.

Recall that qc ∼ N 4(0,Qc) is the error term for xc|xc−1. We partition Qc

as follows; note Qc depends on λc only through σ2 and τ 2, the variances of the

log-speed and bearing angle variables:

The shark SSM models yt =
[
z1,t+1 z2,t+1

]
, the observed location at the

next time point t+1, based on the shark’s unobserved movement xc at time c,

which depends on the behavior λc at that point. The prediction for the next

location yt depend on the behavior λc, since for instance, if foraging the shark

is likely to go slower than if transiting. The prediction error will also depend

on the behavior since for a given time gap ∆c, if the shark is going faster, the

range of possible locations is larger, and thus the error is likely to be larger

with more variance. The covariance matrix Rc = Σzt+1 for the error term rc

of yt | xc is also assigned an inverse-Wishart prior. Like ln (vc) and ψc, it has

a separate prior for each behavior λc.

Σzt+1 |λc ∼W −1
2 (Λzt+1,λc

, ηzt+1,λc
)

The CDLM PF allows the parameters αλc , βλc (the log-speed and log-turn

angle means), κ1,λc , κ2,λc , ac,λc , bc,λc , cc,λc , dc,λc (inverse-gamma parameters of

their variances), Λζc , ηζc , Λzt+1,λc
, ηzt+1,λc

(inverse-Wishart covariance matrix

parameters) to be updated recursively by tracking their sufficient statistics

over time. Formulas are given in Section A.2.
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5.5 Rejection sampling

Section 4.6 reviewed some of the general issues involving resampling in

particle filters, such as degeneracy. Here, we will discuss some of the aspects of

resampling and random sampling that are specifically relevant to our proposed

EKF shark movement setup. Two pertinent aspects are how to deal with the

geographic constraints of the tidal basin, and issues that arise when dealing

with class imbalances in categorical variables, such as in a behavior switching

model.

In the propagation step of the CDLM, x
(n)
c (which include the true un-

observed coordinates ζc) are drawn from a multivariate normal distribution

based on x
(n)
c−1 (coordinates at c − 1 and movement from it). Obviously, all

the observed coordinates z are within the water boundaries of the tidal basin,

and so must be all simulated coordinates ζ; this is known as a hard con-

straint. A soft constraint in optimization is when variables do not have to be

within a set of constrained values but the algorithm will apply a penalty if

they are not, to encourage prediction of values within the preferred constraint.

For instance, LASSO regression prefers explanatory variable coefficients to

be zero and only lets them be significant if there is sufficient evidence, ac-

counting for the penalty, that they should be. When propagating, without

any such constraints. we cannot ensure that the propagated x
(n)
c contains

ζ(n)
c =

[
ζ

(n)
1,c ζ

(n)
2,c

]
that are within the boundary of the tidal basin. In particle

filter applications, hard constraints are sometimes easily expressed in terms of

inequalities. For instance, if xc contains a simulated variable for a speed vc, we

need a restriction that vc > 0 by definition. However, keeping the coordinates

in the boundary cannot be expressed easily mathematically.

This hard restriction can be handled flexibly by sampling from a truncated

distribution (see Challa and Bergman, [11]; Ristic, Arulampalam, and Gordon,

[42]). Say that we require xc ∈ Ψ, where, for instance Ψ = R+ or a physical

boundary. In our case, the hard restriction Ψ is such that the line connecting

simulated ζc−1 and ζc must fall in the boundary (to prevent the shark from
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crossing land between points), or for simplicity we may just require the point

ζc ∈ Ψ. In general, for a variable xc with density d(x), the truncated density

d̃(x) where we must have xc ∈ Ψ is

d̃(x) =


d(x)∫

x∈Ψ
d(x)dx

, x ∈ Ψ

0, otherwise

That is, the truncated density function d̃(x) is just the original density d(x)

divided by the probability that the non-truncated xc falls in the constraint Ψ,

for values xc ∈ Ψ, otherwise it is 0.

To generate xc ∈ Ψ, that is, a draw xc ∼ d̃(x) from the truncated density,

we do not have to deal directly with the truncated density itself and calculate

the normalizing probability
∫
x∈Ψ

d(x)dx. Rather, all that is necessary is to

draw xc repeatedly from the un-truncated density d(x), and select the first one

satisfying the constraint. This general formulation eliminates the necessity to

express complex hard constraints mathematically. Of course, if it takes many

draws to generate a valid one, then perhaps the model specification is sub-

optimal, or perhaps the shark is caught in a corner or narrow area, and most

draws will result in a coordinate outside the boundary.

Let x
(n)
c =

[
ζ1,c ζ2,c ln (vc) ψc

](n)

be particle n’s value of the unobserved

state variables at time c, including the true location ζ(n)
c . Let d(x

(n)
c ) denote

the untruncated (in this case, multivariate normal N 4) density of x
(n)
c , using

the notation above. The truncated density d̃(·) requires only that the location

be valid, that is ζ(n)
c ∈ Ψ, where Ψ denotes the water area of the tidal basin,

and that the line connecting ζ(n)
c and ζ

(n)
c−1 fall entirely in the water. The trun-

cation process draws from the original density d(·) until one result satisfies

the truncation, up to maximum number of iterations; if the iteration limit is

reached without a valid draw, the previous location ζ
(n)
c−1, which, recursively,

must be valid because the particle filter begins at the initial observations, is

returned. Occasionally, our particle filter would exceed the allowed rejection

iterations, even when set at 5,000, for several particles. This is a problem
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because the returned value, of the previous location ζ
(n)
c−1, may be a bad pre-

diction of the observation yt = zt+1, depending on how much the shark was

simulated to have moved in the timestep.

One issue with sampling from the truncated density is that it may cause the

algorithm to suffer if it has to draw too many rejection samples to get a valid

draw in the boundary (Ψ). The algorithm may get stuck in a corner, unable

to predict a valid move. In the CDLM particle filter, particles receive weight

w(n) proportional to the density they predict at the observation. However,

a high density (a likely accurate prediction) may not be the only factor in

determining which particle to select.

This is illustrated in Figure 5.4. Here, the shark is observed first at the

black open circle, then at the black solid circle. The red star and triangle

represent two particles’ predictions of the location of the shark when it is

observed at the solid black circle. The ellipses around each represent bivariate

normal confidence intervals of, say 95%, around the prediction. Here, the

red star particle generates a closer prediction to the observation than the red

triangle particle does; hence, the red star would receive a higher resampling

weight, since it predicts a higher density at the observation.

However, note that a large portion of the red star’s confidence interval is

located outside of the tidal basin boundary Ψ, and hence represent invalid

predictions for locations ζc. Thus, many more (perhaps half) of the random

draws of the red star prediction, since we are truncating the draws to be inside

the water, are invalid. The red triangle particle prediction, while less accurate,

is more likely to result in a valid location draw. This can be an issue with

particles whose mean predictions (hence the centers of the ellipses) are near

the boundary; this problem is compounded if the position is in a narrow area

or corner, where almost all draws will be invalid. A potential remedy is to re-

weight particles by how likely their predictions are to be valid. For instance,

for each particle n, make, say k = 100 draws from the prediction density,

set a(n) to be the proportion of draws that result in a valid location (i.e., a
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Toy example of reweighting particles
to reduce edge effects

● ●

Figure 5.4: Animal is located at the black open circle, and is observed next

at the right black dot. The red points represent the centers of two particles’

location predictions, and the ellipses are their 95% confidence regions. The

star is closer than the red triangle to the observation, and hence would receive

a higher resampling weight since it has higher density at the observation.

However randomly selecting a point from the star’s particle is more likely to

yield a draw outside the boundary or close to the edge, and hence may result

in the trajectory getting ‘stuck’ in the corner.
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rough Monte-Carlo estimate of the fraction of the density that is valid), then

reweight the resampling weights w
(n)
c by multiplying by a(n). This would add

to the computational expense of the algorithm.

Another option to handle boundaries is to explicitly factor in obstacle

avoidance to the movement model. One example is Tracey et al. ([50]), who

model the animal movement angles with the von Mises distribution, a continu-

ous distribution with support [−π, π]. This angle distribution has a parameter

µ around which values cluster, and a concentration parameter κ (similar to

precision in the normal distribution); κ = 0 makes it a uniform distribution on

[−π, π], and increasing κ > 0 makes the distribution more clustered around µ.

Their setup is illustrated in Figure 5.5. Given the animal location, an object

(spatial feature) is located at an angle Ci radians relative to the animal, where

0 represents the positive x-axis (“east”); the angle Ci is the bearing angle the

animal would travel at to reach the object. If the feature is a line or shape

(e.g., the shore of the tidal basin) that is not at a single location, the point

location is the closest point on the feature to the animal; if the feature is a line,

the point would be given by drawing a line perpendicular to the feature from

the animal. The angle Ai is the animal’s change in movement angle in response

to the object, and Bi is the resulting movement (bearing) angle. If the animal

is attracted to the feature, µ = 0 since the animal will head directly to it; if

repelled, µ = π since the animal will turn 180 degrees in the opposite direction.

The reactivity can also be modeled so the strength of the reaction increases

the closer the animal is to the object. This model seems intuitive enough,

but we prefer the truncated sampling approach to the problem because it fits

naturally into our model and is a much more general model.

5.6 Resampling with rare behaviors

An additional aspect of resampling that is pertinent is the fact that the

transiting behavior tends to be less frequent in the observed shark data, and

also more difficult to model. Biologically, this is sensible since faster move-
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obJect location 

animal location 

anil!lal location 
after m,ove 

rQ radians 

Figure 5.5: Diagram of animal movement in response to a landscape feature

at angle Ci relative to 0. The feature (such as an obstacle or boundary) causes

the animal to alter its trajectory by angle Ai, resulting in a bearing of angle

Bi to avoid the feature. Source: Tracey et al. ([50]).

ment costs energy, and hence animals should move slowly most of the time to

conserve energy. As shown in the CDLM algorithm (Section 4.4), the CDLM

determines the overall particle weighs w
(n)
c by conditioning on each behavior

(in general, the latent variable λ) through the weights w
(n)
c|k . Each weight w

(n)
c|k

involves a calculation of the transition probability Pr(λc = k | λc−1) into that

behavior. After particles are resampled by their weights w
(n)
c =

∑K
k=1 w

(n)
c|k , the

behaviors at time c are then propagated by a categorical distribution (in our bi-

variate case, Bernoulli) with the probabilities proportional to {w(n)
c|k }Kk=1. Thus,

if transiting behavior is rare, meaning Pr(λc = 1 | λc−1) is generally small, then

particles’ ability to model transiting is likely to suffer because their accuracy

in this respect (measured by the likelihood) does not factor significantly into

the calculation of the overall sampling weight w
(n)
c . The particles’ ability to

model transiting is not sufficiently rewarded to promote particles’ with good

predictions in this regard. Then, even if they are resampled, the transiting

weights w
(n)
c|λ=1 are small, so transiting is in general less likely to be propagated

as a behavior (this makes sense because it is rarer).

The problem in the case of transiting is compounded because transiting

is characterized by faster movement. Therefore, over a fixed amount of time,

there is more uncertainty in predicting location if the shark transits than if
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it forages because the shark is capable of traveling further due to its faster

movement. The likelihood component mpredictk=1(yt | λc = 1, . . . ) in the

weight w
(n)
c|k=1 thus spreads the likelihood thinner, making the likelihood at

the true location generally lower than if it were foraging, because here the

shark moves a shorter distance and thus there is less uncertainty, and thus

more concentration of the likelihood. The increased uncertainty and lower

transition probabilities make w
(n)
c|k=1 tend to be lower.

In order to accurately model the sharks’ behavior, we need to be relatively

accurate in predicting behavior of both types. This becomes especially impor-

tant in Section 6.4 where we use the relative concentrations of shark behavior

types to quantify inter-shark behavioral influence; if the model inaccurately

predicts behavior type, then the influence measure, as well as most other pa-

rameters, will not be accurate. Thus, to achieve better overall predictions, a

particle that has successfully modeled transiting behavior, even though it is

rarer, can be considered more valuable than a particle that has better success

on the more common behavior.

One way to alleviate this issue is to preferentially weight the rarer behav-

ior in resampling, but not prediction. Pitt and Shephard ([40]) recommend

rescaling w
(n)
c|k by ak = f(x

(n)
c−1) > 0, where f(·) is some appropriate function.

In our case we will actually have ak = f(x
(n)
c ). An easy choice is just to let f(·)

be a constant function, with higher values for the rarer behavior, for instance

a1 = 4 for transiting and a0 = 1 for foraging. The overall sampling weights

are calculated as w
(n)
c =

∑
k akw

(n)
c|k , which overvalues the particle’s ability to

model the rarer state when resampling. This can be viewed as analogously to

an example from data mining, where we evaluate the performance of a binary

classifier on a dataset where the classes are unbalanced (one category being

more common than the other). In these situations, a classifier model should

not be evaluated by accuracy (i.e., the number of correct classifications) be-

cause it can achieve decent classification by simply assigning all observations

to the more common class. Rather, measures such as the F1 score or the ROC

curve assess the performance by taking into account the accuracy conditional
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on each class. Thus, a particular particle may be more ‘valuable’ for the model

if it has adequately learned movement parameters for the rarer behavior. For

propagating, λc are sampled from the categorical (Bernoulli) distribution with

the un-scaled weights w
(n)
c|k , since otherwise the model would imply transiting

is much more common than it is.
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CHAPTER 6

REGIONAL AND

BEHAVIORAL INFERENCE

To analyze sharks’ tendencies to have foraging as opposed to transiting

behavior, we can estimate a probability transition matrix between these be-

haviors for each shark. For a given shark at time c, for i, j ∈ {0, 1} (potential

values of the behavior λc), define the behavior transition probability as

pc,i→j = Pr(λc+1 = j | λc = i)

and the probability transition matrix as

Pc =

pc,0→0 pc,0→1

pc,1→0 pc,1→1


At time c, the distribution d(λc+1 | λc) for the behavior is thus Bernoulli (in

general, categorical), where λc = 0 is foraging and 1 is transiting:

Pr(λc+1 | λc = i) ∼ (pc,i→0)1−λc+1(pc,i→1)λc+1 =
∏

j∈{0,1}

(pc,i→j)
xc+1,j (6.1)

where xc+1,i = I(λc+1 = i).

There are two general ways we can consider of modeling these transition

probabilities. One is to assume they are Markovian, namely that the probabil-

ity of the next behavior depends only on the current behavior λc. The other is
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to assume the perhaps more realistic scenario that the probability of the next

behavior λc+1 depends on the length of time spent in the current behavior λc.

To test the Markovian hypothesis, we can run a test1 formulated by An-

derson and Goodman ([1]) on the contingency table of transitions between the

behaviors from the spline-interpolated regular steps. The null hypothesis of

the test is that the behavior transition probabilities for each shark within each

region are Markovian, so a low p-value indicates that the transition probabil-

ities are not constant within regions; if so, perhaps they change based on how

long the shark has been in the current behavior. We will keep in mind that

this is an exploratory analysis and we are not necessarily taking the behavior

results from the spline as ground truth, which we don’t have.

Table 6.1 shows the results of the test by shark and region, applied piece-

wise over all the sequences of moves within a region. At least according to the

spline model, many of the regions have low p-values, rejecting the Markovian

hypothesis, but the results are mixed. Therefore, we may want to consider a

more flexible model for the transition probabilities for the actual shark data

that is not Markovian. This possibility will be explored in Section 6.3.

6.1 Markovian behavioral transitions

In the case of the Markovian transition probabilities, the prior for the

likelihood d(λc) depends on the previous cumulative counts of transitions. Let

h ∈ Z be a positive integer. For two time steps c and c + h, h ∈ Z, we can

define the cumulative between-times transition counts as

nc,c+h,i→j =
c+h−1∑
k=c

I(λk = i& λk+1 = j)

1The runs test is implemented by Spedicato ([47]) in the markovchain package for the R
language. The verifyMarkovProperty function needed to be modified to make it combine
the piecewise results.
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Shark 1 2 3 4 5 6 7 8

1 –

1.00

(21)

0.08

(1,107)

0.00

(2,803)

0.01

(1,425)

0.98

(208)

0.00

(2,832)

0.06

(169)

2

0.99

(107)

1.00

(68)

0.00

(1,130)

0.02

(1,022)

0.00

(1,427)

0.99

(27)

0.22

(1,977)

0.82

(101)

3 –

0.99

(76)

1.00

(296)

0.03

(2,431)

0.79

(1,002)

1.00

(32)

0.01

(894)

0.99

(74)

4

1.00

(15)

1.00

(55)

0.00

(1,054)

0.00

(1,313)

0.39

(583)

1.00

(5)

0.08

(111) –

5 –

1.00

(35)

0.17

(483)

0.00

(16,193)

0.00

(5,645)

0.33

(655)

0.00

(2,686)

1.00

(441)

6

1.00

(24)

1.00

(71)

1.00

(780)

0.06

(1,430)

0.19

(1,045) –

0.88

(709) –

7 –

1.00

(16)

0.04

(708)

0.00

(2,283)

0.03

(1,970)

0.00

(570)

0.00

(2,070)

1.00

(49)

8

0.22

(57)

0.81

(69)

0.87

(324)

0.37

(775)

0.04

(209)

0.81

(215)

0.12

(638) –

9 –

0.97

(52)

0.25

(729)

0.98

(561)

0.02

(541)

1.00

(90)

1.00

(435) –

10 –

1.00

(5)

0.91

(103)

0.54

(636)

0.89

(435)

0.21

(474)

0.85

(348)

0.00

(1,894)

11 – –

0.14

(76)

1.00

(152)

1.00

(180)

1.00

(39)

1.00

(148)

0.00

(916)

12

1.00

(6)

1.00

(19) –

0.92

(102)

1.00

(183)

1.00

(13)

1.00

(118)

0.00

(532)

13

0.38

(59)

1.00

(54)

1.00

(83)

0.72

(145)

0.80

(149)

0.60

(304)

0.68

(179)

0.30

(278)

14

1.00

(26)

1.00

(106)

1.00

(30)

1.00

(118)

1.00

(90)

0.15

(117)

0.95

(123)

0.04

(228)

15 – – –

1.00

(381)

0.05

(484)

0.06

(141)

1.00

(96)

0.47

(680)

16 –

1.00

(12)

1.00

(5) – –

1.00

(18)

1.00

(30)

0.64

(116)

17 – –

0.93

(42)

0.72

(118)

0.07

(288)

0.99

(135)

0.02

(166)

0.01

(600)

18 – – –

0.03

(1,203)

0.11

(432)

1.00

(30)

0.00

(1,107) –

19

0.00

(1,019)

0.00

(1,212)

0.00

(1,838)

0.00

(8,326)

0.00

(832)

0.00

(1,370)

0.00

(7,226)

0.00

(6,583)

20 – – –

0.94

(116)

0.37

(63)

1.00

(13)

0.20

(56)

1.00

(42)

21 – – –

1.00

(55)

1.00

(36) –

1.00

(14)

1.00

(6)

22 – –

0.89

(54)

0.71

(210)

1.00

(47)

0.84

(54)

0.97

(100) –

Table 6.1: Results of Markov test applied to guesses of behaviors λc from the

spline interpolated regular steps from the observations (see Figure 2.5). A low

p-value means the Markovian assumption of behavior change probabilities is

rejected.
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and the associated cumulative between-times transition counts matrix as

Nc,c+h =

nc,c+h,0→0 nc,c+h,0→1

nc,c+h→0 nc,c+h,1→1


Note that the sum of elements in matrix Nc,c+h is (c + h) − c = h, the num-

ber of steps elapsed. The cumulative transition counts matrix N1,c−1 defines

the prior on the transition probability matrix Pc for Pr(λc+1 | λc). Each row

of of the matrix Pc, consisting of pairs of complementary probabilities, is an

independent likelihood, for which a Dirichlet distribution is defined by the

corresponding row of N1,c. A K-dimensional Dirichlet distribution is a multi-

variate extension of the beta distribution to K-way categorical probabilities:

[
p1, . . . , pK

]
∼ DirK(α1, . . . , αK) with joint density f(p1, . . . , pK) ∝

K∏
k=1

pαk−1
k

0 < αk, 0 < pk < 1, k = 1, . . . , K and
K∑
k=1

pk = 1

In this setup, the Dirichlet distribution is a conjugate prior, where the prior pa-

rameters are updated by the observed counts for each category. For instance,

in the bivariate case (K = 2), as we have, each pair of transition probabili-

ties from λc = i (row (i + 1) of Pc), which must sum to 1, can be modeled

independently with a bivariate Dirichlet distribution:[
pc,0→0 pc,0→1

]
∼ Dir 2 (αc,0→0, αc,0→1)

[
pc,1→0 pc,1→1

]
∼ Dir 2 (αc,1→0, αc,1→1)

Letting xc+1,i = I(λc+1 = i), i ∈ {0, 1} as before, if the prior is applied and

updated sequentially, the prior setup of transitions from behavior λc = i, for

instance, is simply

Pr(λc+1 = i | λc = i,α) ∝ (pc,i→i)
xc+1,i(pc,i→j)

xc+1,j×(pc,i→i)
αc,i→i−1(pc,i→j)

αc,i→j−1
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The posterior updates are of the αs are simply αc+1,i→j = αc,i→j+xc+1,j, j ∈
{0, 1}. Since only one of xc+1,i and xc+1,j are nonzero, depending on the be-

havior λc+1, the transition parameter of the behavior that occurred is just

increments by 1. More generally, if updates are not performed at each step,

but rather on a collection of h steps, for a positive integer h, we have the fol-

lowing update formula, depending on the cumulative number of each transition

observed in that interval, which are the elements of Nc,c+h:

αc+h,i→j = αc,i→j + nc,c+h,i→j, i, j ∈ {0, 1}

For the Dirichlet, if
[
p1, . . . , pK

]
∼ DirK(α1, . . . , αK) then E(pk | α) =

αk∑K
j=1 αj

. Specifically, in the bivariate case, E(pc,i→j | α) =
αc,i→j∑

k∈{0,1} αc,i→k
. It

is thus reasonable to assign prior values for the Dirichlet α hyper-parameters

reflecting the relative proportions of transitions we expect, and scaling them

by a constant to affect amount of variance or uncertainty we want to assign

to the prior.

6.2 Regional partitions and foraging probabil-

ity

To see if behavioral tendency is region-dependent under the Markovian

assumption—one of the major biological questions we attempt to answer—we

can model these transitions on a regional basis. Regions can be defined by

partitioning the tidal basin into, say R = 10 regions of roughly equal size,

based on a Voronoi partition map.2 Figure 6.1 shows the spatial density of

the spline interpolated locations and the Voronoi partition of ten regions that

we will use in modeling the observed locations.

We define rc = r, r ∈ {1, . . . , R} if the shark begin its movement at time c to

c+1 in region r. We will therefore model region-specific transition probability

transition matrices P
(r)
c and cumulative counts matrices N

(r)
c,c+h, where each of

their elements p
(r)
c,i→j and n

(r)
c,c+h,i→j are as before with the additional condition
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Figure 6.1: Spatial density of constant-length interval spline locations from

the observed shark locations. The Voronoi partition of the tidal basin into ten

regions, for each of which we estimate behavior transition probabilities in our

simulations, are shown as well.
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Figure 6.2: Spatial density estimated by Voronoi tiles with a specified number

of centroids. Source: Byers and Raftery ([8]).

rc = r. Thus, for instance n
(r)
c,c+h,i→j refers to the number of transitions from

λk = i to λk+1 = j between times k = c and k = c + h, where the shark was

in region r at time k.

Additionally, we can define n
(r)
c,c+h as the sum of elements in N

(r)
c,c+h, meaning

the number of times in this interval that she shark begin movement in region r.

Note we must have
∑R

r=1 n
(r)
c,c+h = h since h transitions have occurred between

c and c+ h across all R regions, since each time involves a transition of either

staying in the same behavior or changing.

2A Voronoi partition works by selecting R points (centroids) in a space and defining a
region for any location in the area by assigning it to the centroid it is closest to; the re-
gional boundaries are thus defined automatically. Centroids can be selected independently
at random, in which case regions are likely to vary in size, or evenly spaced, in which case
the regions will be of about equal size, depending on the placement of the first centroid.
A more complicated option (not discussed here) is to iteratively learn the regional defini-
tion for best separation of regional foraging. Examples of this are Byers and Raftery ([8],
see Figure 6.2) or Heikkinen and Arjas ([20]), which estimate the spatial intensity (e.g.,
Poisson) of a set of points by a discrete nonparametric approximation or Voronoi tessela-
tion. They define a partition of the space into tiles, each with a single intensity value; the
algorithm iteratively combines and splits tiles of an initial partition to achieve a partition
that optimally approximates the continuous intensity function. This method is similar to
iterative clustering techniques where clusters are combined and divided to determine the
optimal cluster number. Although it seems difficult to incorporate this method into the
particle filter itself, it could be a good way to pre-define the regions. For instance, rather



119

If rc = r, λc = i, and λc+1 = j, then n
(r)
c,c+1,i→j = 1, all others remain the

same. The Dirichlet posteriors are updated recursively by transition counts,

so α
(r)
c+1,i→j = α

(r)
c,i→j +1, and the pairwise probabilities for p

(r)
c+1,i→j and p

(r)
c+1,i→i

are re-drawn. Note that this Bayesian model for P
(r)
c contains the assumption

that transition probabilities are independent of the amount of time spent in

the current state λc. A relaxation of this assumption will be discussed.

In the CDLM, at time c− 1, region rc−1 = r and behavior λc−1 are known,

and we want to simulate the next behavior λc probabilistically. The CDLM

is modified so λc is determined by considering the most likely behavior given

λc−1 and region r, so p
(r)
c−1,(λc−1)→k = Pr(λc = k | λc−1 & rc−1 = r). The fact

that these probabilities can differ between regions allows us to learn the most

likely next future behavior, given the current region r of the shark.

Ultimately, we want to measure the posterior probability a shark will forage

in region r, in addition to just the transition probabilities; denote this proba-

bility as p
(r)
c,0 (since λc = 0 denotes foraging). A simple way to do this is to use

use theory from Markovian stochastic processes for a system with probability

transition matrix P ; this estimates the limiting probabilities of ending up in

each of the states assuming the system runs indefinitely, given initial proba-

bilities for each state. Given a regional transition probability matrix P
(r)
c , we

can find the left eigenvector π(r), the stationary probability of the first state

(foraging) p
(r)
c,0 is estimated by normalizing π(r) to have sum 1, and then taking

the first element.

As discussed in Section 4.8, posterior inference on parameters can be done

by density estimation on pooled samples of draws from the posterior distribu-

tions of parameters across particles n. Foraging probabilities can be estimated

by drawing, say K = 100 regional transition matrices P
(r)
c from each particle’s

posterior Dirichlet parameters, calculating the foraging probabilty p
(r,n)
c,0 for

each from the eigenvector, and performing density estimation on the pooled

than partitioning the space into equal-sized regions, one may want to define more regions in
the areas where sharks tend to spend more time (at least according to the observed data).
These would then be the regional inputs into the particle filter definition.
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{{p(r,n,k)
c,0 }Kk=1}Nn=1.

6.3 Time-dependent (non-Markovian) transi-

tion probabilities

Another way to model the transitions is to assume that the longer a shark

has been in the current behavior, the more likely it is switch behaviors; this

violates the Markovian assumption that the transition probabilities are time-

independent. An example of this is in Beyer, et al. ([6]) where the staying

probabilities are pc,i→i = e−κt, where κ is a constant and t is the time since

the last state transition, so pc,i→i is decreasing in t. Their formulation of the

switching probabilities is not Bayesian, however, since the parameter κ does

not appear to be learned from the data. We propose an similar formulation

which uses the Beta distribution to model the probability pi→j, i 6= j of chang-

ing behaviors. However, in our synthetic and actual data simulations, we will

use the Markovian model for simplicity.

We use the reformulation of the likelihood for choosing next behavior in

Equation 6.1. Here, the shark’s behavior is λc−1 = i and the behavior λc = j

is being drawn. The likelihood is

Pr(λc+1 | λc = i) = (pc,i→i)
xc+1,i(pc,i→j)

xc+1,j

where xc+1,j = I(λc+1 = j), j ∈ {0, 1}. The likelihood is thus rewritten in terms

of the probability of changing to a different behavor j 6= i, and thus xc+1,j = 1

if the behavior changes. Let t = argmax
h
{h ≥ 1: λc−h−1 = · · · = λc = i}. It

represents the number of consecutive regular time steps at c the shark has had

the behavior λc; t = 1 if the shark had just changed into its current behavior,

that is, if λc−1 6= λc.

We can thus formulate a bivariate Dirichlet prior

(pc,i→i, pc,i→j) ∼ Dir 2(αi→i/t
b, αi→jt

b)
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where b > 0 is a constant power. The α parameters are updated based on

which transition occurs, as follows:

• If the animal stays in its current behavior (λc+1 = λc = i), then the

t
′
= t+1, since the animal has increased its time in the current behavior

by 1 step. Thus, xc+1,i = 1 and xc+1,j = 0.

• If the animal changes behavior (λc+1 6= λc), then t
′
= 1 since the animal

begins a new sequence of steps in the new behavior j 6= i. Thus, xc+1,i =

0 and xc+1,j = 1.

The posterior updates of the α parameters are thus

α
′
i→i = (t+ 1)b(αi→i/t

b + 1) if λc+1 = λc = i

α
′
i→j = αi→jt

b + 1 if λc+1 = j, λc = i, i 6= j

We recommend setting b to be relatively small, such as 1/4 or so, because

a higher power b would cause imbalance between the Dirichlet parameter up-

dates. For instance, the α parameter for changing behavior, αi→j, would grow

too fast if it were multiplied by tb, where b is too high; setting it at a root less

than 1 keeps tb closer to 1. Increasing one of the Dirichlet α parameters would

cause the posterior to become imbalanced and over-predict one of the choices,

either leaving or staying, based on past observations. We note also that the

choice of initial α parameter values in the time-dependent setup would differ

from the choice in the Markovian setup, where the αs should be proportional

to the overall transition probabilities. Additionally, they may be affected by

the choice of b.

6.4 Inter-shark behavioral influence

One question of biological interest is whether sharks are influenced in

their behavior by nearby sharks, over and above the region-specific forag-

ing/transiting effects that we are modeling as well. Unfortunately, due to the
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data collection methods, the 22 sharks’ observation spans are separated across

two years (see Figure 2.1), with 9 and 13 in each of the two years, with no

more than five or six sharks having overlapping observation spans at any given

point. Thus, we can only try to model inter-shark behavioral influence of at

most five or six sharks at a time, and it is difficult to assume that such few

sharks represent some population-level dynamics of the sharks in the tidal

basin. Nevertheless, we will try to use the few sharks we have. The authors’

surveys of the tidal basin’s species ([17]) indicate 422 unique gray smooth-

hound sharks were caught over the study’s duration, so there is a population

of at least several hundred unique sharks that use the tidal basin. However,

they estimate that at any given time, the tidal basin may have 30–100 or so

sharks in it.

We will try to measure the association between a shark’s behavior and the

behavior of other sharks simulated in a circular spatial neighborhood N( · )
of its location and over a specified temporal window, thus forming a spatial-

temporal neighborhood. This association is over and above the region-specific

effect. Like all other parameters in the model, these association parameters will

be learned by iterative resampling and updating. The animal CRW telemetry

literature has models to incorporate congregation or attraction effects3, such

as the tendency of some animals to group together when moving, but we are

not aware of this particular application featuring prominently in the literature.

This approach is inspired by target-tracking literature for tracking multi-

ple moving objects (targets) that may interact with each other. The target

tracking literature in general deals with the problem of modeling the loca-

tions of moving targets but also with the problem of maintaining identification

throughout observation. Tracking algorithms may also have to use computer

vision techniques to read the targets’ positions from a video or sensor (for in-

stance, tracking members of a basketball team as they move around the court

in real time). Other considerations in target tracking involve detecting when

3See, for example, Turchin ([53]) p. 109–126, p. 161–175.
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a target has left the area under consideration. In our case, these aspects are

irrelevant since we are modeling the sharks’ movements retroactively—not in

real time—and we will not assume that, for instance, we may have failed to

detect a shark. Although the sharks can leave the basin, we will assume they

do not, since we do not have observations outside the basin, out of range of

the receivers.

For instance, Khan, Balch, and Dellaert ([27]) describe an experiment

where 20 ants were tracked in a small rectangular arena. Their algorithm

jointly tracks the moving ants and has to maintain identification; for instance,

when a model for ant 1 is learned, it should continue to identify which ant is

which, even though ants may crowd together. In the first setting, the arena

was closed, and in another it was open so the ants could leave; this adds the

complication of identifying when an ant leaves and adjusting the number of

targets estimated as a result.

When estimating the joint likelihood of the ants’ predicted locations, the

algorithm wants to penalize predictions of ant locations in very close proximity

to other ants—i.e., within another ant’s circular “region of influence”—since

multiple ants rarely occupy the same location as one another simultaneously.

They add a pairwise interaction function ψ(·, ·) (not to be confused with our ψ

denoting the bearing angle) between the simultaneous locations ζs and ζs′ of

two ants s and s′, as long as they are within a certain spatial neighborhood of

each other. The function ψ captures the influence of two nearby ants on each

other; in their application it is used to penalize predicting two ants in coin-

ciding locations, but we will adapt this idea to model the behavioral influence

between neighboring sharks.

Let the ordered pair (c, s) denote the constant interval-shark combination.

Because we only simulate the sharks’ unobserved movement at intervals c

around which they have observations yt, for a given shark s, the pair (c, s)

may not be defined for all intervals c = 0, . . . , C; likewise, for a given interval

c, not all sharks s are simulated then. Now, assuming the pair (c, s) is defined

(the shark is simulated then),
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• let ζc,s denote the simulated coordinates of our particle filter for (c, s),

and

• let λc,s ∈ {0, 1} denote the shark’s behavior at c

To define the spatial-temporal neighborhood N( · ) under consideration,

let δζ > 0 be the diameter of the temporal neighborhood. Our neighborhood

N( · ) will consist of all previous observations (c′, s′) of other sharks (s′ 6= s)

within a distance of δζ of ζc,s—the shark’s location at timestep c—and less

than δΥ seconds before the time Υc. In the following definition, we note that

all variables include an implicit superscript of n = 1, . . . , N for each particle,

which we omit for clarity. Since each particle n is considered an independent

simulation from the others, the neighborhoods of (c, s) are only calculated by

considering pairs (c′, s′) from the same particle history n. The neighborhoods

are defined as

N((c, s)) =
{

(c′, s′) : (s′ 6= s) & other sharks

((Υc − δΥ) ≤ Υc′ < Υc) & ≤ δΥ sec. before

(‖ζc,s − ζc′,s′‖ < δζ)
}

< δζ meters away

where ‖ · ‖ indicates Euclidean distance. One may also want to only consider

neighborhood where the number of neighbors is above a threshold, say 10 ob-

servations. This would prevent small neighborhoods of only a few observations

having an outsize effect in the estimation of the spatial attraction parameters.

The spatial radius δζ of the neighborhood should not be too big—or else other

sharks far away that should not influence the shark would be included–or too

small—in which case few neighborhoods above the minimum size would be

detected. Because the coordinates ζc′,s′ in the particle filter are propagated by

random draws from the prediction density (in our case multivariate normal),

there is some variance when propagating the coordinates. Hence, the spatial

radius should be big enough to account for this variance but not too small

that it only picks up noise due to the randomness of propagation.
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After having specified the determination of neighborhoods, we will now

outline our proposed Bayesian framework of modeling the degree of behavioral

influence. Our formulation is based on the intuition that if a greater proportion

of a shark’s neighboring sharks are foraging, that shark may be more likely

to forage as well, which is why we also set a minimum number of neighbors

to consider. Let πc,s,k, 0 ≤ πc,s,k ≤ 1 represent the proportion of simulated

observations (c′, s′) in the neighborhood N((c, s)) having behavior λc′,s′ = k,

namely

πc,s,k =

∑
(c′,s′)∈N((c,s))

I(λc′,s′ = k)

|N((c, s))|
where |N(·)| here denotes the number of neighbors. By definition,

∑
k πc,s,k =

1. The proportion πc,s,k denotes the relative influence we may expect the

neighbors to have on the likelihood that the shark s will have behavior k

(λc,s = k) at time Υc, if the spatial-temporal clustering hypothesis assumption

is valid.

Figure 6.3 shows a toy illustration of spatial-temporal neighborhoods. Here,

observation (c, s) under consideration, is shown as a red “X”. Fifty other

sharks’ (s′ 6= s) previous (c′ < c) observations, ζc′,s′ are plotted as round

points. Of these, some (solid) are foraging (λc′,s′ = 0) and the others (hollow)

are transiting (λc′,s′ = 1). Assuming that all points plotted are within the

temporal neighborhood δΥ, the spatial-temporal neighborhood N((c, s)) with

radius δζ = 1.5 is drawn as a circle around the red “X”, ζc,s. The neighbor-

hood contains |N((c, s))| = 14 neighboring observations, of which 11 are solid

(foraging). As we note later, we are only concerned with the proportion of

neighbors that are foraging, namely πc,s,0 = 11/14 ≈ 0.79, in this case. The

higher this proportion, the more likely it seems that (c, s) will represent a for-

aging observation as well. Specifically, we believe that the foraging proportion

for neighbors may be higher than the overall foraging proportion in the region,

which in this toy example is p
(r)
0 = 23/50 = 0.46.
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Figure 6.3: Toy illustration of spatial-temporal neighbors. The red “X” de-

notes the location ζc,s of the observation (c, s) being considered. Fifty other

sharks’ observations (ζc′,s′), the circular points, are plotted as well. We ex-

pect the proportion of neighbors foraging (πc,s,0 = 11/14 to be larger than the

foraging proportion of all sharks, in this case the regional foraging probability

p
(r)
0 which is empirically 23/50 in this case.
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We will demonstrate whether the data seem to support the potential of

this kind of neighborhood influence. Figure 6.4 uses the regular interval

spline-interpolated trajectories to illustrate correlation between neighboring

sharks’s behaviors and the shark’s current behavior. For each foraging ob-

servation (λc,s = 0) the spatial-temporal neighborhoods N((c, s)) were deter-

mined; the neighborhoods, with a minimum size of 5 neighbors, included all

other sharks’ regular observations occuring less than δΥ = 3, 600 seconds (1

hour) before time Υc. To show the effect of increasing the spatial neighbor-

hood radius, the neighborhoods N((c, s)) were determined at spatial radii of

δζ = 25, 50, 75, 100, 150, 200, 300, 400 meters, and the proportion of foraging

observations πc,s,k=0 within the neighborhood was calculated. Since we believe

there may be a positive association between the proportion of neighboring

sharks’ observations that are foraging and whether the shark at (c, s) was for-

aging, we expect to see the proportion of foraging observations fall at large

spatial radii, where the spatial influence is weak or nonexistent. At very small

radii, the relationship will probably be indeterminate.

Figure 6.4 plots the distributions of the foraging proportions πc,s,k=0 for

each shark s, conditional on the shark foraging (λc,s = 0), across the range of

spatial radii δζ. For each of the 22 sharks, the number of spline observations

is listed as well. We see that for the several sharks (17, 20, 21, 22) that

have few spline observations, the boxplot pattern looks haphazard. Keeping

in mind that the spline model is only an approximation of the underlying

speeds and behavioral modes of the shark, we generally see the pattern that

at small spatial radii such as 25 or 50 meters, including other sharks that

are very close to the given one, when the shark is foraging the proportion

of neighbors that are foraging is high. The proportions tend to fall when the

spatial radius increases. Note also that in our spline approximation, about 65%

of regular steps overall are designated foraging, so these proportions πc,s,k=0

do not fall very low overall. This makes intuitive sense biologically, because

fast movement (i.e., transiting) expends significant energy, we expect sharks to

spend the majority of their time foraging or moving slowly, and only transiting
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Figure 6.4: Boxplots of πc,s,k=0 (proportions of spatial-temporal neighbors

that are foraging) across various spatial radii, conditional on the shark for-

aging (λc,s = 0), for the spline-interpolated trajectories. The proportions of

neighbors foraging tends to decline as the spatial radius δζ increases, lending

support to the potential relationship between a shark’s neighbors’ behaviors

and its own.



129

occasionally and for short periods of time as they move from region to region.

This is true of most animals, including humans, not only marine ones. For

instance, cheetahs obviously conserve their energy for very fast movement

when it is needed, such as hunting prey or fleeing.

We now outline the details of the influence parameter model. In the fol-

lowing, the particle (n) and shark indices (s) are dropped for clarity. In the

setup, a parameter ηk, k ∈ {0, 1} captures the strength of the spatial influence

of neighbors in N((c, s)) with behavior λc′,s′ = k on whether the shark s will

have that behavior, that is, on the Bernoulli probability Pr(λc,s = k). The

parameter ηk is learned and modeled through the particle filter process.

For this application, we will parametrize the normal distribution in terms

of its precision (τ), the inverse of the variance σ2, because the form of the

posterior is more attractive. Thus σ = 1/
√
τ . The normal density can be thus

written as

f(x | µ, τ) =

√
τ

2π
exp

(
−τ(x− µ)2

2

)
The log-normal distribution is also parametrized in terms of its precision,

which we denote ε:

Lognormal (x | µ, ε) =

√
ε

x
√

2π
exp

(
−ε(ln (x)− µ)2

2

)
Using this parametrization, for the spatial-temporal influence, we set a normal

prior on ηk

ηk ∼ N (ωk, τk)

The interaction multiplier effect (denoted ρk) of the neighbors depends both

on the strength of this influence (ηk) and the proportion of the neighbors

with the behavior (πc,s,k). The likelihood will be modeled with a log-normal

distribution as

ρc,s,k ∼ Lognormal (πc,s,kηk, εk)
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where εk is the precision of the log-normal distribution, which is assumed to

be known. Since ρk > 0 since it is log-normally distributed, ρk will act as a

scaling factor in the CDLM to adjust the conditional likelihood of each particle

n’s transition probability Pr
(
λ

(n)
c,s = k | λ(n)

c−1,s, θ
(n)
c−1,s

)
. In our case, with only

two behaviors, we need only to model ηk and ρk for one (foraging, k = 0),

and keep ρc,s,k=1 constant for transiting. Thus ρc,s,k=0 adjusts the probability

of foraging vs transiting, where transiting acts as a baseline category, similar

to how in linear regression the number of dummy variables for a categorical

variable is one less than the number of levels.

For a log-normal distribution of a variable X with mean µ is eµ, so if µ = 0

the median is 1, and if µ > 0, the median is above 1, so Pr(X > 1 | µ > 0) >

0.5. In our case, the median of the scaling factor ρc,s,k is exp (πc,s,kηk). Thus

ηk = 0 exactly means the proportion of neighbors with behavior λc′,s′ = k,

i.e. πc,s,k does not influence that shark’s probability Pr(λc,s = k). The more

positive ηk is, which is more likely if its prior mean ωk > 0, the stronger is the

positive association between the neighborhood proportion πc,s,k and Pr(λc,s =

k). A value ηk > 0 indicates behavior k has spatial-temporal attractiveness,

or clustering; the reverse, ηk < 0, doesn’t tend to correspond to a stable model

since like behaviors will ‘repel’ each other, and we wouldn’t expect it in a

realistic biological model. Nevertheless, it seems appropriate to set the prior

means ωk = 0 (no effect) for ηk so we do not bias our model to learn influence if

it is nonexistent. The posterior of ηk, which is only updated if a neighborhood

N((c, s)(n)) is defined, is

ηk | (ρc,s,k, πc,s,k) ∼ N

(
εkπc,s,k ln (ρc,s,k) + τkωk

εkπ2
c,s,k + τk

, εkπ
2
c,s,k + τk

)

where again the precision is used to parametrize the normal distribution. The

interaction effect ηk can be tested for significance by seeing if the posterior

interval of each ηk is strictly positive, and by density estimates or posterior in-

tervals of the interactions ρk at various values of the neighborhood proportions

0 ≤ πc,s,k ≤ 1.
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More generally, if the posterior of ηk at step Υc is to be updated for the

past h steps, rather than for a single time step Υc as above, we have the initial

value drawn from the prior

ηk ∼ N (ωk, τk)

Say for steps c−h, c−h+1, . . . , c, let A ⊆ {c−h, c−h+1, . . . , c} be the set of

steps for which a neighborhood N( · ) is defined (i.e. there were enough other

sharks within a given spatial-temporal radius and above the minimum number

required). The interaction effect is only updated for steps where neighborhoods

are defined. The posterior is thus

ηk | {(ρi,s,k, πi,s,k)}i∈A ∼ N


εk

(∑
i∈A

πi,s,k ln (ρi,s,k)

)
+ τkωk

εk

(∑
i∈A

π2
i,s,k

)
+ τk

, εk

(∑
i∈A

π2
i,s,k

)
+ τk


To demonstrate that the interaction parameters ηk are learning a mean-

ingful interaction between the sharks, we can run the model on simulated

irregular data interpolated from regularly-observed data (see Section 7.1) and

try to model the unobserved underlying regular observations. It is reasonable

to assume that the distributions of time gaps between irregular observations

for the actual shark data are independent across sharks. We can generate

similar shark data under this assumption by independently generating each

shark’s regular-step trajectory and interpolating the trajectory to a different

draw of time gaps from the log-normal (to imitate the observed data), then

combining the datasets. Whenever sharks’ synthetic trajectories are generated

independently, there should be no meaningful interaction, and our posterior

intervals of ηk should include 0.

We can also select several synthetic sharks to have interaction potentials

with certain values of ηk to see if our algorithm captures this effect and learns

a posterior interval of ηk including the specified intensity. In the synthetic

generation, at each step c, we determine the spatial-temporal neighborhood



132

N((c, s)) for shark s and determine the neighbor proportions πc,s,k, which

then determines the interaction weight ρc,s,k to adjust the shark’s behavior

transition probabilities and simulate their behavior λc,s. The key requirement

for success here, of course, is that our algorithm can relatively successfully

identify the true behaviors in the underlying irregularly-observed data.
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CHAPTER 7

INTERPOLATION AND

SMOOTHING

7.1 Interpolation CDLM particle filter

The primary feature of the raw shark data that makes modeling and ad-

dressing our biological questions difficult is the fact that the observations are

irregular in time. For instance, based on the shark’s speed at a given time, we

can tentatively classify the behavior λt (based on the speed, λt = 0 if vt < 0.1)

in the raw dataset and tabulate these values to see if the sharks are more likely

to transit or forage. However, since observations are at irregular intervals, as

shown in Figure 7.1, because the speed vt in the raw data is average speed be-

tween observations, assuming the distance traveled is the Euclidean distance

between them. Thus, the average speed vt actually represents the combination

of perhaps a large number of (unobserved) intermediate steps of equal size.

Furthermore, when the time gap ∆t is larger, there is more uncertainty as

to the shark’s actual behavior between observations. At a larger step size, the

Euclidean distance becomes less applicable because the shark can turn and

change directions; thus, if a lot of time has passed between two locations that

are near to each other, it will appear if the shark is traveling slowly because

the true distance can be much larger than the ‘connect-the-dots’ Euclidean
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distance. Thus, a direct tabulation on behaviors from the raw data as if they

represented equally weighted observations would not be accurate. Further-

more, we would like to assess not only the relative frequency of transiting

vs foraging overall but also the frequency within different regions. From a

modeling perspective, the irregular observations are also problematic for the

PF because the Bayesian updates of parameter distributions treat each new

observation as equally weighted, though in fact they are not, because they

represent different underlying spans of time.

Jonsen, Flemming, and Myers ([22]) take the approach of interpolating

their irregularly-recorded observations yt to regularly spaced unobserved xt,

then model these. Our approach is guided by this, as well as data assimilation

techniques. Assume regularly-spaced timesteps Υ0,Υ1, . . . and observations yt

that occur at these times but not necessarily at each–that is, there are missing

observations but no interpolation. Reich and Cotter ([41], chapter 6) show that

the particle filter operates as usual except at any time Υc where there are no

observations, states xk are simply propagated forward, keeping the resampling

weights w
(n)
c constant. When an observation occurs, the weights are updated

and the algorithm may choose to resample or not (for instance, based on the

effective size criterion). The assumption that observations occur only at the

regular timesteps is used for notational simplicity (authors’ communication)

but can be extended to the case where they occur in between the regular times

Υ.

For our interpolation, we specify a desired regular time gap ∆Υ (say, 120

seconds), and hence the regular timesteps Υ at which we simulate values of

the process. At each regular timestep, if a shark is observed, then the algo-

rithm uses that observation; otherwise, the algorithm simulates the behavior

in that step using the existing information. Section 6.4 introduced the spatial-

temporal neighborhood (N(·)) structure for modeling inter-shark behavioral

influence by the parameter η0, at intervals c. Because this joint shark fil-

ter involves both interpolation to evenly-spaced time intervals Υc, we must

introduce notation to deal with multiple sharks. The notation is as follows:
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Figure 7.1: Empirical density of the observed distribution of time gaps ∆t

(black) in seconds (restricted to be less than 3,600 seconds, which is above the

empirical Q98) between observations for all sharks. This distribution seems

reasonably approximated by a log-normal distribution, shown in black. The

raw ∆t have Q1 = 68 seconds, median is 130, and Q3 = 299 (5 minutes); the

mean is 826 seconds (about 13.75 minutes), but is significantly affected by

extreme values. The variability of the time gaps necessitates accounting for

this in modeling the movement parameters.

Note that at small time gaps, the empirical density is nearly twice that of

the log-normal approxiation. This is a bit of an artefact, since the minimum

observed ∆t is 43 seconds, rather than a hypothetical value near zero for the

log-normal. The transmission code delays (a technical specification known

as the pinging rate) of the shark VPS transmitters were between 40 and 80

seconds, meaning that a shark will not be observed at time gaps of less than

40 seconds.
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• As before, we have T total observations yt, t = 1, . . . , T , observed at

clock times H1 ≤ H2 ≤ · · · ≤ HT . These observations are pooled across

sharks, so observations will alternate between sharks.

• Each observation corresponds to one shark s = 1, . . . , S. The times Ht

are treated as continuous, and so we assume they are all unique (so the

inequalities are generally strict), but we allow them to be equal, as long

as each observation yt is uniquely identified with a time Ht to preserve

consistency of notation.

• The observations are interpolated to C + 1 constant-interval times Υ0 <

Υ1 < · · · < ΥC indexed c = 0, 1, . . . , C, where HT−1 < ΥC ≤ HT and the

desired constant difference between them is a small ∆Υ seconds. These

are generated as Υ0 = H1− ε, where ε is a small number so that the first

observation y1 falls in an interval that is open on the left. Thereafter,

let Υc = H1 + c∆Υ, c = 1, . . . , C, where C = argmax
c
{Υc ≤ HT}.

• We may choose to only interpolate to intervals Υc between two con-

secutive observations at Ht and Ht+1 if they differ by fewer than cthresh

intervals. For instance, we may set cthresh = 10, so we need Ht+1 ≤
Ht + cthresh∆Υ, or Ht ≤ Υc < · · · < Υc+cthresh−1 < Ht+1 < Υc+cthresh to

interpolate to times Υc:(c+cthresh−1). If you want time-unrestricted inter-

polation, set cthresh =∞.

• Because we generally want to model more than one shark (S > 1),

we need to uniquely associate each observation yt and time Ht with a

specific shark s. Let st ∈ {1, . . . , S}, t = 1, . . . , T denote the shark s that

observation yt corresponds to. Figure 7.2 shows a toy illustration of this

notation. Consider row labeled 3 for shark s = 3. The first observation

in this row (at 3:00) is the second (t = 2) overall, so st=2 = 3. Further,

let the notation h(s, j) mean the hour of observation of shark s’s jth

observation overall. Therefore, we can also say h(s = 3, j = 1) = H2
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since this observation at t = 2 is shark 3 first (#1) observation overall,

and its time observation is H2 = 2:00.

• We need to identify observations within a given interval c of times

(Υc,Υc+1]. Let the notation t(s, c, j) refer to the index t correspond-

ing to shark s’s jth observation occurring in time interval (Υc,Υc+1], if

such as observation exists. Note j only indexes observations within the

interval, not overall.

• This notation t(s, c, j) can be used to express sets. The expression

t(s, c, ·) = {t : (Υc < Ht ≤ Υc+1) & (st = s)} is the set of indices t

corresponding to shark s in interval c. For instance, t(s = 3, c = 3, ·)
means the indices t of shark 3’s observation in the interval c = 3, be-

tween times Υ3 = 8:00 and Υ4 = 10:00; there are two such observations,

corresponding to shark 3’s third and fourth observations, labeled h(3, 3)

and h(3, 4) by their clock times. Assuming the observations in the im-

age are the only ones for the time interval 2:00 to 12:00 (assume sharks

s = 4, . . . , 21 are observed for the first time after 12:00), these observa-

tions correspond to the seventh and ninth overall, in chronological order.

Therefore the set t(3, 3, ·) = {7, 9}; note they are not consecutive, be-

cause the eighth observation overall belongs to shark 1, at h(1, 2) = 9:00.

Let | · | denote set cardinality; thus |t(3, 3, ·)| = 2 because there two such

observations. To refer to each of their indices, we can say t(3, 3, 1) = 7

and t(3, 3, 2) = 9. We can also iterate over all of a shark’s observations

in an interval, for instance iterating over j = 1, 2, . . . , |t(s, c, ·)|, where

t(s, c, j) refers to the time index of the jth such observation.

At each regular timestep Υc, the joint particle filter iterates over each shark

s = 1, . . . , S and does one of three things:

1. If shark s’s first observation—or, the first after a long span without

observations (i.e, the last one was more than cthresh constant intervals

away)—occurs in this regular interval (for instance Υc < h(s, 1) ≤ Υc+1,
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Figure 7.2: Toy illustration of observation times H1, . . . , HT and constant

intervals Υ0, . . . ,ΥC for a total of S = 22 sharks, covering the range of clock

times 2:00 to 12:00. Here, the constant interval length is ∆Υ = Υc+1−Υc = 2

hours. As shown, the observations yt alternate between sharks. The first

observation y1 at time H1 = 2:00 belongs to shark 1. Therefore st=1 = 1 since

it belongs to shark 1, and also this is the clock time of shark s = 1’s first (#1)

observation, so h(1, 1) = H1. The next observation t = 2 is the first for shark

3, so st=2 = 3 and h(3, 1) = H2.
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where h(s, 1) = Ht, if it is the first observation overall), the recorded

observation yt is taken as given, and its position zt+1 = yt and bearing

angle ψt are used to interpolate the shark’s position to the end of the

regular period.

2. If shark s has no recorded observations (i.e., the set t(s, c, ·) = ∅) but

has been observed before within cthresh intervals (∃c′ : (c− cthresh ≤ c′ <

c) & (t(s, c′, ·) 6= ∅)), its behavior λc and movement are simulated using

existing parameter values (θc−1, etc.). These movement variables are

stored and may or may not be used to update the distributions. This

generates a set of equally-spaced simulated observations {xc} for the

entire span of time we would ideally have recordings for the shark.

3. If shark s has recorded observations but not for the first time (within

cthresh intervals before), then we try to infer the unobserved behavior λc at

that time by simulating movement for each potential behavior (CDLM)

and seeing which one best predicts the observed location. Past simulated

values of the movement are used to update the parameters at this point,

if they were not done before.

Outline of interpolation CDLM:

• Let H1 <, . . . , < HT be the (irregularly) observed times for all sharks

under consideration, with observations y1, . . . ,yT . Refer to Section 7.1

for details on notation.

• At constant-interval Υc, let xc =
[
ζ1,c ζ2,c ln (vc) ψc

]T
, where ζc =[

ζ1,c ζ2,c

]
are the unobserved coordinates, and rc be the region that ζc

are in.

• At each regular step c, the iteration is done separately for each shark s.
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For regular step c = 0, . . . , C − 1:

1. For shark s = 1, . . . , S:

(a) Let t(s, c, ·) be the ordered set of indices of the observed timesteps

H1, . . . , HT falling in the constant-length timestep interval (Υc,Υc+1]

at which shark s was observed. Let |t(s, c, ·)| denote the number of

shark s’s observations in the interval, where it is = 0 if t(s, c, ·) = ∅,
in which case there are no such observations.

(b) If t(s, c, ·) 6= ∅ (there are observations):

i. Let the set values be t(s, c, j), using the third index, with corre-

sponding observations yt(s,c,j) at times of observationHt(s,c,j), j =

1, . . . , |t(s, c, ·)|.

ii. Calculate the fractions of the regular interval at which each

observation falls: let time differences be

∆s,c,j =

Ht(s,c,1) −Υc j = 1

Ht(s,c,j+1) −Ht(s,c,j) j = 2, . . . , |t(s, c, ·)|

be the times in seconds between each observation in the in-

terval.

iii. At the first time the shark is observed: If t(s, c, ·) is

non-empty for the first time, meaning t(s, c, 1) is the first ob-

servation of that shark overall or the first in a long gap of time

(more than cthresh), we will take these observations as fixed and

model movement beginning at the next interval c+ 1. Let

A. t∗ = t(s, c, |t(s, c, ·)|) be the index of the last observation in

the interval, and

B. ∆t∗ = Υc+1 −Ht∗ be the time from the observation to the

end of the interval.

C. Set λc = λt∗ and ψc = ψt∗ , the observed behavior and

bearing; simulate the speed vc | λc.
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D. Simulate the next regular location ζc+1 by going ∆t∗ sec-

onds from the observed location yt∗ with the simulated

speed and bearing. To simulate the location ζc at the be-

ginning of the interval, go backwards ∆Υ−∆t∗ seconds from

the observation zt∗ , reversing the bearing ψc − π.

iv. If there are observations, but not for the first time

(|t(s, c, ·)| > 0): we want to generate predictions at each of the

observed times Ht(s,c,j), j = 1, . . . , |t(s, c, ·)| and see which state

λc ∈ {0, 1} best matches all of the movement in the regular

interval overall.

CDLM simulation: Iterate over k ∈ {0, 1} (potential values of

λc):

A. Simulate movement variables, values of (ln (vc), θc)
(n) | (λ(n)

c = k)

for xc.

B. Estimate the joint probability that observations {yt}t∈t(s,c,·)
occurred given behavior λc = k and the simulated move-

ment x
(n)
c−1. Define1 the interpolation densitym

(n)
interpt(s,c,j)|k(·)

of each observation yt, t ∈ t(s, c, ·) for each particle n as

d(yt(s,c,1) | ∆s,c,1, x
(n)
c−1, λc = k), j = 1

d(yt(s,c,j) | ∆s,c,j, x
(n)
c−1, λc = k, ŷt(s,c,j−1)), j = 2, . . . , |t(s, c, ·)|

For multiple observations j ≥ 2, the density conditions on

the mean value of the previous predicted value ŷt(s,c,j−1).

The joint probability of the observations, given each po-

tential behavior, is

m
(n)
interpt(s,c,·)|k(yt(s,c,·)) =

|t(s,c,·)|∏
j=1

m
(n)
interpt(s,c,j)|k(yt(s,c,j))

That is, predict the first observed location ŷt(s,c,1) at ∆s,c,1
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seconds from the previous simulated true location ζ
(n)
c fol-

lowing a straight line at angle ψ
(n)
c and speed v

(n)
c . If

|t(s, c, ·)| > 1 (there are more observations for the same

shark), continue along this line to predict ŷt(s,c,2) at a fur-

ther ∆s,c,2 seconds from ŷt(s,c,1), etc.

These intermediate ŷt(s,c,j) are only used for this probabil-

ity calculation and are not kept as part of the simulated

trajectory of timesteps {Υc}.

C. The particle resampling weights w
(n)
c|k for each behavior λc =

k are the above density (evaluated at the observed values),

scaled by the transition probabilities:

w
(n)
c|k = m

(n)
interpt(s,c,·)|k(yt(s,c,·) | . . . , λc = k)×Pr

(
λc = k | λ(n)

c−1

)
v. End iteration over behavior type k.

vi. For particles n = 1, . . . , N , set the overall weights as w
(n)
c =∑

k=0,1

w
(n)
c|k .

vii. Resample particles {x(n)
c−1}Nn=1 by {w(n)

c }Nn=1. As before, let

{x̃(n)
c−1}Nn=1, {w̃(n)

c }Nn=1, and {w̃(n)
c|k }Nn=1 represent the resampled

set of the N particles at c− 1 and the weights.

viii. For particles n = 1, . . . , N , propagate behaviors (assuming bi-

nary) λ
(n)
c ∼ Ber

(
p = w̃

(n)
c|1 /w̃

(n)
c

)
.

ix. For the propagated behavior λ
(n)
c , propagate x

(n)
c |

(
x̃

(n)
c , λ

(n)
c

)
.

x. Let c∗ = argmax
c′<c

(c′ : t(s, c′, ·) 6= ∅) be the most recent regular

step that an observation was made for the shark. Update the

sufficient statistics and other parameters, given the values of

x(n) simulated over steps c∗ + 1, . . . , c.

(c) If there are no observations in this interval c (t(s, c, ·) = ∅
but shark s previously had observations within cthresh intervals):

we simulate xc | xc−1 using existing parameter values.2Iterate over
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particles:

For n = 1, . . . , N :

i. Let r
(n)
c−1 be the region of the previous coordinates ζ

(n)
c−1. Draw

the behavior λ
(n)
c ∼ Pr

(
λ

(n)
c | λ(n)

c−1, r
(n)
c−1

)
.

ii. Simulate movement variables, values of (ln (vc), θc)
(n) | (λ

(n)
c ).

Do not resample particles (since there are no observations to

calculate weights). However, one may choose to update the

distributions of parameters at each step or not.

(d) End iteration over particles n.

2. End iteration over shark s.

End iteration over constant time step c.

Figure 7.3 illustrates the interpolation density m
(n)
interpt:(t+1)|k for an interval

(Υc,Υc+1] with two observations (yt,yt+1) = (zt+1, zt+1), observed at times

(Ht, Ht+1). The corresponding figure without interpolation is shown in Fig-

ure 5.3. Between successive simulated locations {ζc} of short time interval

∆Υ, the shark is modeled to travel in a straight line. Since the intervals are

2 If there are no observations in a regular interval c, the algorithm should simulate
movement given the current parameters, and update parameters based on the simulated
movement, either at each step or when the next observation is encountered. For the sake
of reducing the simulation or invention of data when the time gap ∆t between successive
observations yt and yt+1 is big, we may, for instance, only simulate movement at regular
intervals between yt and yt+1 if ∆t is below some threshold, say, less than 10 or 15 constant-
length intervals of length ∆Υ.

2 The formulas for the interpolation densities m
(n)
interpt|k

(
yt | x(n)

c−1, λ
(n)
c = k

)
are as fol-

lows (see 4.5):

• State equation (does not depend on behavior λ
(n)
c = k):

x(n)
c | (x(n)

c−1) ∼ N 4

(
`
(
x

(n)
c−1

)
,P(n)

c

)
, P(n)

c = L
(
x

(n)
c−1

)
Σ

(n)
c−1L

(
x

(n)
c−1

)T
+q(n)

c

where Σ
(n)
c−1 is the covariance of x

(n)
c−1 given all previous particles and observations,

and q
(n)
c is the error covariance of the state equation `(·) for ∆Υ seconds.

• Measurement equation:
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relatively short, this should be a decent approximation of the true movement.

The straight lines between locations are either dashed for foraging (λc = 0) or

solid for transiting (λc = 1).

At time Υc−1, movement from the foraging behavior (λc−1 = 0) has been

simulated from ζc−1 resulting in a prediction of ζ̂c. From ζc−1, the algo-

rithm marginalizes over movement at Υc to best predict the two observations

(zt+1, zt+1) shown by black solid dots. Given each potential behavior λc, the

algorithm predicts the location at the times of observation Ht and Ht+1, that

is, (ŷt, ŷt+1) | (λc = k). These predicted locations are shown as hollow circles

along each potential straight line path. Since the shark is assumed to travel

at a constant speed vc | λc in the interval, the predictions ŷ of the observed

locations are located at the same proportions of distance along the lines as the

time gaps ∆s,c,j between the observations. For instance, say the first observa-

tion has ∆s,c,1 = Ht − Υc = 0.5∆Υ, occurring halfway into the time interval.

The second observation is recorded at Ht+1−Ht = 0.25∆Υ seconds later, a fur-

ther quarter into the interval after Ht. Thus, the predictions ŷ are located at

fractions 0.5 and 0.75 (=0.5+0.25) of the distance along the predicted straight

line movement for each behavior.

Likewise the prediction error depends on these time gaps ∆s,c,j. The pre-

diction errors qc ∼ N 2(0, Qc | λc) and rc ∼ N 2(0, Rc | λc) apply over a full

If j = 1: d
(
yt(s,c,1) | x

(n)
c−1, λ

(n)
c = k

)
∼ N 2

(
m(`(x

(n)
c−1)), S

(n)
s,c,1 | ∆s,c,1

)
,

S
(n)
s,c,1 = M

(
`
(
x

(n)
c−1

))
P

(n)
c−1M

(
`
(
x

(n)
c−1

))T
+ ∆2

s,c,1r
(n)
c

If j > 1: let `
(n)
s,c,j−1 =

[
ŷt(s,c,j−1), ln (vc) | k, (ψ

(n)
c−1 + θc) | k

]T
be the previous observation (j − 1)’s predicted location, the simulated log-speed,
and bearing for behavior λc = k

d
(
yt(s,c,j) | x

(n)
c−1, λ

(n)
c = k

)
∼ N 2

(
m(`

(n)
s,c,j−1), S

(n)
s,c,j | ∆s,c,j

)
,

S
(n)
s,c,j = M

(
`
(n)
s,c,j−1

)
P

(n)
c−1M

(
`
(n)
s,c,j−1

)T
+ ∆2

t(s,c,j)r
(n)
c

For j > 1, we continue along the same angle ψc with speed vc simulated at regular
step c and predict each observed location yt(s,c,j) in turn, conditional on the expected
value of the previous location ŷt(s,c,j−1).
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Figure 7.3: Interpolation predictive density minterpt|k illustrated by predict-

ing two observations z(t+1):(t+2) in the interval (Υc,Υc+1] for each potential

behavior λc.
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time interval of ∆Υ. Given movement from ζc−1, the prediction error of ζ̂c

is qc. Now, marginalizing from Υc to Ht, the time of the first observation,

the additional prediction error should have covariance
√

∆s,c,1rc | λc. Between

each further observation in the interval, the prediction is conditioned on the

previous prediction ŷt. In Figure 7.3, this is shown by the error second predic-

tion ellipse (if each represents, say, a 95% confidence ellipse) along each line

being smaller than the first, since the second time gap ∆s,c,2 is smaller than the

first, ∆s,c,1. As detailed in the algorithm, the interpolation weight minterpt|k is

calculated as the prediction interpolation density for ŷt at the observed value

of yt at Ht, and the joint weights wc|k, if there are multiple observations, as

the product across t in the interval, accounting for any transition probabilities

pc−1,λc−1→k.

Because we do not know the true values of unobserved constant-interval

locations ζc for the observed data, we may want to test the performance of the

algorithm on simulated data where we know the ground truth. The key dif-

ference between the interpolation and the regular CDLM is that the observed

data, occurring at irregular intervals, are viewed as obscuring the ‘true’ un-

derlying process with regular observations. Say we want to model the shark’s

irregularly-observed movement as occurring at a series of regular steps with

constant time difference ∆Υ. We can first generate a movement trajectory

(with transition probabilities and other parameters) at equally-spaced times

{Υc} with step ∆Υ and behavior states {λc}, from which we can calculate

the (true) density estimates of speed, turn angles, transition probabilities, and

other parameters of interest. We then generate a series of irregular timesteps

{Ht} from an appropriate distribution, such as gamma or log-normal, to mimic

the distribution of timesteps in the observed data (see Figure 7.1). Then let

our observed simulated data be the movement at regular steps {Υc} interpo-

lated to the irregular steps {Ht}. Importantly, we take the irregularly observed

behaviors {λt} as simply the values {λc} of the regular intervals in which each

irregular observation falls. This linear interpolation is outlined in 7.1.
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Regular trajectory simulation and linear interpolation to irregular

observations

1. Fix regular step length ∆Υ and set maximum regular interval index C.

Let regular times Υc = Υ0 + c∆Υ,∀c = 0, . . . , C.

2. Set initial position ζ0 and behavior λ0; if 2-D, set initial bearing ψ0.

Draw initial speed v0 | λ0.

3. Iterate over c = 1, . . . , C − 1:

(a) Set location ζc = `µ(ζc−1, vc−1, . . . ).

(b) If multiple behaviors (K > 1), draw behavior λc | λc−1 (if not, just

set λc = 0).

(c) Draw speed vc | λc, and if 2-D, turn angle θc | λc.

4. End iteration over steps c. Now create ‘observations’ interpolated at

non-constant time intervals:

5. Draw irregular step lengths {∆t}Tt=1 (for instance, from a log-normal

distribution) such that
∑T−1

t=1 ∆t < C∆Υ ≤
∑T

t=1 ∆t, i.e. you have

enough to cover the span of regular observations.

6. Optional: set final time gap ∆T−1 = ΥC −HT−1 so that the final obser-

vation yt is at time HT = ΥC (usually H1 = Υ0 = 0 for convenience).

7. Set irregular times H1 = Υ0 and Ht = Ht−1 + ∆t−1,∀t = 2, . . . , T − 1.

8. Iterate over irregular indices t = 1, . . . , T :

(a) Let the regular interval observation Ht falls in, be indexed c : Υc <

Ht ≤ Υc+1.

(b) Set behavior λt = λc and speed vt = vc, the values observed in the

regular interval (there may be more than one observation in each

interval c). If 2-D, set bearing ψt = ψc.
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(c) Set location ζt = ζc + (Ht −Υc)vc if 1-D (or use cosine and sine of

bearing ψc if 2-D).

9. End iteration over non-constant timesteps t.

In the interpolation PF, particles are only potentially resampled in a regular

interval in which irregular observations yt fall. Between these, the states xc

(the shark’s movement) are simulated using the existing movement parameters;

we have the option to update parameters at each regular step c or update

based on past values only at steps c where there are observations. Resampling

weights w
(n)
c depend, by definition, only on how movement at Υc (through

the parameters learned up to then) match the observations in the interval

(Υc,Υc+1]. Particularly if there is a long time gap between observations, it is

possible that a particle’s movement may have a high weight by chance. For

instance, the particle may predict large zig-zags of movement, as opposed to

a straighter trajectory, that happens to end up where the shark was observed.

Therefore, we may want to resample particles more often than if we modeled

the observed trajectory directly at the observed irregular time points without

interpolation. We may, for instance, want to use the effective sample size

threshold Nthresh = N , and thus we will resample at each regular Υc with

observations.

The interpolation to irregular times can affect the observed densities of

speeds and turn angles, and importantly, the distribution of observed behavior

types and the transition probabilities between them. Based on experiments

with the above, the densities of the simulated speeds and turn angles do not

differ substantially between the irregular and regular observations in a way that

would prevent learning the distributions of the regular observations from the

irregular observations. Here, we assume that the gaps between observations

are random and not related to the behavior or region the sharks are observed

in. In reality there may some spatial association, such as if sharks spend time

in muddy areas which block reception from the acoustic receivers and lengthen
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the time between observations.

7.2 Classification accuracy of behaviors

When comparing the irregularly-observed data and our model of the regular

interval data, of particular interest is the degree to of agreement between which

the observed behaviors {λt}Tt=1 and the predicted behaviors {λ(n)
c }Cc=0 from the

particle filter at the regular intervals {Υc}Cc=0. If we have simulated regular

observations to begin with, then {λc}Cc=0 (without the particle superscript) are

true values of the behavior at the regular intervals, which are unobserved in

the case of real data. On the actual shark data, the observed behaviors are

determined by the classification boundary λt = 0 (foraging) if vt < 0.1 m/s,

as shown in Figure 2.8; although for the shark data this classification is to

guide our modeling and they are not assumed to be absolute truth, it is still

informative to measure the agreement.

Consider a set of irregular timesteps H1, . . . , HT and regular timesteps

Υ0, . . . ,Υc. Recall that the notation t(s, c, ·) is the set of observation indices t

whose clock times Ht fall in (Υc,Υc+1], since we assume classification accuracy

is calculated separately for each shark s. We can denote the overall behavior

agreement between the behaviors of irregular observations λt and our particle

filter λ
(n)
c at the regular timesteps as A

(
{λt}Tt=1, {λ

(n)
c }Cc=0

)
as

A
(
{λt}Tt=1, {λ(n)

c }Cc=0

)
=

C−1∑
c=0

∑
t∈t(s,c,·)

N∑
n=1

I
(
λ(n)
c = λt

) /(NT )

where 0 ≤ A ≤ 1, with 1 indicates perfect agreement. We can also define

behavior-specific agreement measures, for k ∈ {0, 1}:

A
(
{λt}Tt=1, {λ(n)

c }Cc=0 | k
)

=

C−1∑
c=0

∑
t∈t(s,c,·)

N∑
n=1

I
(
λ(n)
c = λt = k

) /(N×
T∑
t=0

I(λt = k))

To measure the accuracy of the PF against the unknown true regular trajec-

tory, assuming that both have the same constant timestep ∆Υ, the accuracy
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formula is

A
(
{λc}Cc=0, {λ(n)

c }Cc=0

)
=

(
C∑
c=0

N∑
n=1

I
(
λ(n)
c = λc

))
/(N × C)

To see an example of how behavior type classification accuracy changes

with the degree of variation in time step size, we generated a simple one-

dimensional (see Section 4.5 for the technical details of a PF with only one

behavior type) trajectory with two behavior types: slow (λ = 0) and fast

(λ = 1). For simplicity, here the distributions of velocity of the two types were

separable, with (vt | λt = 0) ∼ N (2, 0.4) and (vt | λt = 1) ∼ N (9, 0.1). This

represents the true unobserved trajectory.

As with the shark data, we imagine our observed sensor readings of the

robot will occur at irregular times. When the irregularity (i.e., the variance of

the observed time step lengths) increases, we expect the accuracy of behavior

classification, and of location prediction in general, to decrease because there

are now longer stretches of time without observations. We use the log-normal

distribution ∆t ∼ Lognormal (µ = ln (120), σ) to generate a sequence of ob-

served irregular timesteps. For a log-normal distribution, its median is eµ so

all of our sequences were drawn from a distribution with median of 120, the

same as the simulated true trajectory. To change the degree of irregularity,

we use the true trajectory of regular-timestep locations (σ =‘0’ theoretically),

and let σ = 0.25, 0.50, 0.75, . . . , 1.75, 2.00 in turn; these give mean

step lengths of E(∆t) ≈ 120, 124, 136, 159, 198, 262, 370, 555, 887,

respectively (E(∆t) = exp (µ+ σ2/2)). Figure 7.4 shows log-normal density

functions for several choices of σ, when µ = ln (120). We then generated an

‘observed’ dataset linearly interpolated (see 7.1) from the true regular steps

using each sequence of irregular steps ∆t. For each, the PF tried to recover

a 100-timestep trajectory Υ0, . . .Υ99 with ∆Υ = 120 to match the unknown

true trajectory.

Figure 7.5 shows the accuracy of behavior classification, both overall and

behavior-specific, for the regular trajectory recovered from each of our irreg-

ularly observed datasets, which were interpolated from the same true regular
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Figure 7.4: Log-normal distributions of time gaps ∆t ∼ Lognormal (µ, σ). For

each, µ = ln (120) so that the median is 120 seconds, but σ is allowed to vary.

trajectory. The left panel shows the accuracy of the PF regular trajectories

compared with the irregular observations, and the right panel is the accuracy

compared with the true regular behaviors, which for real data are of course

unobserved. We see that keeping the median step length at 120, increasing the

standard deviation of observed step length, and thus increasing irregularity of

observations, decreases the accuracy both relative to the observed data and

the true regular trajectory. Later, in Figure 8.5 we show results of accuracy

on more complicated 2-D shark data.

7.3 Trajectory smoothing

The term ‘filtering’ refers to estimating the joint distribution of the states

x and parameters θ conditional on all the observations y1:T , that is, the joint

filtering distribution d(x0:T ,θ | y1:T ). This is achieved by the particle sim-

ulations: at the end of the process at time T , the particles are weighted so
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Figure 7.5: Example of behavior type classification accuracy measures on sim-

ulated one-dimensional trajectory. The PF estimates the locations and behav-

iors of a regular 300-step trajectory with ∆Υ = 120 seconds. The classification

accuracy of the PF in modeling the regular step behaviors from the irregular

interpolations is calculated, compared with the (usually unknown) true regu-

lar trajectory. Five different random interpolations with the same time gap

distributions were calculated at each level of irregularity (value of ∆t standard

deviation σ). The plotted line shows the mean accuracy across the five, with

the vertical spread of the colored regions showing the minimum and maximum

accuracy at each level.
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that jointly their parameters θ(n) and state histories x
(n)
0:T approximate the

filtering distribution. Once we have sequentially learned optimal values of

the parameters θ, sometimes we want to estimate the joint smoothing dis-

tribution—that is, just d(x0:T | y1:T ), the joint of the states conditional on

the observations, marginalized over the parameters θ. For instance, since the

state history x0:T includes simulated values of the true unknown trajectory

ζ0:T , using the final optimal parameter values (.θT | y1:T ) estimated on all the

observations, we may be able to improve the accuracy of our trajectory estima-

tion. Note that we refer to a trajectory here because that is the context of our

algorithm, but in general the states x can refer to any unobserved variables,

not just in the context of tracking a moving object or animal. We use the

subscript C in the following because the final parameters θ and unobserved

states x are assumed to be at regular intervals c while the observations are at

irregular intervals t.

Carvalho et al. ([10]) present an algorithm for backwards smoothing that

is an extension for when the parameters θ are not fixed. The algorithm begins

with the final simulated values of the states {x(n)
T }Nn=1 and proceeds backwards,

resampling particles at t−1 according to how well their parameters match the

subsequent particles at time t. We perform the smoothing algorithm on the

states interpolated to the regular intervals {Υc}Cc=0, keeping the simulated

behaviors λ fixed. At time c, let {x(n)
c }Nn=1 represent the smoothed set of

the states. Note that the smoothing algorithm does not need to conduct

interpolation calculations since it does not involve the observations y1:T but

just uses the interpolated output x0:C from the interpolated PF.

Outline of smoothing for interpolated CDLM:

Set J as the number of smoothing iterations per time index. A common choice

is J = N , where N is the number of particles. For C steps, this makes the com-

plexity of the smoothing algorithm O(CNJ), whereas filtering is only O(CN).
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However, if we do not draw values of the parameters θ(n) anew for all particles

for each of the J iterations, as this is unnecessary, we reduce the complexity

to just O(CN). Note: all states xc and parameters for c = 0, . . . , C have been

learned through a forward filtering algorithm.

1. Initialize by iterating over smoothing indices j = 1, . . . , J :

(a) Draw one index nj uniformly from the indices n = 1, . . . , N .

(b) Set x
(j)
c = x

(nj)
c and λ(j)

c = λ
(nj)
c .

2. End iteration over j.

3. For regular intervals c = (C − 1), . . . , 0:

(a) Iterate over all the particles. For n = 1, . . . , N :

i. Let Ω
(n)
c|λc be the hyper-parameters for parameters θ(n) for the

given behavior λ
(n)
c learned up to the final timestep C. Draw

values of parameters θ(n) ∼ p(Ω
(n)
c|λc).

ii. Iterate over possible values of λ. For k = 1, . . . , K:

A. Draw transition probability values of p
(n)
λc→k from the appro-

priate Dirichlet distribution.

iii. End iteration over behaviors k.

(b) End iteration over particles n.

(c) Iterate over smoothing indices. For j = 1, . . . , J :

i. Iterate over all particles. For n = 1, . . . , N :

A. Let w
(n)
j,c = `

(
x

(j)
c+1 | x

(n)
c , λ

(n)
c , θ(n)

)
× p(n)

λc→λ(j)c+1

.

ii. End iteration over particles n.

iii. Draw one index nj from the indices n = 1, . . . , N by the weights

{w(n)
j,c }Nn=1.

iv. Set x
(j)
c = x

(nj)
c and λ(j)

c = λ
(nj)
c .
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(d) End iteration over iterations j.

4. End iteration over timesteps c.

An additional variant is to not keep the latent variables (behaviors) λ
(n)
c

fixed as they were in filtering. Here we simply pick the smoothed behaviors

at step c based on which best predicts the fixed behavior at c+ 1, similarly to

the filtering CDLM.
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Outline of smoothing for interpolated CDLM, allowing behavior λ

to change:

1. Initialize by iterating over smoothing indices j = 1, . . . , J :

(a) Draw one index nj uniformly from the indices n = 1, . . . , N .

(b) Set x
(j)
c = x

(nj)
c and λ(j)

c = λ
(nj)
c .

2. End iteration over j.

3. For regular intervals c = (C − 1), . . . , 0:

(a) Iterate over all the particles. For n = 1, . . . , N :

i. Iterate over possible values k of λ (in our case, k ∈ {0, 1}):

A. Let Ω
(n)
c|λc=k be the hyper-parameters for parameters θ(n) for

behavior k learned up to the final timestep C. Draw values

of parameters θ(n) ∼ p(Ω
(n)
c|λc=k).

B. For each potential value k′, draw transition probability val-

ues of pk→k′ from the appropriate Dirichlet distribution.

ii. End iteration over behaviors k.

(b) End iteration over particles n.

(c) Iterate over smoothing indices. For j = 1, . . . , J :

i. Iterate over particles. For n = 1, . . . , N :

A. For each behavior k, set behavior-conditional weights

w
(n)
j,c|k = `

(
x

(j)
c+1 | x

(n)
c , λ

(n)
c = k, θ(n)

)
× p(n)

k→λ(j)c+1

.

B. Set overall particle weight w
(n)
j,c =

∑
k w

(n)
j,c|k.

ii. End iteration over particles n.

iii. Draw one index nj from the indices n = 1, . . . , N by the weights

{w(n)
j,c }Nn=1.
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iv. Set x
(j)
c = x

(nj)
c .

v. Draw behavior λ(j)
c ∼ Ber

(
w

(nj)

j,c|0/w
(nj)
j,c

)
instead of automati-

cally setting it to be λ
(nj)
c .

(d) End iteration over indices j.

4. End iteration over timesteps c.

The idea of smoothing is that the distributions of the smoothed states

xc should be “smoother” in some way—since the full information at time

C is used—but not necessarily more accurate, in terms of their distance to

the observations, than the unsmoothed xc after filtering. If the states xc

include a location variable ζ
c
, then the resulting trajectory should be visually

smoother than the unsmoothed ζc. We illustrate this by generating a one-

dimensional (‘robot’) trajectory (see Section 4.5) with 50 steps and regular

time gap ∆Υ = 120, and only one behavior type, since this is harder to visualize

when the overall distribution of speeds depends on more than one behavior.

Here, the true velocity was distributed vc ∼ N (α = 6, σ2 = 1.6) and allowed

to be negative, meaning backwards motion. In this illustration, we assume the

constant-length steps c are observed without interpolation.

In Figure 7.6, we compare the results of the 1-D EKF with 100 particles

(N) on the regular observations, before (unsmoothed) and after smoothing, in

predicting the robot’s true regular step location ‘X’ (ζc, here just the univari-

ate ζc). The top left panel shows that the variance at each timestep of location

predictions across particles is generally lower for the smoothed compared to

the unsmoothed ones. Increased variance of location prediction implies the

unsmoothed particles have a higher variance in estimation of the distribution

of velocity, and hence will generate more jagged trajectories of movement. The

top right panel, however, shows that the accuracy of estimating the true loca-

tions, as measured by root mean square error3 (RMSE), is essentially the same

between the smoothed and unsmoothed particles; the smoothed ones some-

times have a lower RMSE. This is not always the case, as shown by examples
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Figure 7.6: Results of 1-D ‘robot’ EKF with one behavior on simulated regular

steps, with the particle locations (‘X’) predicted before (unsmoothed) and after

smoothing (smoothed). Comparison of variance of locations (left) and root

mean squared error from the true locations (right) at each time step.

in [45], where the smoothing achieves both lower variance and RMSE. The

RMSE remains relatively stable over time because the particles are resampled

often; otherwise, errors would accumulate and particles with less successful

predictions would not be weeded out.

Recall that the smoothing calculations do not involve the measurements

yt but rather just the state equation `(xc | xc−1). In the particle filtering

algorithm, the posterior density (to get the weights) was only evaluated at yt,

rather than at xc, but in smoothing, the resampling weights w
(n)
j,c are evalu-

ated at `
(
x

(j)
c+1 | x

(n)
c

)
(we use regular indices c because we assume regular

interpolation). Thus, the density evaluation must take into account the fact

that the bearing ψc is distributed wrapped normal rather than unwrapped,

as outlined in Section 5.2. Since the bearing is modeled to be independent

3For true location ζt and estimate ζ̂
(n)
t from a particle n from a total of N parti-

cles, the RMSE at time t is defined as

√
(1/N)

∑N
n=1

(
ζt − ζ̂(n)

t

)2

, a sample estimate of√
E
(

(ζt − ζ̂t)2
)

.
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of the other state variables xc, we can multiply the densities to obtain the

joint density. Denote x̊c =
[
ζ1,c ζ1,c ln (vc)

]T
, namely the state variables xc

excluding the bearing ψc. Thus, for the shark EKF, the likelihood calculation

in the smoothing algorithm (Section 7.3) for the weights w
(n)
j,c would need to

be

`
(
x

(j)
c+1 | x(n)

c

)
= N 3

(
x̊

(j)
c+1 | x(n)

c , λ(n)
c = k, θ(n)

)
×W N

(
ψ(j)

c+1
| ψ(n)

c , λ(n)
c = k, θ(n)

)
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CHAPTER 8

SYNTHETIC SHARK DATA

EKF SIMULATIONS

8.1 Simulation setup

To assess our interpolation CDLM algorithm’s ability to model the param-

eters of the irregularly-observed shark trajectories, we can follow the approach

introduced in Section 7.1. In our interpolation approach we try to model

the observed data as being an irregularly-observed interpolation of regularly-

occurring measurements. The constant-length step trajectory is considered

the underlying true but unobserved trajectory. This is sensible because cer-

tain parameters should be updated only based on observations that are equally

time-weighted. For instance, in the error covariance matrices, the degrees of

freedom are updated by a constant each time, reflecting the number of obser-

vations, so either the data have to be regular or we have to scale the update

by the amount of time that has passed.

Similarly, the transition probabilities are updated based on simulated counts

of transitions nc,c+h,i→j between steps c and c+ h. If a transition between ob-

servations of different behavior, say, two minutes apart is counted the same as

if they, say, were ten minutes apart, this is not sensible. The transition be-

tween these two observations does not represent the ‘true’ set of transitions in
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the ten minutes. Defining an interpolation to regular intervals of small equal

length ∆Υ essentially defines ∆Υ as the smallest and common unit of time

under consideration. The definition of ‘small’ will depend on the context, but

for our purposes we say it is on the order of, say, 30 seconds to 3 minutes.

A two-dimensional simulation is an approximation of what the observed

shark trajectories look like; it simulates a random walk in 2-D space con-

strained by the borders of the tidal basin. A starting point ζ0 is selected at

random in the boundary of the tidal basin, and a random initial bearing angle

ψ0 and behavior type λ0 is chosen. The behavior type λc at each step is cho-

sen by a predetermined probability transition matrix P
(r)
0 , possibly one with

more than one region. The turn angle θc and speed vc are drawn from their

distributions conditional on λc. If the resulting next coordinate ζc+1 is outside

of the boundary, the speed and turn are simulated again until the next point

is inside. A more complicated method would be to include a repelling effect

from the boundaries so the shark ‘chooses’, say, a turn angle that will cause it

to turn it away from the boundary if it was headed towards it (see discussion

in Section 5.5).

A reasonable setup (that is similar to the observed shark data) is the fol-

lowing. The resulting simulated trajectories are shown in Figure 8.1.

• Constant-length step ∆Υ = 120 seconds.

• Two behaviors λc ∈ {0, 1} (foraging and transiting).

• Two roughly equal regions (R = 2).

• Maximum C = 200 regular steps for each shark.

• Distribution of log-speed:

– Foraging: ln (vc) | (λc = 0) ∼ N (αc = −4, σ2
c = 1)

– Transiting: ln (vc) | (λc = 1) ∼ N (αc = −1.6, σ2
c = 0.25)

These correspond to average speeds vc of approximately 0.018 and 0.202

m/s.
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• Distribution of turn angle θc:

– Foraging: θc | (λc = 0) ∼ N (βc = 0, τ 2
c = 1)

– Transiting: θc | (λc = 1) ∼ N (βc = 0, τ 2
c = 0.25)

• R = 2 regional behavior probability transition matrices of

P (1) =

[
4/5 1/5

1/3 2/3

]
and P (2) =

[
5/6 1/6

1/2 1/2

]

• Behavior interaction effects:

– Sharks 1 and 2 are simulated independently without any interaction

parameters.

– Sharks 3 and 4 are simulated to have behavior influenced by neigh-

boring observations of sharks 1 and 2 and each other. The neigh-

borhood is defined to be all observations occuring within δΥ = 30

minutes before and within a spatial radius of δζ = 150 meters.

For sharks 3 and 4, ηk=0 was 2 and 1, respectively. With πc,s,0

being the proportion of spatial-temporal neighboring other shark

observations that are foraging, the interaction effect is ρc,k=0 ∼
Lognormal (πc,s,0ηk=0, τk=0), with τk=0 = 0.75. Thus, shark 3 was

simulated to be more strongly influenced by neighbors than was

shark 4.

As before, the simulated ‘true’ trajectories are then interpolated to irreg-

ular steps (see Section 7.1) by generating ∆t ∼ Lognormal (µ = ln (120), σ),

where σ =‘0’ (i.e., no interpolation), 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and

2, in turn; we then run a joint PF on the interpolated irregular steps. The

process is repeated five times, so that at each level of σ (step size variability)

we have five different random samples of step size from the same distribution,

to account somewhat for potential variation in step sizes.

• Variance (σ2) of log-speed ln (vc):
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Figure 8.1: Example of four shark trajectories (colors) simulated in two re-

gions, shown by the dotted lines. Two of the sharks (1 and 2, black and

red lines) are simulated independently; sharks 3 and 4 (blue and green) are

simulated independently but take into account behavioral influence from the

others.
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– Foraging: σ2
c | (λc = 0) ∼ G−1(a0 = 8, b0 = 5)

– Transiting: σ2
c | (λc = 1) ∼ G−1(a0 = 8, b0 = 3)

• Variance (τ 2) of turn angle θc:

– Foraging: τ 2
c | (λc = 0) ∼ G−1(a0 = 8, b0 = 4)

– Transiting: τ 2
c | (λc = 1) ∼ G−1(a0 = 8, b0 = 1)

• Transformed speed ln (vc):

– Foraging: ln (vc) | (λc = 0) ∼ N (αc = −4, κ0,0 × σ2)

– Transiting: ln (vc) | (λc = 1) ∼ N (αc = −1.3, κ1,0 × σ2)

• Turn angle θc:

– Foraging: θc | (λc = 0) ∼W N (βc = 0, κ3,0 × τ 2)

– Transiting: θc | (λc = 1) ∼W N (βc = 0, κ4,0 × τ 2)

• NIG degrees of freedom (above) κ = 20.

• Probability transition probabilities, for regions r = 1, . . . , R:

– From foraging: (p0→0, p0→1) ∼ Dir 2(α0→0 = 8, α0→1 = 2)

– From transiting: (p1→0, p1→1) ∼ Dir 2(α1→0 = 2, α1→1 = 4)

The parameters are the same for each region to see if we can learn the

differences between the regions. This corresponds to an average transi-

tion probability matrix P =

[
4/5 1/5

1/3 2/3

]
; the variances depend on the

absolute, not relative, magnitude of the Dirichlet parameters α.

• Location error covariance matrices: Let Λ =

[
1.00 −0.30

−0.30 1.25

]
.

– Error covariance between states for ζc | xc−1 (not dependent on

previous behavior λc−1):
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∗ Σζ0 ∼ W −1
2 (Λζ0 , ηζ0) where degrees of freedom ηζ0 = 20 and

scale matrix Λζ0 = 0.5ηζ0Λ =

[
10.0 −3.0

−3.0 12.5

]
.

– Error covariance between for observations yc | (xc, λc):
Σz0 | λc ∼W −1

2 (Λz0,λ0 , ηz0,λ0), where

∗ Degrees of freedom ηz0,λ0=0 = ηz0,λ0=1 = 20

∗ Scale matrices for foraging Λz0,λ0=0 = 5ηz0,λ0=0Λ =

[
100 −30

−30 125

]

and transiting Λz0,λ0=1 = 15ηz0,λ0=1Λ =

[
300 −90

−90 375

]
.

• Maximum intervals to simulate without observations: cthresh = 10.

• Interaction parameters (see Section 6.4):

– The neighborhood influence structure used to simulate the data was

assumed to be known. Neighborhoods N(·) are defined as having a

spatial radius δζ of 150 meters and a time radius δΥ of 30 minutes

prior to the current time Υc.

– For a given fraction πλ of a shark’s neighbors having foraging behav-

ior, the spatial interaction effect is ρc,s,0 ∼ Lognormal (πc,s,0η0, ε0),

where,

– Precision (assumed known) ε0 = 2, and

– Spatial interaction strength ηλ ∼ N (ωλ,0 = 0, τλ,0). We hope our

PF will learn the mean values η0 of the parameter η used to generate

the synthetic data.

• Behavior rescaling weights (see Section 5.6): a0 = 1, a1 = 2.

The positional covariance matrix parameters are chosen roughly to repre-

sent the variance in coordinates along each axis; for instance, the range along

the vertical axis ζ2 is larger than the horizontal ζ1. For an inverse Wishart
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distribution X ∼ W −1
p (Λ, η), we have E(X) = 1

η−p−1
Λ. Therefore, for in-

stance, the prior on the prediction error when foraging of yc | (xc, λc = 0)

has expected value ≈

[
5.9 −1.8

−1.8 7.4

]
. The prediction error when transiting

is larger than when foraging, because in transiting the sharks travel faster,

and thus the prediction uncertainty is higher. Furthermore, the covariance

error should represent the prediction uncertainty for the chosen regular step

length ∆Υ; therefore, if we increase ∆Υ, the error scale matrix components

should increase in magnitude. As mentioned in Section 5.6, the rescaling

weights a0, a1 may be necessary for better estimation of transiting behavior

parameters. Naturally, we hope that we can model this behavior well enough

by choosing appropriate prior distributions, such as allowing more positional

prediction error for transiting, without introducing this somewhat makeshift

adjustment.

The stepwise position error (Σζc) in the absence of observations should

not be too small because if the we simulate several regular intervals in a row

without observations, we should accumulate uncertainty. Nevertheless, we

need to put a limit on the amount of uncertainty we wish to deal with. The

parameter cthresh = 10 is the maximum number of regular intervals to simulate

in a row without an observation. Say for instance Υc < Ht ≤ Υc+1 < Υc+h <

Ht+1 ≤ Υc+h+1, where h > cthresh, meaning the next observation yt+1 after

yt is more than cthresh regular intervals away, then we simulate movement for

regular steps Υc+1, . . . ,Υc+cthresh , and then jump to Υc+h. If we do not have

observations for a long enough period (Ht+1 − Ht is too big), we should just

say we don’t have a good idea of where the shark is to try to predict.

For the spatial interaction parameters, the priors are the same for both

behaviors, because we do not wish to bias the results too much with our

assumptions. The prior distribution on ηλ has mean 0 and precision τλ so that

the initial assumption, unless the data teach us otherwise, is that there is close

to no interaction.
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8.2 Simulation results

The following results are from PF simulations based on synthetic shark tra-

jectories generated at regular time gaps. The ‘observed’ irregular time gaps

are generated from a log-normal distribution; the trajectories are interpolated

to the irregular times, from which we try to recover the behavior at the unob-

served regular intervals. The amount of irregularity in the observed time gaps

is varied by changing the parameter σ of the log-normal distribution. In each

case, the observed irregular steps cover 100 regular steps of length ∆Υ = 120

seconds. On each irregularly-interpolated dataset, five repetitions of the PF

are done to account for possible variability in the results.

To first illustrate the effect simulating time step lengths has on inter-

polation success, in Figure 8.2 we show the first 50 regular steps of length

120 seconds (thin lines). For comparison, we simulate step lengths from

∆t ∼ Lognormal (µ = ln (120), σ), where σ = 0.25, 0.75, 1.50, 2.00, and then

plot the times (i.e., the cumulative sums of the step lengths) at which these

observations would occur, in dotted red lines. Two things are apparent:

1. Because increasing σ increases the variance of the step sizes, since log-

normal is a right-skewed distribution, the mean step size E(∆t) increases

as well, as we have seen. Thus, the total number of irregular steps T

needed to cover a fixed amount of time C∆Υ—a fixed number of regular

steps C—decreases. This means that the total number of observations

T that we have to estimate the trajectory with decreases with increasing

σ. This is illustrated in more detail in Figure 8.3 for the simulated shark

data used.

2. When σ, and thus irregularity, increases, the fewer observations that we

do have tend to occur at less evenly-spaced time Ht relative to the true

time Υc. This means, as we see in the third and fourth rows, that we may

end up with multiple observations in a single regular interval (Υc,Υc+1],

as well as long stretches of time between consecutive observed times Ht
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Figure 8.2: Illustration of effect of simulating time steps from a log-normal

distribution with µ = ln (120) and the σ parameter of the log-normal increas-

ing.

and Ht+1. The more unique constant intervals cour observations fall in,

the more complete information we have about the shark’s trajectory.

Both of these aspects make interpolating back to the true regular steps

more difficult when our observations are irregular.

Figure 8.4 shows, for shark 3 (green in Figure 8.1), simulated trajectories

for one of the five repetitions at values of σ = 0 (meaning the true data),

0.75, 1.25, and 2.00 for the step size distribution. In each panel, the red lines

show the observed trajectory resulting from interpolating the true unknown

trajectory (the upper left panel) at step sizes with the different values of σ. As

mentioned, increasing irregularity according to this distribution means that

the number of observations decreases; because of this, the distortion of the

shape of the observed trajectory (since it is linearly interpolated) from the

true one increases. In each case, we simulate particle locations at C = 100

regularly-spaced time intervals based on the observed interpolated data. In

each panel, a 2-D density plot of all of the particle locations is shown under
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datasets, across five repetitions at each level of irregularity. The mean num-

ber of observations decreases and the variance increases with σ, the standard

deviation of the log-normal distribution of ∆t, the length of time between

‘observed’ times Ht.
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the red trajectory. The darker the areas around the trajectory, the more

concentrated the particle predictions there. This figure shows us that even

with few observations, our PF can recover the observed trajectory well enough.

As long as the observed trajectory zt does not differ too much from the true

trajectory ζc in overall shape, the particles will reasonably approximate the

true trajectory as well.

To demonstrate that we can recover the true regular step behavior types

from the irregular observations, we calculate the classification accuracy (forag-

ing or transiting) of the C = 200 regular steps simulated in the PF compared

to both the behaviors at the T observed irregular steps (left column) and the

C unobserved regular steps (right column) in Figure 8.5. The classification

accuracy is calculated at the different levels of irregularity of step size (value

of σ in the log-normal distribution of ∆t).

8.3 Behavior classification accuracy

Since we are interested ultimately in inferring the relative prevalence of

behavior types (foraging or transiting) for the actual shark data, we will now

examine the success of the interpolation in modeling the behavior type. For

each of the four synthetic sharks, the true constant-interval trajectory ζ0:C at

times Υ0:C , which was simulated using behaviors λc at each interval. Interpo-

lation to synthetic irregularly-observed trajectories z1:T at times H1:T , based

on simulated time step lengths ∆t, was conducted, where the unobserved be-

haviors λt were taken to be λt = λc′ , where c′ := c : Υc < Ht ≤ Υc+1. That

is, the behavior λt at observed time Ht is taken to be the behavior λc of the

constant-length interval (Υc,Υc+1] that Ht falls in. Note, there may be more

than one observation Ht in each interval c. We wish to see if we can pre-

dict which (unobserved) behavior that shark had at each Ht, given only the

observed locations zt and the observed time gaps ∆t between them.

We use the three accuracy measures discussed in Section 7.2. The measure

A(·) is the overall classification accuracy measure of λt, while A(· | 0) and
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Figure 8.4: Spatial density (gray) of particle simulations of true locations ζc

for one instance of interpolating a true unobserved synthetic trajectory at

regular steps c to observed locations (red lines), with non-constant time gaps

∆t simulated with a log-normal distribution with various values of σ. The

upper left panel shows σ = 0, namely no interpolation, so the observed data is

the true trajectory, and the particles are simulated to the same steps c as the

true one. With higher σ, the time gaps ∆t are more variable, so the resulting

observed trajectory zt tends become a worse representation of the unobserved

trajectory ζc.
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A(· | 1) are the classification accuracy measures conditional on λt being either

foraging (0) or transiting (1). Figure 8.5 shows the accuracy measures for each

shark at each level σ of irregularity of the observed time gaps ∆t, across each

of the five repetitions of the PF. The dashed line shows the mean accuracy,

and the shaded areas show the minimum and maximum accuracies across the

five repetitions.

The results for all four sharks are similar. Interestingly, the mean accura-

cies A do not display a clear trend as the irregularity σ increases, though the

variability of each accuracy performance tends to increase. This is probably

because with higher standard deviation σ, the placement over the time range

[Υ0,ΥC ] of the observed times H1:T becomes more irregular and non-uniform,

and therefore at a given higher level of σ, the observed trajectories z1:T in each

repetition (each new draw of time gaps {∆t}) will tend to look different from

each other. In contrast, when σ is low, the interpolate observed trajectories

will look more similar, and thus classification performance on them is likely

more stable. Furthermore, higher σ means the number of observations T is

smaller on average, since the average time gap ∆t is longer, and classification

accuracy on a smaller sample is likely to be more variable than on a larger

sample of observations when σ is smaller. Note that the classification accuracy

for transiting, A(· | 1), tends to be smaller than for foraging. This may be

because transiting is a rarer behavior and is less likely to be predicted, even

with the weight rescaling factors a1.

Figure 8.3 shows how the number of observations in the interpolated datasets

decrease with the level of irregularity in step size. Even though the log-normal

distributions of ∆t are chosen to keep the median step size the same, because

the log-normal distribution is right-skewed, the mean step size increases expo-

nentially as we increase the standard deviation. Since the interpolated datasets

all are based on a true dataset of the same time span, a large step size between

observations, which is more likely with increased irregularity, means a larger

portion of the true data is unobserved. Larger mean step sizes means both

that we tend to have both fewer observations and longer spans of times with-
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Accuracy of behavior classification at observed times, shark 3
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Figure 8.5: Accuracy of behavior classification (λt) at observed locations zt

of synthetic shark trajectories, based on simulated interpolation to constant-

length intervals Υc and modeled behavior λc.
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out observations, which makes modeling the missing steps more difficult. The

regular observations chosen to interpolate based on are effectively chosen from

the set of 100 steps by the log-normal random sample, and with smaller sam-

ples we expect higher variance for, say, estimation of sample statistics (e.g.,

sample mean). Thus, even though the accuracies are generally stable even at

irregular interpolation, presumably with fewer observations, the classification

accuracy presumably depends on which observations are chosen. With low

irregularity, the distortion of the true data in the observations is lower, since

most of the observations will be used in the interpolation.

The transition probabilities, which we model by Dirichlet distributions, are

a key movement parameter we wish to recover. Our model’s posterior intervals

for the transition probabilities, combined across each of the five repetitions,

are shown in Figure 8.6. In this figure, within each cell, the vertical dashed

lines show the true empirical transition probabilities (fraction of steps begun

in each region where the shark left behavior i, out of the total number of steps

in that region in behavior i) for comparison with the intervals. If the vertical

line is close to the side of the box, it means the true foraging probability is

likely either 0 or 1, which generally means the shark entered the region only

a few times in the true data. Within each cell, the posterior intervals are

represented by the blue rectangles, stacked in order of increasing irregularity

of the simulated time step ∆t distribution. The highest interval in each cell is

at an irregularity of σ = 0, namely the particle filter learned on the true data.

If a vertical line is missing, it means the shark did not enter that region in the

true data. In this case, a posterior interval may still be estimated if a shark was

simulated to enter the region at least once by at least one particle simulation;

disagreements in this aspect are not unusual since the PF trajectories do not

perfectly follow the observed ones.

Based on a linear combination of the transition probabilities, we can esti-

mate the density of the overall foraging probability in each region, which is a

ecological description of the shark’s overall behavior. These posterior interval

estimates of the foraging probabilities, which are not a direct input into our
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Figure 8.6: 95% posterior intervals for switching probabilities between behav-

iors, based on irregular interpolation of regular steps to irregular observations.

Vertical dashed lines indicate empirical probabilities from the true data, if the

shark entered that region.
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Posterior intervals for Pr(forage), synthetic
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Figure 8.7: 95% posterior intervals of foraging probabilities from simulated

data for each shark and region combination, at various levels of irregularity.

The labels indicate the percentage of true regular steps that the shark spent

in each region. The vertical dashed line in each panel shows the true foraging

probability (percentage of regular steps spent foraging) p
(r)
0 in each region

r ∈ {1, 2}.

simulation of synthetic trajectories, are shown in Figure 8.7.

8.4 Inter-shark behavioral influence

In Section 6.4, we proposed a spatial-temporal measure of behavioral as-

sociation between sharks. The behavior association is modeled separately for

each shark and behavior but does not depend on the regions. The interaction

setup measures whether a shark is more likely to forage or transit depending

on the relative frequency of other sharks’ behaviors in a specified Euclidean
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Posterior intervals for foraging interaction parameter η0
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Figure 8.8: 95% posterior intervals for behavior interaction parameter η0, at

each level of irregularity of step size, with irregularity again increasing in

descending order.

spatial and temporal neighborhood N(·). We need only model one parameter,

η0, for the influence of foraging, where we set the prior mean ηk=0,0 = 0. A

mean value η0 > 0 means that foraging behavior λc = 0 tends to spatially clus-

ter, while a negative value means foraging sharks tend to repel each other. The

proportion πc,s,0 is the fraction of the shark’s neighbors (for a neighborhood

above a minimum number of members) that are foraging. The parameters

η0 and πk=0 are then used in a log-normal distribution to draw an intensity

multiplier ρk=0 ∼ Lognormal (ηk=0πk=0, τk=0), which is used to weight the

behavior-conditional particle weights w
(n)
c|0 for resampling. As with all parame-

ters, we hope the resampling weights will help our algorithm learn the correct

values by favoring particles whose parameters best predict the observations.

Figure 8.8 shows the 95% posterior intervals of foraging interaction inten-

sity η0, at each level of step size ∆t irregularity. If there is no interaction
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effect for foraging behavior, then ηk=0 ≈ 0, and thus the mean parameter of

the multiplier ρk=0, µ = ηk=0πk=0 = 0, for any fraction 0 ≤ πk=0 ≤ 1. This

means that, for instance, having a higher proportion of neighbors be foraging

does not impact the shark’s foraging probability. Thus, to test for significant

interactions in this way, we need ηk=0 to not be significantly different from 0,

meaning the posterior interval does not contain 0. Generally if there is signif-

icant interaction, then ηk=0 > 0 since we expect foraging behavior to cluster

rather than repel each other.

Sharks 1 and 2 (black and red in Figure 8.1) were generated independently

and then the datasets combined, so we should not learn any significant in-

teraction effects. Sharks 3 and 4 were simulated to have positive foraging

interaction effects, namely that they are more likely to forage if other nearby

sharks (including 1 and 2) foraging. Indeed the results of Figure 8.8 generally

confirm these results. First, note that none of the intervals for any sharks are

significantly to the left of η = 0, which would indicate repelling rather than

congregation of foraging.
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CHAPTER 9

OBSERVED SHARK DATA

SIMULATION RESULTS

9.1 Parameter setup

The results in Section 8 indicated that our interpolation EKF PF algorithm

can decently recover movement and behavioral parameters of an irregularly-

observed trajectory based on a true, unobserved, regular-step CRW. The model

is able to classify behavior type at the points we do observe, with reasonable

average accuracy across levels of irregularity of time step length. We assume

that the actual shark data can similarly be modeled as irregularly-timed ob-

servations from an underlying unobserved CRW at regular time steps. To

assess the accuracy of our model, we will use the values from the spline in-

terpolation to the same constant step interval ∆Υ—for behavior transition

and foraging probabilities—as comparison. However, we will use these only

as a guide without assuming them to be the true values, as we have with the

synthetic trajectories in Figure 8.6 and others.

The subset of the raw data we will use covers sharks 12, 13, 14, 15, and

16 for the period 3:40 AM to 5:40 AM on May 2, 2009, a span of 50 hours,

slightly over two days. We estimate a total of C = 2, 000 steps of constant

length ∆Υ = 90 seconds to cover this period. Figure 9.1 shows, using the subset
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Figure 9.1: Actual trajectories of sharks 12–16 used for simulation. The red

lines show Euclidean paths of the observations zt for each shark. The gray

and black areas show the spatial densities of the constant-interval locations

{{ζ(n)
c }Cc=1}Nn=1 collected across the N = 200 particles and for 10 repetitions of

the simulation. Each panel title indicates the number of observed locations T

are used as inputs for the particle filter.

of the actual data, the five trajectories using Euclidean paths connecting the

observed locations zt for each shark. As we can see, the five sharks covered

most of the tidal basin area over the subset of time examined; good regional

coverage is essential to have more complete analysis of the regional behavior

patterns.

The following prior parameters were used for all sharks and regions, based

on experiments tuning the parameters:

• Variance (σ2) of log-speed ln (vc):

– Foraging: σ2
c | (λc = 0) ∼ G−1(a0 = 8, b0 = 2)

– Transiting: σ2
c | (λc = 1) ∼ G−1(a0 = 8, b0 = 1)

• Variance (τ 2) of turn angle θc:

– Foraging: τ 2
c | (λc = 0) ∼ G−1(a0 = 10, b0 = 0.75)

– Transiting: τ 2
c | (λc = 1) ∼ G−1(a0 = 10, b0 = 0.25)
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• Transformed speed ln (vc):

– Foraging: ln (vc) | (λc = 0) ∼ N (αc = −4.25, κ0,0 × σ2)

– Transiting: ln (vc) | (λc = 1) ∼ N (αc = −2, κ1,0 × σ2)

• Turn angle θc:

– Foraging: θc | (λc = 0) ∼W N (βc = 0, κ3,0 × τ 2)

– Transiting: θc | (λc = 1) ∼W N (βc = 0, κ4,0 × τ 2)

• NIG degrees of freedom (above) κ = 20.

• Probability transition probabilities, for regions r = 1, . . . , R = 10:

– From foraging: (p0→0, p0→1) ∼ Dir (α0→0 = 25, α0→1 = 3)

– From transiting: (p1→0, p1→1) ∼ Dir (α1→0 = 2, α1→1 = 7)

The parameters are the same for each region to see if we can learn the

differences between the regions. This corresponds to a average transition

probabilities of P ≈

[
0.89 0.11

0.22 0.78

]
; the variance depends on the absolute,

not relative, magnitude of the parameters.

• Location error covariance matrices: Let Λ =

[
1 −0.3

−0.3 1.25

]
.

– Error covariance between states for ζc | xc−1 (not dependent on

previous behavior λc−1):

∗ Σζ0 ∼ W −1
2 (Λζ0 , ηζ0) where degrees of freedom ηζ0 = 20 and

scale matrix Λζ0 = 0.5ηζ0Λ =

[
10 −3

−3 12.5

]
.

– Error covariance between for observations yc | (xc, λc):
Σz0 | λc ∼W −1

2 (Λz0,λ0 , ηz0,λ0), where

∗ Degrees of freedom ηz0,λ0=0 = ηz0,λ0=1 = 20
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∗ Scale matrices for foraging Λz0,λ0=0 = 5ηz0,λ0=0Λ =

[
100 −30

−30 125

]

and transiting Λz0,λ0=1 = 15ηz0,λ0=1Λ =

[
300 −90

−90 375

]
.

• Maximum intervals to simulate without observations: cthresh = 10.

• Interaction parameters (see Section 6.4):

– For a given behavior λ ∈ {0, 1} and fraction πλ of a shark’s neigh-

bors having behavior λ, the spatial interaction effect is ρλ ∼ Lognormal (πληλ, τλ),

where, for both λ ∈ {0, 1},

– Precision (assumed known) τλ = 2, and

– Spatial interaction strength ηλ ∼ N (ηλ,0 = 0, τλ,0)

• Behavior rescaling weights (see Section 5.6): a0 = 1, a1 = 2.5.

9.2 Discussion of results

We will use the spline interpolation as a basis for evaluating the accuracy

of the joint particle filter, since we do not know the underlying regular-step

trajectories underlying the observed data. For the raw data, we perform ten

repetitions of the joint PF with the same prior parameters. For each parameter

of interest, the distributions estimated are combined across the N particles and

ten repetitions for each shark.

First, we we will examine the distributions of the log-velocities ln (vc) and

turn angle θc, the main movement variables of interest, conditional on each

behavior λc. These are estimated by making 100 draws from each particle n’s

distribution, and pooling the results to estimate the densities. As Figure 9.2

shows, the density of the log-velocities are generally well-separated, and thus

identifiable, with foraging having lower speed than transiting. However, the

turn angle (θc) distributions for the two behaviors are difficult to separate be-

cause they are both centered around 0 (following the CRW model assumption)
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but the variances were hypothesized as differing. Even if the true variances of

turn angles for the two behaviors differed, it is difficult to accurately model

the two distributions because they overlap significantly. This is probably true

even when running the EKF algorithm on synthetic data where the true dis-

tributions are generated as having different variances.

Figure 9.3 shows 95% posterior intervals for the stationary foraging prob-

abilities (see Section 6.2) p
(r)
0 by for each region r. If a shark was simulated

at any time in the 10 repetitions to enter a region, a posterior interval is

estimated; therefore, for instance, shark 12 has intervals estimated for only

regions 6,7, and 9, since it did not travel very far in this time window. The

black dots show the empirical foraging probability for that region based on the

spline-interpolated data subset, not the full raw data; a point is only plotted

if the spline interpolation has the shark entering the region at all. For each

shark, the widths of the rectangles are the posterior interval, and the rectan-

gles’ heights as proportion of the total vertical space in the regional box are

the percentages the shark’s simulated movements at constant-length intervals

c spent in that region. One main reason for interpolating to constant-length

time intervals is to be able to calculate rates and probabilities (e.g., forag-

ing, regional occupancy), since simulated variables are now equally-weighted

in terms of time. Thus, a shark that is simulated to have spent all of its time

in interval 1 would have a rectangle take up 100% of the vertical space for that

regional box, with all other regions empty. The total rectangle heights should

thus be equal, totaling 100%, for each shark.

The rectangle heights are scaled by the proportion of time the shark spent

in each region because more time means that region’s estimate of foraging

probability or any other quantity is likely to be more reliable. With total

number of time intervals C = 2, 000, the actual number of constant time steps

c simulated for each shark can be less than C because cthresh, the maximum

number of intervals c allowed between pairs of consecutive observed times Ht

and Ht+1 in order to simulate movement at times Υc between them, may be

exceeded. The problem lessens as C, the number of time intervals to sim-
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Figure 9.2: Estimation of densities of log-velocity ln (vc) and turn angle θc ∈
[−π, π] for each shark, for inferred foraging and transiting behavior, based on

the subset of the observed data.
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ulate, increases, but a region that the shark spent, say, 1% of its time in,

only represents at most 20 constant intervals c of movement if C = 2, 000.

Twenty simulated movements is not enough to reliably estimate probabilities

for foraging or transitions between behaviors.

The black dots in each region represent the regional foraging probabilities

estimated by the Bézier spline. As discussed, we do not necessarily believe

these represent true values, but are just an approximation. A black dot is

shown if the spline estimates ever have a shark entering that region. These are

probably not reliable estimates for comparison if the shark spent only a few

constant intervals c in that region, in which case they often fall outside of our

posterior intervals. If there is an interval estimated but no black dot, it means

the shark was simulated (probably only rarely) as entering a region that it

did not enter in the spline interpolation. Note that the posterior intervals are

skewed to the right, so overall foraging is more likely than transiting at any

point. This matches the biological intuition that animals should spend the

vast majority of their time (i.e., steps) moving slowly or foraging, to conserve

their energy.

Figure 9.4 shows 95% posterior intervals for the regional transition proba-

bilities Pr(forage → transit | r) = p
(r)
0→1 and Pr(transit → forage | r) = p

(r)
1→0,

with black dots showing the empirical transition probabilities estimated from

the spline interpolation. Biologically, we assume that sharks tend to extended

longer periods of time foraging, punctuated by occasional movements (tran-

siting) between foraging areas, and hence the per-step probability of leaving

foraging behavior should be small. The corresponding probability of leaving

the transiting behavior should be larger, since the shark can spend only a short

amount of time transiting, or moving more quickly. This intuition is confirmed

in the the figure, where the posterior intervals for Pr(forage→ transit | r) tend

to be narrow and close to 0, while for Pr(transit → forage | r), they tend to

be wider.

As a word of caution against relying too strongly on the estimates from the

spline interpolation, we note that the for Pr(transit→ forage | r), the second
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Posterior 95% intervals for p0
(r) = Pr(forage|region)
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Figure 9.3: 95% posterior intervals for the foraging probability for each shark

for each region, with vertical line segments indicating the median probability

estimate. The black dots indicate the empirical foraging probability for the

data subset interpolated to regular steps of ∆Υ = 90 seconds. The columns of

percentages show the percentage of regular steps that the shark spent in each

region, in the data subset. For regions where this ‘empirical regional share’

was low, analysis should be limited.
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Posterior 95% intervals for behavior transition probabilities pi→j
(r)  , observed data
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Figure 9.4: 95% posterior interval estimates of transition probabilities between

behaviors in each region, with vertical line segments indicating the median

probability estimate. The black dots show empirical estimates of these prob-

abilities from the spline interpolation; however, as discussed, these estimates

may result as an artifact of the spline algorithm rather than indicating some-

thing about the true biological behavior.
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plot, many of the empirical estimates indicated by the black dots are also

close to zero, while the biological intution is that these probabilities should

be higher. As Figure 3.1 noted, in the case when the constant time step

length ∆Υ of the Bézier spline interpolation is somewhat smaller than the time

intervals between the observations used as control points, the spline results

in longer sequences of left or right turns. Similarly, if we use the average

speed over these regular intervals, calculated as the ratio of the distance to

the time interval ∆Υ, as an indicator of the behavior type, as in Figure 2.6,

depending on the sinuosity of the estimated spline, the spline may give longer

unbroken sequences of each behavior. These sequences have more to do with

the spline algorithm than with the actual biological behavior. Thus, it may

make more sense to use the splines to estimate the overall regional relative

prevalence of foraging vs transiting behaviors, as in the foraging probability

(Figure 9.3), rather than the transition probabilities between the behaviors.

The probabilities Pr(transit→ forage | r) in particular may not be estimated

well by the spline paradigm.

Figure 9.5 shows the 95% posterior estimates of η0, the mean parameter

of the normal distribution for η, the intensity of the interaction, which when

mutliplied by πc,s,0 (the fraction of neighbors that are foraging), serves as the

mean parameter of the log-normal distribution of ρ0, the multiplier for the

interaction effect. As discussed in Section 6.4, if η > 0, which is more likely

when its mean η0 > 0, a higher proportion of foraging neighbors (πc,s,0 closer to

1) is associated with the shark being more likely to forage itself; this indicates

an effect on the shark’s behavior above and beyond the regional parameters.

If there is a neighbor effect on behavior, the 95% posterior intervals of η0

should exclude zero, and we expect them to be positive rather than negative.

Based on the data subset, none of the intervals are firmly negative, and two

(for sharks 12 and 13) are positive. This provides at least some evidence that

there may be some inter-shark behavioral influence, at least of the form that

we have posited. An experiment on more data would be needed for further

analysis.
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Posterior 95% intervals for behavior interaction η0
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Figure 9.5: 95% posterior interval estimates of η0, the mean parameter of

the behavior interaction parameter, with vertical line segments indicating the

median estimate; if η0 > 0, more foraging neighbors is associated with the

shark being more likely to forage.
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CHAPTER 10

FUTURE AREAS OF

RESEARCH

In the course of learning about animal telemetry models and particle filter-

ing, we considered several potential extensions or modifications of our model

based on ideas in the literature. Unfortunately, due to time constraints, we

were not able to explore all these extensions in detail. Several that we have

mentioned include

• Considering a time-dependent model for behavioral transitions (see Sec-

tion 6.3), where the animal is more likely to leave the current behav-

ioral model the longer it has remained in that mode, uninterrupted. As

mentioned, such as model may be more realistic than the Markovian as-

sumption, because it may better reflect the biological model of animals

foraging in an area until its resources are depleted, then leaving (i.e.,

changing to transiting); such a model is considered in Van Moorter et

al. ([54]).

• Considering a continuous-time model, such as the Ornstein-Uhlenbeck

model (see Johnson [21]) rather than discrete-time, in which we interpo-

late the irregular observations to a sequence of regular-length steps of a

short time span ∆Υ.
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• Learning regional behavioral parameters, such as transition probabilities,

where the region partition is learned sequentially and is not fixed, as in

McClintock et al. ([35]).

• Studying in more depth the effect particle smoothing has on filter pa-

rameter estimates.

• Using a Bayesian model fit measure such as the Bayes Factor (see Kass

and Raftery [26] for a summary of Jeffreys’ work) to validate the model

fit to each shark. The Bayes Factor is a measure that compares two

competing models—for instance a simpler and more complex model, or

competing sets of model parameter values—for a dataset by evaluating

the data likelihood conditional on each of the models. For instance, let

θ(i) be the movement parameters learned from the observed trajectory

y(i) of shark i, and let ` denote the likelihood of the data. To validate

our particle filter results, we may want to verify that for various pairs

of sharks (i, j), i 6= j, that `
(
y(i) | θ(i)

)
> `

(
y(i) | θ(j)

)
and vice versa.

The ratio of these likelihoods, when combined with optional priors on the

parameters θ(i) vs θ(j), constitutes the Bayes Factor. That is, that the

parameters learned using shark i’s trajectory provide a better model for

its trajectory than do those learned from shark j’s trajectory; in other

words, that the parameters actually represent something unique to that

shark, or at least that they provide the best fit.

Carvalho et al. ([10], 6–7) describes use of the Bayes Factor to monitor

the performance of the PF while it is running, but what we would like

is a method to compare the fit of pairs of sets of parameter values after

the PF has run. This concern, at least how we have described it, does

not appear to figure prominently in the literature.

• Modifying the shark EKF setup to use a circular distribution for turn

angle, such as the von Mises distribution, rather than a transformation

to normality. As noted earlier, transformations to normality to allow
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us to use the CDLM and EKF formulations, which rely on the Delta

Method.

• Using a different formulation such as the Unscented Kalman filter (UKF,

see Särkkä [45], page 81–92), which can model particle distributions di-

rectly without specification of the nonlinear function as in the EKF. The

UKF can outperform the EKF on nonlinear problems because it models

the second moment of the nonlinear function, as opposed to the EKF,

which is a first-order approximation.

• The choice to model the sharks’ velocity with the natural log transfor-

mation was motivated by the spline interplolation (Figure 2.6), which

showed the log-velocities as being roughly normally-distributed and usu-

ally bi-modal, indicating two potential behaviors with different speeds.

When we simulate ln (vc) ∼ N (·) and then apply the exponential trans-

formation to obtain the speeds vc to estimate the next location, the re-

sulting speeds have a log-normal distribution and thus are skewed right.

Say the time gap to the next observation is ∆Υ = 500, and the shark be-

gins from locations centered at µζ =
[
70 50

]
. Say we have N = 10, 000

particles, and that the observed locations are ζ(n)
c ∼ N 2(µζ ,Σc) with

uncertainty covariance Σc =

[
4 −1

−1 3

]
. Let the bearing be ψc ∼

W N (2, 0.5) (based on the standard deviation of the turn θc) and the

log-speed ln (vc) ∼ N (−2, 0.5). Based on these movements, the predic-

tion of the next location is ζ̂
(n)
c+1 = ζ(n)

c + v
(n)
c ∆Υ

[
cos (ψ

(n)
c ) sin (ψ

(n)
c )
]
.

According to the EKF formulation, the predictions (like all variables)

should have the multivariate normal distribution

ζ
(n)
c+1 ∼ N 2

(
ζ̂

(n)
c+1, Fx

(
x(n)
c

)
ΣcFx

(
x(n)
c

)T
+ Qc+1

)
However, if we plot the empirical distribution of the locations {ζ(n)

c+1}Nn=1

(Figure 10.1), we see the locations don’t have an elliptical shape as would

be typical of a multivariate normal, but rather are skewed in the direc-
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Figure 10.1: Empirical distribution of toy predicted locations.

tion of the bearing ψ̂c = 2, due to the log-normal distribution of the

speeds. Assuming the choice to model the log-speed (as opposed to the

raw speeds) by a normal distribution, the multivariate skew-normal dis-

tribution (introduced by [2], see Figure 10.2 for an example of a contour

plot) may be more accurate for modeling locations. This distribution has

been used for Kalman filtering (see, for instance [38]), but its distribution

is significantly more complex than the multivariate normal.
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Figure 10.2: Example of 2-D contour plot of a multivariate skew normal dis-

tribution (source: [2]).
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APPENDIX A

Appendix

A.1 R package

In addition to the results in this thesis, we will be publishing a statistical

software package for R, called animalEKF that can be publicly downloaded.

This package will have the following features:

• Implementation of the 1-D robot EKF and 2-D shark EKF movement

model.

• Implementation of functions to simulate synthetic 1-D and 2-D move-

ment data at regular and irregular intervals.

• Interactive shiny visualizations to show

– Visualization of the original raw shark data

– How 1-D robot EKF works with both one and two-behavior move-

ment

– How 2-D robot EKF (analogous to the sharks) works with two-

behavior movement

Here, we briefly review the animations available in the package.
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Figure A.1: Screenshot of observed data visualization from function

shark vis longlat.

The function shark vis longlat shows a sped-up time-lapse animation

of the observed shark data, interpolated to constant-length intervals with the

Bézier spline (see Section 2.4). Users can select a subset of the observations

to view; the default values are set to an ‘interesting’ portion of the data where

there are several sharks observed concurrently. There are options to display a

circular spatial neighborhood of a chosen radius around each shark (to mimic

the inter-shark influence parameter discussed in Section 6.4), where the outer

circle flashes red whenever a shark enters another’s spatial neighborhood. A

screenshot of this function is shown in Figure A.1.

The function cdlm robot which implements a particle of the 1-D robot

with one behavior (see Section 4.5) which aims to estimate the mean α of

velocity vt ∼ N (α, σ). The user can choose the following parameters:

• Unknown true velocity mean α and known true variance σ2 used to

simulate a 1-D path

• maximum number of observed steps (T )
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• constant time gap ∆Υ between observations t

• number of particles N

• prior variance on velocity mean

• covariance error matrix Qt of xt and measurement error variance Rt

• covariance matrix Pt of the elements of xt

• option to color features (weights, densities, etc.) separately by particle,

or to color each particle gray except for the best ones (by weight) which

are in red.

Figure A.2 shows a screenshot of the function graphs, which display the

diagnostic results of the particle filter in real time. The graphs show, from left

to right and top to bottom,

1. Given each particle n’s initial value of α(n) drawn from the common

prior, we show the normal density function for velocity vt ∼ N (α(n), σ)

(various colors), compared to the true unknown distribution centered at

mean α (black). Eventually the particle distributions should converge to

the true distribution around α.

2. At time t, each particle’s prediction of the observation yt+1 = zt+2, shown

by the black dots. The width of each rectangle is the 95% confidence

interval of ŷt+1 | xt. Since the only unknown parameter is α, each

particle has the same measurement error variance, so the intervals are

all the same width.

3. Resampling weights {w(n)
t }Nn=1, shown by the heights of the sticks.

4. Resampled predictions {ỹ(n)
t+1}. The resampling is shown in slow-motion

to illustrate the resampling process. Each weight in the graph to the left

flash as they are resampled, and predictions appear.
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Figure A.2: Screenshot of 1-D robot PF for a single behavior from function

cdlm robot.

5. History of convergence (ideally) of values of α
(n)
t over time to the true

value of mean velocity α.

6. History of distribution of simulated locations {ζ(n)
t } around the observed

values z1:T .

The function cdlm robot twostate implements the 1-D robot CDLM with

two movement modes (see Section 4.4). The same parameters for the single-

mode function cdlm robot are available, in addition to

• additional mean parameter for the second mode αt | (λt = 2) and prior

on this mean

• true constant transition probabilities p1→2 and p2→1
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• option to have transition probabilities known or estimated. If estimated,

the user provides a Dirichlet prior distribution on them.

Both behavioral modes’ velocity distributions are assumed to have the same

variance for simplicity. The graphs in Figure A.3 are

1. Initial distributions of vt ∼ N (α(n), σ | λt) for each behavior type. Here,

type 1 is slow and type 2 is fast.

2. Predictions and confidence intervals of ŷt+1 | λt. The second mode is

shown by rectangles of the same color with black crosshatches.

3. Overall particle resampling weights {w(n)
t } (top) and behavior-conditional

weights {w(n)
t|k } (bottom).

4. Resampled predictions ŷt+1 after particles are resampled and then be-

haviors λt are propagated by the conditional weights. As before, the

resampling is shown in slow-motion.

5. History of convergence (ideally) of values of α
(n)
t | λt over time to the

true value of mean velocity α for each behavior.

6. History of distribution of simulated locations {ζ(n)
t } around the observed

values z1:T .

7. If transition probabilities are unknown, the estimated marginal Beta

distributions of each pair p1→2 and p2→1, which ideally should increase

in density around the true values, shown by the vertical lines.

8. History of the proportion of particles predicting the true behavior λt

at each step t, shown by the heights of the bar. The bars are shaded

according to the true, unobserved behavior type. Ideally all of the bars

should be high, reflecting consistently high classification accuracy.

The function cdlm robot twostate 2D implements a 2-D CDLM with two

behavioral modes, similar to the shark model but without most of the com-

plicating factors of turn angle modeling, regions, and interactions. Similar to
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Figure A.3: Screenshot of 1-D robot PF for two movement modes from function

cdlm robot twostate.
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the 1-D two behavior CDLM, here there are two behaviors and the goal is to

model the mean of the log-speed ln (vt) for each behavior λt. To avoid the

compilations of the wrapped normal distribution, we assume the turn angle

distribution is known. The log-speed distributions also have a common known

variance, as before.

The same parameters for the two-mode function cdlm robot twostate 2D

are available, in addition to

• known variance τ 2 of the turn angle distribution, which is centered at

β = 0.

• confidence level (default 50%) of the posterior ellipse around predictions.

The graphs in Figure A.4 show output for the function cdlm robot twostate 2D.

Many of them are the same as the 1-D version.

1. Initial distributions of log-speed ln (vt) ∼ N (α(n), σ | λt) for each behav-

ior type. Here, type 1 is slow and type 2 is fast.

2. Predictions and confidence ellipses of ŷt+1 | λt. The second mode is

shown by ellipses with dashed borders.

3. Overall particle resampling weights {w(n)
t } (top) and behavior-conditional

weights {w(n)
t|k } (bottom).

4. Resampled predictions ŷt+1 after particles are resampled and then be-

haviors λt are propagated by the conditional weights. As before, the

resampling is shown in slow-motion.

5. History of convergence (ideally) of values of α
(n)
t | λt over time to the

true value of mean velocity α for each behavior.

6. History of simulated locations {ζ(n)
t }, shown by black 2-D density. The

observed trajectory is shown as a red path on top. Ideally the density

should cluster around the observations.
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Figure A.4: Screenshot of 2-D robot PF for two movement modes from function

cdlm robot twostate 2D.
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7. Beta distributions of each pair of transition probabilities p1→2 and p2→1,

if unknown.

8. Particle classification accuracy of the behavior λt.

A.2 Shark EKF parameter updates

Kalman filter recursions

Using the linear relations and Gaussian noise in the KF, equations for re-

cursive updates of the mean vector and covariance matrix, and the posterior of

yt at each step can be derived. Due to the Markovian property, the dependence

is actually only on the previous observation.

Adapted from Särkkä ([45], page 57). Here the superscript − indicates the

parameter value (e.g., the vector mt) before being updated to reflect the most

recent observation yt.

xt | y1:(t−1) ∼ N(m−t ,P
−
t ); yt | y1:(t−1) ∼ N (Mtm

−
t ,St)

xt | y1:t ∼ N (mt,Pt)

m−t = Ltmt−1

P−t = LtPt−1L
T
t + Qt

mt = m−t + PtM
T
t (yt −Mtm

−
t ) (mean update given prediction error to yt)

St = MtP
−
t MT

t + Rt (innovation covariance matrix)

Kt = P−t MT
t S−1

t (Kalman gain matrix)

Pt = P−t −KtStK
T
t

State (xt) parameter updates

See reference by Murphy ([37]) for posterior inference on the normal distri-

bution.
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For behavior (λ) k ∈ {0, 1}

ln (vc) : p(αk, σ
2
k) ∼ N (αk | α0,k, κ10,kσ

2
k) × G−1(σ2

k | a0,k, b0,k)

θc : p(βk, τ
2
k ) ∼ N (βk | β0,k, κ20,kτ

2
k ) × G−1(τ 2

k | c0,k, d0,k)

The turn angle θc really has a wrapped normal distribution. However, the

normal distribution can be used. We draw the next bearing ψc ∼ N (ψc−1 +

βk, τ
2
k ). The resulting angle θc = ψc−ψc−1 (before wrapping) is used to update

the parameters of the wrapped normal distribution the same way as the normal

is.

Perform the following recursive updates for each particle at iteration c.

Updates are only performed to parameter for which λc is observed:

κ1c,λc
= (κ−1

1c−1,λc
+ 1)−1

κ2c,λc
= (κ−1

2c−1,λc
+ 1)−1

αc,λc = (κ1c−1,λc
αc−1,λc + γc)κ1c,λc

βc,λc = (κ2c−1,λc
βc−1,λc + φc)κ2c,λc

ac,λc = ac−1,λc + 0.5

cc,λc = cc−1,λc + 0.5

bc,λc = bc−1,λc + 0.5(α2
c−1,λc

κ−1
1c−1,λc

+ γc − α2
c,λc

κ−1
1c,λc

)

dc,λc = dc−1,λc + 0.5(β2
c−1,λc

κ−1
2c−1,λc

+ φc − β2
c,λc

κ−1
2c,λc

)

Inverse-Wishart Distribution Parameter updates

Here, ∆Υ is the constant-length time interval length.[
ζ1,c

ζ2,c

]
is bivariate normal with covariance matrix Σζc

The inverse-Wishart distribution is updated by summing squared errors:

Σζc ∼W −1
2 (Λζc , ηζc)

Ac =

[
ζ1,c − (ζ1,c−1 + vc−1∆c−1 cos (ψc−1))

ζ2,c − (ζ2,c−1 + vc−1∆c−1 sin (ψc−1))

]
Λζc = Λζc−1 + AcA

T
c ; ηζc = ηζc−1 + 1
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Here, state xc occurs at constant interval time Υc, where Υc < Ht ≤ Υc+1

and Ht is the observation time of observation yt. The time gap is ∆t =

(Ht −Υc) < ∆Υ.

yt =

[
z1,t+1

z2,t+1

]
is bivariate normal with covariance matrix Σzt+1 | λc

Σzt+1 | λc ∼W −1
2 (Λzt,λc

, ηzt,λc )

Bt =

[
z1,t+1 − (ζ1,c + vc∆t cos (ψc))

z2,t+1 − (ζ2,c + vc∆t sin (ψc))

]
Λzt,λc

= Λzt−1,λc
+BtB

T
t ; ηzt,λc = ηzt−1,λc

+ 1
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