
FROM SPORTS TO PHYSICS: DEEP REPRESENTATION LEARNING IN
REAL WORLD PROBLEMS

Dissertation
Submitted to

the Temple University Graduate Board

In Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by
Sandro Hauri

May 2023

Examining committee members:

Dr. Slobodan Vucetic, Dissertation Advisory Chair, Department of Computer and
Information Sciences
Dr. Longin Jan Latecki, Department of Computer and Information Sciences
Dr. Hongchang Gao, Department of Computer and Information Sciences
Dr. Vincenzo Carnevale, Department of Biology

ABSTRACT

Machine learning has recently made significant progress due to modern neural network

architectures and training procedures. When neural networks learn a task, they create

internal representations of the input data. The specific neural network architecture, training

process, and task being addressed will influence the way in which the neural network

interprets and explains the patterns in the data. The goal of representation learning is

to train the neural network to create representations that effectively capture the overall

structure of the data. However, the process by which these representations are generated

is not fully understood because of the complexity of neural network data manipulations.

This makes it difficult to choose the correct training procedure in real world applications.

In this dissertation, we apply representation learning to improve the performance of neural

networks in three different areas: NBA movement data, material property prediction, and

generative protein modeling.

First, we propose a novel deep learning approach for predicting human trajectories

in sporting events using advanced object tracking data. Our method leverages recent

advances in deep learning techniques, including the use of recurrent neural networks and

long short-term memory cells, to accurately predict the future movements of players and

the ball in a basketball game. We evaluate our approach using data from the NBA’s

advanced object tracking system and demonstrate improved performance compared to

existing methods. Our results have the potential to inform real-time decision making in

sports analytics and improve the understanding of player behavior and strategy.

ii

Next, we focused on group activity recognition (GAR) in basketball. In basketball,

players engage in various activities, both collaborative and adversarial, in order to win the

game. Identifying and analyzing these activities is important for sports analytics as it can

inform better strategies and decisions by players and coaches. We introduce a novel deep

learning approach for GAR in team sports called NETS. NETS utilizes a Transformer-

based architecture combined with LSTM embedding and a team-wise pooling layer to

recognize group activity. We test NETS using tracking data from 632 NBA games and

found that it was able to learn group activities with high accuracy. Additionally, self- and

weak-supervised training in NETS improved the accuracy of GAR.

Then, study an application of neural networks on protein modeling. Recent work

on autoregressive direct coupling analysis (arDCA) has shown promising potential to

efficiently train a generative protein sequence model (GPSM) to adequately model protein

sequence data. We propose an extension to this work by adding a higher order coupling

estimator to build a model called autoregressive higher order coupling analysis (arHCA).

We show that our model can correctly identify higher order couplings in a synthetic

dataset and that our model improves the performance of arDCA when trained on real-

world sequence data.

Finally, we study material property prediction. Incorporation of physical principles

in a machine learning (ML) architecture is a fundamental step toward the continued

development of AI for inorganic materials. As inspired by the Pauling’s rule, we propose

that structure motifs in inorganic crystals can serve as a central input to a machine learning

framework. To demonstrate the use of structure motif information, a motif-centric learning

framework is created by combining motif information with the atom-based graph neural

networks to form an atom-motif dual graph network (AMDNet), which is more accurate in

predicting the electronic structures of metal oxides such as bandgaps. The work illustrates

the route toward fundamental design of graph neural network learning architecture for

complex materials by incorporating beyond-atom physical principles.

iii

To my wife Charlotte.

In loving memory of Roland and Tanja.

iv

ACKNOWLEDGEMENTS

I’m eternally grateful to my academic advisor Dr. Slobodan Vucetic, who guided me

throughout my studies, encouraged me to investigate every problem thoroughly, and asked

the tough questions along the way to prepare me for future success.

I thank the members of my dissertation committee Dr. Longin Jan Latecki, Dr.

Hongchang Gao, and Dr. Vincenzo Carnevale, for their thoughtful inputs and suggestion

how to further improve this work. Their encouragements and feedback were a great source

of motivation for me to continue my research.

I thank Nemanja Djuric for his excellent leadership during my internship at Aurora.

There, I not only learned technical skills, but I also gained valuable experience working

in a modern software development environment. I want to thank everyone at Aurora for

the opportunity to work on the perception capabilities in autonomous vehicles, which was

a very exciting area to work on. I am particularly thankful to Shivam Gautam for his

mentorship and knowledge sharing during the internship.

I am grateful to Nemanja Djuric and Vladan Radosavljevic for their valuable

contributions to our work on multi-modal trajectory prediction for basketball players.

Their assistance was eye-opening in helping me understand the importance of attention

to detail in writing a paper.

I want to thank all of my collaborators from different departments at Temple, including

Dr. Vincenzo Carnevale, who took the time to carefully review challenging problems in

bioinformatics with me. I’d like to thank Dr. Qimin Yan and Dr. Huta Banjade for their

v

great collaboration on material property prediction. I thank Dr. Francisco McGee, Dr.

Allan Haldane, and Dr. Ronald Levy for their collaboration on higher-order epistasis

modeling. I also thank all of my collaborators on the RoboSNAP project, Dr. Philip

Dames, Dr. Donald Hantula, Zhanteng Xie, Alexander Russakoff, Lindsay Ouellette, and

Drew Kronstadt.

I thank my labmates and friends for the great discussion and input throughout my

program, Dr. Shanshan Zhang, Dr. Chao Han, Dr. Tian Bai, Dr. Aniruddha Maiti, Dr.

Ashis Chanda, Ziyu Yang, Saman Enayati, Shikai Fang, Piyush Borole, Tamara Katic, Sai

Shi, Beth Garrison, Hanzi Xu, Abbey Liu, Vahid Mahzoon, and Mathew Kuruvilla.

I thank my family and friends for supporting me and being understanding for not

hearing from me when I was overwhelmed with work. Last but not least, I thank my wife

Charlotte, who is the reason I made it this far. Without your support during the tough times

of COVID lockdowns and dark winter months, I would not have been able to complete my

program.

vi

TABLE OF CONTENTS

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . xii

1 INTRODUCTION . 1

1.1 Human Trajectory Data Mining 2

1.2 Generative Protein Modeling . 3

1.3 Physical Property Prediction of Oxide Crystals 3

2 LITERATURE REVIEW . 5

2.1 Human Trajectory Data Mining 5

2.2 Generative Protein Modeling . 6

2.3 Physical Property Prediction of Oxide Crystals 8

3 TRAJECTORY PREDICTION FROM NBA MOVEMENT DATA 9

3.1 Methodology on Trajectory Prediction 9

3.2 Experiments on Trajectory Prediction 15

4 GROUP ACTIVITY RECOGNITION IN BASKETBALL DATA 25

4.1 Methodology on Group Activity Detection 25

4.2 Experimental Setup . 31

vii

4.3 Results . 34

4.4 Evaluation of Representations 43

4.5 Extension to Multi-Task Representation Learning 44

5 PROTEIN MODELING . 60

5.1 Introduction . 60

5.2 Limitation of Direct Coupling Analysis 62

5.3 Modeling Higher Order Corrections 65

5.4 Methods . 83

5.5 Modeling Protein Sequences with Pretrained Transformer Models 86

6 MATERIAL PROPERTY PREDICTION 91

6.1 Method . 91

6.2 Results . 96

6.3 Discussion . 101

BIBLIOGRAPHY . 104

viii

LIST OF TABLES

3.1 Comparison of various models, input steps L, and modes M in terms of
error metrics ADE and FDE (in feet) and MSE (in ft2/s2) 17

3.2 Prediction of specific players with and without fine-tuning for H � 40
(4.8 seconds) using the MBT4l model 21

4.1 Comparison of various models in terms of error metrics ADE and FDE (in
feet) for prediction horizonsH = 10 (1.2 seconds),H = 20 (2.4 seconds),
andH = 40 (4.8 seconds). 37

4.2 Classification test performance compared to baselines. Tested on 4,581
pick-and-rolls (p&r), 1,525 handoffs and 80,884 other plays. 39

4.3 Classification test performance of NETS with different architecture
ablations. Tested on 4,581 pick-and-rolls (p&r), 1,525 handoffs and
80,884 other plays. 39

4.4 Confusion matrix of weak-labels tested on manually labeled data,
consisting of 300 pick-and-rolls (p&r), 300 handoffs and 300 other plays. 40

4.5 Accuracies of four variants of NETS. ”weak-labels” refers to concordance
between weak- and manual labels. Tested on manually labeled data,
consisting of 300 pick-and-rolls (p&r), 300 handoffs and 300 other plays. 40

4.6 Classification test performance for models with different parameter
settings, pretrained on trajectory with prediction horizon H 42

4.7 Effect of pretraining representations on an unseen tasks of GAR for 3
different strategies. The first row signifies training on the raw movement
data. 54

ix

4.8 Performance on various tasks, evaluated on the test set. ”Single task”
means that only one task was trained and we tested the performance for
the corresponding task (i.e. 6 different models were trained and evaluated
in that row). ”BBRepTr” is the model trained on all tasks and we used the
same model to evaluate all tasks. ”BBRepTr finetuned” is BBRepTr but
finetuned on a single task and evaluated on the corresponding model. . . 55

4.9 Influence of input time length on test performance for BBRepTr on various
tasks. We trained our model for all the listed input time lengths T 56

4.10 Influence of input time length on test performance on unseen GAR
task. We compare performance when training on data with a fixed
hyperparameter T to training on varying hyperparameter T during training. 56

5.1 Example MSA following the XOR pattern. 64

5.2 XOR pattern. 69

5.3 Overview over MSA datasets. 72

5.4 Influence of sequence length: We study a synthetic dataset with 10
third order epistasis couplings, meaning that 30 positions show epistatic
phenomenon. We report the NLL and success of higher order coupling
detection. 72

5.5 Average NLL (lower is better) per position for different models on real
MSA datasets. The training time is given for training of the PYP HALHA
model. 77

5.6 Comparison of information gain between the top 20 predicted 4-tuples of
arHCA, 1000 randomly sampled 4-tuples and a 4-tuple picked by domain
experts [1]. 83

6.1 Performance comparison between various graph architectures for the
learning and prediction of electronic bandgaps, formation energy per atom,
and metal versus nonmetal classification accuracy for the metal oxides
(trained on 18,091 compounds and tested on 4515 compounds). Both
mean absolute error (MAE) and root mean square error (RMSE) are given
for the purpose of comparison. 96

6.2 Performance comparison between various graph architectures for the
learning and prediction of electronic bandgaps, formation energy per atom,
and metal versus nonmetal classification accuracy for the metal oxides
(trained on 18,091 compounds and tested on 4515 compounds). Both
mean absolute error (MAE) and root mean square error (RMSE) are given
for the purpose of comparison. 97

x

6.3 Performance comparison between AMDNet, CGCNN, and MEGNet for
the learning and prediction of electronic band gaps, formation energy per
atom, and metal vs. non-metal classification accuracy applied on a dataset
of 22606 metal oxides. 99

6.4 Material information of a set of binary metal oxides SiO2. 100

6.5 Material information of a set of binary metal oxides MnO2. 100

xi

LIST OF FIGURES

3.1 Visualization of predicted trajectories with H � 40 using several state-
of-the-art methods: a) location-LSTM, b) CNN, c) MBT1, d) MACRO
VRNN1, e) SocialGAN4, f) MBT4l (ours), red: attackers, blue: defenders,
orange: ball, grey: input history of predicted player, yellow: prediction,
green: ground truth; a video animation is included in the Supplementary
Material . 10

3.2 Evaluation of predicted mode probabilities for MBT4l 20

3.3 Visualization of predicted trajectories for DeAndre Jordan with H � 20
(2.4s) using 3 different networks MBT4l: a) trained on all players, b)
retrained with the data of DeAndre Jordan and c) retrained with the data
of Andrew Bogut . 22

3.4 Visualization of predicted trajectories for Stephen Curry with H � 20
(2.4s) using 3 different networks MBT4l: a) trained on all players; b)
retrained with the data of Stephen Curry; c) retrained with the data of
Russel Westbrook . 22

4.1 Illustration of the NETS architecture. 26

4.2 Base Transformer to generate embeddings. Trainable functions are in blue
boxes. ‘ stands for concatenation. 27

4.3 Trajectory head. 27

4.4 Classification head.
°

stands for summation. 28

4.5 t-SNE of embeddings of - pick-and-rolls (blue), - handoffs (orange) and -
random plays (black). 41

4.6 Overview of the NN framework. The model shares a common Base
Transformer that creates outputs that can predict different challenging
tasks through linear combinations. 45

xii

4.7 Base Transformer to generate embeddings. Trainable functions are in blue
boxes. ‘ stands for concatenation. 46

4.8 Head for player level predictions (e.g. trajectory prediction). 46

4.9 Head for global predictions (e.g. value prediction). 47

4.10 Visualization of reducing raw inputs and BBRepTr representations to 2D
using t-SNE. Each dot represents a game segment from the test set of 20
time frames. 54

5.1 Auto-regressive models model a probability distribution over all possible
residues, taking as input the one-hot embedded input sequences up to
position i� 1. 68

5.2 Negative log likelihood loss on test set for arHCA for every position. In
the first training step (separated by vertical line) the model is trained with
only DCA weights enabled, reducing it to arDCA. In the next training step,
higher order weights are trained. The synthetic dataset is designed such
that two consecutive positions determine the third position through XOR
logic, which can not be learned through DCA. The results show that every
third position can correctly be predicted using arHCA. 73

5.3 Training history of arHCA. The first 89 positions are from a real MSA
ordered by entropy, while the last 3 positions have synthetic 3rd order
epistasis. 74

5.4 Improvements in log-likelihood of arHCA compared to arDCA on the test
set. The positions are ordered by their Shannon entropy. The last position
contains synthetically generated higher order entropy. 76

5.5 NLL improvement of arHCA over arDCA at every position for eight
different MSAs. The models are first trained with only DCA weights
enabled, reducing it to arDCA. In a second step higher order weights are
trained and the y-axis shows the improvements on the test set. It shows
that not all protein domains show significant influence from higher order
epistasis and that higher order epistasis is sparse. 78

5.6 Cartoon representation of postsynaptic scaffolding protein, pdb code:
1tp5. (a) In yellow, the positions that has the highest gain in NLL loss
when comparing arHCA to arDCA. In blue the positions that have the
highest influence on the prediction, according to our sensitivity analysis.
Darker blue means higher influence. (b) The 10 positions whith the highes
gain in NLL loss when comparing arHCA to arDCA. Darker blue means
higher improvement. 81

xiii

5.7 Cartoon representation of the Shaker voltage-gated potassium selective ion
channel, pdb code: 7sip. 82

5.8 Results of using MSA Transformer (msaTrans, orange) as a protein
sequence generator a Pairwise covariance correlations. This measurement
was performed using a 500K evaluation MSA for all models, including
MSA Transformer. b r20. This measurement was performed using a
1M evaluation MSA for MSA Transformer, and a 6M evaluation for
all other models. The r20 calculation was repeated using only 200K
sequences with qualitatively similar results as 1M, so we do not expect
performance to increase if more sequences were used. 1M was selected
for MSA Transformer due to exceedingly long sequence generation time.
c Hamming distance distribution. This measurement was performed using
a 50K evaluation MSA for all models, including MSA Transformer. d
Log-log Hamming distance distribution. 89

6.1 (A) Demonstration of the learning architecture of the proposed atom-motif
dual graph network (AMDNet) for the effective learning of electronic
structures and other material properties of inorganic crystalline materials.
(B) Comparison of predicted and actual bandgaps [from density functional
theory (DFT) calculations] and (C) comparison of predicted and actual
formation energies (from DFT calculations) in the test dataset with 4515
compounds. 93

6.2 Graph embeddings of a set of binary oxides SiO2 obtained from both atom
neural network (left) and motif neural network (right) of AMDNet and
projected to two dimensions using t-SNE. 101

6.3 Graph embeddings of a set of binary oxides MnO2 obtained from both
atom neural network (left) and motif neural network (right) of AMDNet
and projected to two dimensions using t-SNE. 102

xiv

CHAPTER 1

INTRODUCTION

Recent advances in artificial intelligence coupled with breakthroughs that brought about

more powerful and affordable computing hardware, resulted in advanced algorithms

becoming an integral part of a number of applications within industry and science. This

led to significant advancement in a multitude of domains including medicine and health

care [2], finance [3], transportation [4], arts [5], and political science [6]. However,

often it is not straightforward how to optimally adapt neural network architectures to best

take into consideration the structure of the data for a specific application. E.g., the use

of Transformers [7] led to great improvements in text based tasks and revolutionized

the field of natural language processing [8]. This improvement was only possible

because Transformers can better model the underlying structure of the data than previous

approaches.

For this thesis, the will showcase applications for 3 different fields: data mining of

human trajectories, generative protein modeling, and physical property prediction of oxide

crystals. The recurring theme in these applications is that domain knowledge about the

properties of the input data can be leveraged to create architectures and training procedures

that improve the performance of deep learning methods.

1

1.1 Human Trajectory Data Mining

With more and more accurate human tracking algorithms, it has become possible to

generate large amount of trajectories of humans of 2D locations. Prediction of human

trajectories using deep learning techniques has recently become a vibrant topic of research

in the computer vision community [9, 10, 11, 12, 13]. Understanding human trajectories

has applications in navigating robots in crowded scenarios or safely controlling self-

driving cars across intersections. Even further, large amounts of human trajectories are

gathered during sporting events, where professional sports teams use this information to

analyze the behavior of players during games.

With the recent advances in sensing technology, there is an unprecedented amount of

data being made available for sports analytics, such as Hawk-eye in tennis [14], various

tracking systems in soccer (ChyronHego, Stats LLC, SciSports), and SPORTLOGiQ in ice

hockey. A particularly important example for this work is when the National Basketball

Association (NBA) mandated the installation of advanced object tracking systems in their

sports arenas to collect fine-grained data about the movements of players and the ball in

every game. This data is shared with all NBA teams to ensure equity, with an implicit

understanding that the teams with the best ability to benefit from this data will not only

improve their own competitiveness, but will advance innovation in the way basketball is

played and increase their value for viewership. For example, centers who take risks in

shooting three-point shots used to be exceedingly rare but increased data collection and

statistical analysis has shown that it is beneficial to take this risk. Such changes in player

behavior have enabled new game strategies and provided a different viewing experience

for fans.

2

1.2 Generative Protein Modeling

Recent progress in decoding the patterns of mutations in protein multiple sequence

alignments (MSAs) has highlighted the importance of mutational covariation in

determining protein function, conformations, and evolution, and has found practical

applications in protein design, drug design, drug resistance prediction, and classi�cation

[15, 16, 17]. These developments were sparked by the recognition that the pairwise

covariation of mutations observed in large MSAs of evolutionarily diverged sequences

belonging to a common protein family can be used to �t maximum entropy “Potts”

statistical models [18]. These models contain pairwise statistical interaction parameters

re�ecting epistasis between pairs of positions [19], such that the character at one position

affects the character biases at the other position. Such models have been shown to

accurately predict physical contacts in protein structure [20]. They are “generative” in the

sense that they de�ne the probabilities that a protein sequence results from the evolutionary

process. These probabilities can be used to sample unobserved, and yet viable, arti�cial

sequences [21, 22]. In practice, the model distribution depends on parameters that are

found by maximizing a suitably de�ned likelihood function on observations provided by

the MSA of a target protein family. As long as the model is well speci�ed and generalizes

from the training MSA, it can then be used to generate new sequences, and thus a new

MSA whose statistics should match those of the original target protein family. We refer

to probabilistic models that create new protein sequences in this way as generative protein

sequence models (GPSMs).

1.3 Physical Property Prediction of Oxide Crystals

In inorganic crystalline materials, bonding environments determined by local and global

symmetry are essential components for the understanding of complex material properties

[23]. The bonding between atoms happens in a highly structured manner, such that unit

3

cells can be identi�ed that repeat periodically. This creates structure motifs, which can be

de�ned as a coordinated polyhedron of anions formed about each cation in a compound

[24], effectively creating structures that behave as fundamental building blocks and are

highly correlated with material properties.

Structure motifs in crystalline compounds play an essential role in determining the

material properties in various scienti�c and technological applications. For instance, the

identi�cation of VO4 functional motif enabled the discovery of 12 vanadate photoanode

materials via high-throughput computations and combinatorial synthesis [25]. In the �eld

of complex oxide devices, MnO6 octahedral motifs are correlated with small hole polarons

that limit electrical conductivity [26]. In battery cathodes for energy storage, high ion

mobility is explained by the local bonding environment of a multivalent ion [27]. V4�

ion-related motifs and the connections between these motifs are found to be important

determining factors for the selective oxidation of hydrocarbons [28, 29, 30]. The presence

of MO4 tetrahedra (M as Si or Al) can be used to identify the most promising synthetic

candidates from the pool of hypothetical zeolites [31]. When designing novel battery

materials, it is found that the changing coordination pattern of a migrating ion can be used

as a descriptor of ion mobility [32, 33].

4

CHAPTER 2

LITERATURE REVIEW

2.1 Human Trajectory Data Mining

Modeling and predicting human trajectories is an important challenge in a number

of scienti�c areas. Researchers have worked on this problem to develop realistic

crowd simulations [34], or to improve vehicle collision avoidance systems [35] through

predicting future pedestrian movement. When it comes to traf�c applications, pedestrian

behavior was usually modeled using attracting and repulsive forces to guide them towards

a goal, while simultaneously avoiding obstacles. Human pedestrian prediction was also

used to improve accuracy of tracking systems [36, 37, 38] or to study intentions of

individuals or groups of people [39, 40, 41]. The advances in deep learning led to

data-driven methods, such as Long Short-Term Memory (LSTM) networks [42] with

shared hidden states [10], multi-modal Generative Adversarial Networks (GANs) [43],

or inverse reinforcement learning [44], outperforming the traditional methods. The work

by [43] is particularly related to our study, through its use of a multi-modal loss function

and by showing practical bene�ts of multi-modal trajectory prediction as compared to

single trajectory predictions. Beyond pedestrian movement, recent research on predictive

modeling of vehicular trajectories for self-driving car applications also contains ideas of

5

relevance for the current study. In particular, [45] showed that multi-modal trajectory

predictions for vehicles generate realistic real-world traf�c trajectories. The multi-modal

loss function in our approach is inspired by this work, where we adapt ideas from the

self-driving domain to modeling of movement of basketball players.

The ubiquitous use of tracking systems in professional sports leagues like the NBA

or the English Premier League inspired researchers to analyze and model trajectories

of athletes during matches. For example, [12] used Variational Autoencoders (VAEs)

to model real-world basketball data and showed for NBA data that the offensive player

trajectories are less predictable than the defense. The authors of [46] and [47] used LSTM

to predict near-optimal defensive positions for soccer and basketball, respectively. [48]

similarly used variants of VAEs to generate trajectories for NBA players. NBA player

trajectory predictions are also studied by [49] and [50], where a deep generative model

based on VAE and LSTM and trained with weak supervision was proposed to predict

trajectories for an entire team. Macro-intents for each player were inferred, where the

players target a spot on the court they want to move to. The authors evaluate the model

mostly by human expert preference studies and show they can outperform the baselines,

indicating that RNNs can capture information from observational data in sports. However,

their trajectories are usually not smooth and no restrictions are set on the position of a

player on consecutive time steps, such that the model may output physically unrealistic

trajectories. We consider this state-of-the-art approach in our experiments, and show that

it is outperformed by the proposed multi-modal method.

2.2 Generative Protein Modeling

Approaches that potentially can model higher order interactions using deep learning have

been proposed, e. g. generative models based on Variational AutoEncoders (VAE)

[51, 52]. VAEs try to encode any input sequence into a ”latent” (hidden) representation and

6

then reconstruct the same sequence from those latent representations. These approaches

show great potential in modeling phylogenetic information in the latent space, predicting

aforementioned functionality and can sample new sequences from the latent space.

However, it is not clear how these models can be of use in diagnostics and do not give

any insight whether any higher order interactions are present. Unlike these VAE models,

our approach enables detection of higher order interactions while still being able to be

used as a generative model.

In recent years, several deep learning approaches have been proposed, such as

Variational AutoEncoders (VAEs) [51, 52, 53], Generative Adversarial Networks (GANs)

[54], Graph Convolutional Neural Networks (GCNNs) [55], and Transformers [56, 57, 58].

However, recent work has shown that these deep learning approaches struggle to learn the

statistical distribution of a speci�c MSAs used as a GPSM [59], when compared to a Potts

model.

Direct coupling analysis (DCA) is a class of statistical models used to analyze

sequences data in computational biology, which quanti�es the strength of pairwise

relations of two positions of an MSA. The main assumption is that if two positions are

under joint evolutionary pressure, these strength of pairwise interaction will be high, while

the interaction can be neglected if the positions are independent of each other. In general

the probability of a sequence is modeled as

Ppa1; :::; aL q �
1
Z

exp

�
L � 1¸

i � 1

L¸

j � i � 1

J ij pai ; aj q �
L¸

i � 1

h i pai q

�

(2.1)

with a categorical value for amino acidai at positioni , for a sequence of lengthL. h i

is aq-dimensional vector, whereq is the number of possible amino acids.h i depends on

the frequency of the amino acids at positioni . J ij is aq-by-q matrix and depends on the

strength of pairwise interaction.Z is a normalization constant to ensure thatPpa1; :::; aL q

is a well de�ned probability function. While it is mathematically straight forward to

7

extend DCA models to include higher order (i.e. higher than pairwise) interaction

terms, it becomes computationally intractable because the number of parameters increases

exponentially, which is why DCA models only take into account pairwise interactions.

2.3 Physical Property Prediction of Oxide Crystals

Machine learning (ML) methods, in combination with massive material data, offer a

promising route to accelerate the discovery and rational design of functional solid-state

compounds by using a data-driven paradigm [60]. Supervised learning has been effective

in material property predictions, such as phase stability [61, 62, 63], crystal structure

[64], effective potential for molecule dynamics simulations [65], and energy functionals

for density functional theory–based simulations [66]. With the recent progress in deep

learning, ML has also been applied to inorganic crystal systems to learn from high-

dimensional representations of crystal structures and to identify their complex correlations

with materials properties. Whether ML can ef�ciently approximate the unknown nonlinear

map between input and output relies on an effective representation of solid-state compound

systems that capture structure-property relationships that form the basis of many design

rules for functional materials. In inorganic crystalline materials with unit cells that

satisfy the periodic boundary condition, bonding environments determined by local and

global symmetry are essential components for the understanding of complex material

properties [23]. Recent development of graph convolutional network (GCN) [67, 68],

when combined with domain knowledge, offers a powerful tool to create an innovative

representation of crystal structures for inorganic compounds. Within the GCN framework,

any type of grid and atomic structure can be successfully modeled and analyzed. The

�exible graph network structure endows these learning frameworks [69] a large room for

improvement by considering more node/edge interactions in the crystal graphs [70].

8

CHAPTER 3

TRAJECTORY PREDICTION FROM NBA MOVEMENT
DATA

3.1 Methodology on Trajectory Prediction

3.1.1 Problem Setting

Recent advancements in optical tracking have made it possible to track the players and the

ball during an NBA game with good enough accuracy and temporal resolution to recreate

the trajectories of all ten players and the ball during an entire basketball game. This allows

us to extract 2-D locatioǹp
t � r xp

t ; yp
t sof playerp at time stept, with p P t1; : : : ; 10u, as

well as 2-D location of the ball at timet, ` b
t � r xb

t ; yb
t s, wherex-coordinate represents the

length of the �eld while they-coordinate represents the width, with the origin at the upper

left corner (see Figure 3.1 for illustration). Using an ordered sequence of previousL � 1

time steps we can generate historical trajectory of thep-th player ashp
t � r ` p

t � L ; : : : ; ` p
t s,

where time steps are equally spaced at an interval of� t . Similarly, we can generate a

historical trajectory of the ball ashb
t � r ` b

t � L ; : : : ; ` b
t s. As a convention, we will assume

that the �rst 5 players represent the team on the offense and the last 5 players the team

on the defense. We are interested in predicting future trajectory ofp-th offensive player,

represented as a vector� p
t � r ` p

t � 1; : : : ; ` p
t � H s, whereH is the number of future time

9

(a) location-LSTM (b) CNN (c) MBT1

(d) MACRO VRNN1 (e) SocialGAN4 (f) MBT4l

FIGURE 3.1: Visualization of predicted trajectories withH � 40 using several state-
of-the-art methods: a) location-LSTM, b) CNN, c) MBT1, d) MACRO VRNN1, e)
SocialGAN4, f) MBT4l (ours), red: attackers, blue: defenders, orange: ball, grey: input
history of predicted player, yellow: prediction, green: ground truth; a video animation is
included in the Supplementary Material

steps (or horizon) for which we predict the trajectory. We will assume that theplayer of

interest(i.e., the offensive player for which we are predicting future trajectory) is denoted

by player indexP.

In this paper, we processed the raw tracking data to create labeled data setD �

tpuP
t ; � P

t q; t � 1; : : : ; T; P � 1; : : : ; 5u, where one data point is de�ned for each time

step and each offensive player (as indicated by the rangeP � 1; : : : ; 5). HereT is the

total number of time steps, input vectoruP
t � t hP

t ; h � P
t ; hb

t ; stuis a set of historical player

and ball trajectories, wherehP
t indicates history of the player of interest,h � P

t indicates

10

histories of all other 9 players, andst is the shot clock de�ned as the time in seconds

remaining until the shot clock expires. Note that in the input vector the history of the

player of interestP always comes �rst, followed by histories of their4 teammates and

then by5 opposing players, ordered by a distance to the player of interest. Output vector

� P
t is a future trajectory of the player of interestP computed at time stept, and objective is

to build a predictor that accurately predicts their trajectory given inputsuP
t . We emphasize

that, in addition to the given inputs, there are other features that potentially might in�uence

the observed trajectories, such as game clock, home vs. away, foul calling, previous plays,

or player mismatch. As we demonstrate with the shot clock feature, our approach allows

for a straightforward use of any additional feature that a modeller may deem important.

However, an in-depth feature analysis is out of scope of this paper, and instead we focus

on showing viability of the proposed multi-modal predictive model. In fact, it could be

argued that a number of such features are implicitly present in the input representation

already. For example, if a team has a large point lead with little game time remaining,

they may slow down on the offense and the observed movement history could capture that

information.

Lastly, note that an alternative to predicting a sequence ofH future locations of the

offensive player is predicting a sequence of their velocities. As we know the current

location at timet, we can convert trajectory� P
t to a velocity vector� P

t � r vP
t� 1; : : : ; vP

t� H s

using a direct mapping of velocities to locations, computed for horizonh P t1; : : : ; Huas

vP
t� h �r vP

x;t � h; vP
y;t � hs �

r
xP

t� h � xP
t� h� 1

� t
;
yP

t� h � yP
t� h� 1

� t
s:

(3.1)

Although trajectories and velocity vectors are mathematically interchangeable, a particular

choice might have a signi�cant impact on model training. As we will demonstrate

experimentally, predicting the next location is more challenging due to the issue in

normalization of coordinates.

11

3.1.2 Trajectory Prediction Approach

As noted previously [49], movement of basketball players is inherently multi-modal as

the players can decide between multiple plausible trajectories at any given time (e.g.,

to move towards the basket for a layup or towards a corner for a three-point attempt).

In order to account for this multi-modality we train a predictive model that generates

output oP
t � r �̂ P

t;1; : : : ; �̂ P
t;M ; p̂P

t;1; : : : ; p̂P
t;M s, which consists ofM predicted trajectories

�̂ P
t;m representingM modes, as well asM scalarsp̂P

t;m representing probabilities that a

corresponding mode is selected by a player. This results inp2H � 1qM output values,

since output for each mode consists of a trajectory comprisingH 2-D locations and an

additional mode probability.

Loss function

Given a ground-truth trajectory� and predicted trajectorŷ� , we �rst de�ne the trajectory

loss as

L MSE p� ; �̂ q �
1

2H
}� � �̂ }2

2; (3.2)

de�ned as a mean squared error (MSE) of the predicted velocity vector. Then, in order to

train a model to predict multiple trajectories and their probabilities, we base our approach

on an adaptation of the multi-modal loss function presented in [45]. A similar loss function

is used by [43] to generate multi-modal pedestrian trajectories within a GAN framework.

In particular, we de�ne the Multiple-Trajectory Prediction (MTP) loss for time stept and

playerP, comprising a linear combination of classi�cation losslogp̂m and trajectory loss

(3.2),

L MTP �
M̧

m� 1

� � pm � m� q
�

logp̂m � � L MSE p� P
t ; �̂ P

t;m q
	

; (3.3)

where p̂m is an output of a softmax,� is a hyper-parameter used to trade-off the

classi�cation and trajectory losses, andm� is the index of the winning mode that produced

12

the trajectory closest to the ground truth, computed according to a distance functiondistpq

de�ned in the next subsection,

m� � argmin
mPt1;:::;M u

distp� P
t ; �̂ P

t;m q: (3.4)

Moreover,� � is a relaxed Kronecker delta [71] giving the most weight to the best matching

trajectory, but also a small weight to the remaining ones,

� � pcondq �

#
1 � �; if conditioncondis true;

�
M � 1 ; otherwise:

(3.5)

Intuitively, the classi�cation loss in (3.3) forces the probability of the winning mode to 1

(thus pushing probabilities of other modes towards zero due to the softmax), and trajectory

loss penalizes prediction error of the winning mode.

We note that [45] used the unrelaxed Kronecker delta (i.e.,� was set to0), which

only updates the closest trajectory. In practice, this leads to problems where a randomly

initialized path is much worse than the remaining paths. Such poorly initialized modes

never get selected through (3.4) and do not get a chance to improve during training. To

prevent this issue we use the relaxed Kronecker delta, where we start from some small

value of� that is gradually reduced towards0 as the training progresses. This phenomenon

is well known in generative models and is commonly referred to as mode collapse in

GANs or posterior collapse in VAEs. Comparable annealing remedies have been proposed

in VAEs [72], but are generally not suf�cient to achieve good performance [73]. Our

approach was more stable than VAE or GAN training, and we will empirically show that

we can outperform state-of-the-art models based on each of those two methods.

Distance functions

As mentioned previously,m� denotes a trajectory closest to the ground truth, however

there are different closeness measures that can be considered. For example, in [43] the

closest mode is de�ned simply as a path with the lowest trajectory loss, computed as

13

distMSE p� ; �̂ mq � L MSE p� ; �̂ mq: (3.6)

We also considered other distance functions, as [45] concluded that its choice has a large

impact on the model performance. Thus, we considered distance function with the smallest

overall displacement error, de�ned as a location error at the last time step and computed

as

dist lp� ; �̂ mq � }
Ḩ

h� 1

p� t � h � �̂ t � h;m q}2: (3.7)

Lastly, we considered using the error of �nal player velocity (which can be interpreted as

player's “heading”), shown in earlier work [45] to be bene�cial,

dist vp� t ; �̂ t;m q � k� t � H � �̂ t � H;m k2 : (3.8)

Model architecture

While [45] use the multi-modal loss function to train a CNN model, we will show that on

the NBA data LSTM network is more effective. We use a two-layer LSTM architecture,

each with a width of 128, to encode the time-series input of recently observed datauP
t . The

encoder is a fully connected layer and the prediction consists ofM trajectories of a single

player given asx- andy-velocities forH future time steps, as well asM probabilities that

the player will follow the respective trajectory.

Because players differ in their positions, skills, heights, and weights, we would expect

them to run at different speeds and along different paths. To take these differences into

account, we consider a two-stage training approach to learn speci�c per-player models. To

this end we �rst train the proposed model on data taken from all players to learn the average

behavior of all NBA players. In the second training phase these pre-trained networks can

be used to initialize a specialized per-player network �ne-tuned on a subset containing

only that player's data, so that individual behavior of the player can be learned. In the

experiments we evaluate both global and per-player models.

We refer to the proposed multi-modal approach as Multi-modal Basketball Trajectories

(MBT). We evaluate different number of modesM and investigate different distance

14

functions in (3.4), indicating these choices in the subscript. In particular, we denote

model variants as MBTMd , with d P tMSE; l; v u, corresponding to (3.6), (3.7), and

(3.8), respectively. For example, MBT4l generates 4 paths and uses distance function

(3.7) during training. When using a single mode the distance measure is not used, and we

refer to the uni-modal model as MBT1.

3.2 Experiments on Trajectory Prediction

3.2.1 Experimental Setting

Data set

We used publicly available movement data collected from 632 NBA games during the

2015-2016 season1, from which we extracted 114,294 offensive possessions. An offensive

possession starts when all players from one team cross into the opponent's half court,

and ends when the �rst offensive player leaves the half court or the game clock is

paused. Possessions shorter than3s were discarded, resulting in 113,760 possessions.

This amounts to 1.1 million seconds of gameplay where player location is captured every

0:04s. We downsampled the data by a factor of 3 to obtain sampling rate of� t � 0:12s,

corresponding to a lower bound on human reaction time [74] during which velocity is

considered constant. Furthermore, we randomly split the data into train and test sets using

90/10 split. All inputs and outputs were normalized to ther� 1; 1s range. To train the

specialized networks that predict speci�c player's movement we extracted possessions

featuring that player. The amount of data for each player is in the order of several

thousands (e.g., for Stephen Curry there were 2,767 possessions).

1 https://github.com/sealneaward/nba-movement-data, last accessed November 2020; we are not associated
with the data creator in any way.

15

Model training

As discussed previously, we used a 2-layer LSTM with 128 channels in each layer. To

learn the general model for all NBA players we trained LSTM in batches of 1,024 samples.

The learning rate in Adam optimizer was set to5 � 10� 4. We set hyper-parameter� in

equation (3.3) to1, such that the amplitude of the two losses are about equal, and� in

(3.5) to0:25 which was reduced by a factor of0:05 per epoch until� � 0. We used̀ 2

regularization with the weight of� � 0:001and an early stopping mechanism to further

prevent over�tting. To specialize the neural network for a speci�c player we �ne-tune the

base model on data from that player and adjust the hyper-parameters as follows. We start

with � � 0:75which is reduced by a factor of 0.01 per epoch to make sure that all modes

bene�t from the information contained in this smaller training set. The initial learning rate

in this case was reduced to10� 5.

All training was done on a single computer with Nvidia GeForce GTX 1080 card. It

took approximately 60 minutes to train the base model, while specializing the network on

a speci�c player took less than 5 minutes.

Accuracy measures

We report common measures used in pedestrian trajectory prediction,�nal displacement

error (FDE) andaverage displacement error(ADE) [10, 43], de�ned as

FDE �
1

5T

T¸

t � 1

5¸

P � 1

 ` P

t� H � ^̀P
t� H

2

ADE �
1

5HT

T¸

t � 1

5¸

P � 1

Ḩ

h� 1

 ` P

t� h � ^̀P
t� h

2
:

(3.9)

In other words, FDE considers the location error at the end of the prediction horizonH ,

while ADE averages location errors over the entire trajectory. We also report MSE error,

de�ned as in equation (3.2). Unlike FDE and ADE that measure trajectory prediction

errors, MSE is a measure of how accurately are the velocities predicted.

16

To evaluate multi-modal approaches we calculate the metrics for each output trajectory

and only choose the path that has the smallest FDE, which is consistent with evaluation

procedure commonly used in the literature [43, 71].

Baselines

To establish an upper bound for the proposed error measures we compared our method

to a straw-man baseline. Constant velocity (CV) baseline assumes that the player keeps

moving in the last observed direction with constant speed.

Baseline CNN refers to an approach that transforms the input to a rasterized trace

image and uses a CNN encoder (instead of LSTM) before predicting the future velocities

[45]. For the encoder, we used 5 layers with depths [64, 128, 128, 64, 32], 5� 5 mask,

”same” padding, and 2� 2 max pooling. The decoder consisted of 2 densely connected

layers with sizes 128 and 64.

Table 3.1: Comparison of various models, input stepsL, and modesM in terms of error
metrics ADE and FDE (in feet) and MSE (in ft2/s2)

H = 10 H = 20 H = 40

Method L M ADE FDE MSE ADE FDE MSE ADE FDE MSE
CV 1 1 1.72 3.92 9.09 4.64 10.97 16.01 11.59 26.14 20.59

CNN 10 1 2.76 5.25 15.80 5.28 9.99 17.48 8.15 13.23 21.95
location-LSTM 10 1 1.61 2.98 10.21 3.43 6.91 15.94 6.79 12.11 29.80

MBT1 10 1 1.43 2.98 7.26 3.32 6.92 12.36 6.59 11.97 16.93
MBT1 20 1 1.40 2.93 7.25 3.30 6.91 12.41 6.59 11.97 16.74
MBT1 30 1 1.39 2.92 7.46 3.33 6.91 12.32 6.58 11.92 16.87

SocialGAN1 10 1 1.25 2.75 8.18 3.09 6.67 13.32 6.47 12.35 17.54
MACRO VRNN1 10 1 1.70 3.43 13.17 4.46 8.66 19.85 8.48 14.98 25.03

SocialGAN4 10 4 1.19 2.61 7.36 2.95 6.33 11.91 6.19 11.54 15.76
MACRO VRNN4 10 4 1.07 1.98 5.90 3.14 5.07 11.93 6.40 8.54 19.29

MTP4l 10 4 1.44 2.87 7.91 3.08 6.14 11.36 5.78 10.06 13.52
MBT4MSE 10 4 1.01 1.91 3.82 2.33 4.00 6.35 5.25 6.92 12.46

MBT4v 10 4 1.05 1.93 4.00 2.66 4.31 7.75 6.71 8.74 14.72
MBT4l 10 4 1.01 1.90 3.82 2.33 4.04 6.35 4.89 6.39 11.56

To compare different output alternatives we trained the same LSTM architecture used

for our model to directly predict player locations, as opposed to predicting velocities. We

17

refer to this model as location-LSTM. We also considered SocialGAN [43], the state-

of-the-art in human trajectory prediction. This approach uses an LSTM-based generator,

coupled with a social pooling layer to account for nearby actors. We trained this model

using the code made available by its authors2, using the same NBA data set except that

SocialGAN can not use extra information such as ball location or shot clock, therefore

only the players trajectories are used. GANs are notoriously hard to train, which resulted

in a training time of 28 hours for 50 epochs of training. In addition, we considered the

state-of-the-art MACRO VRNN [49], which uses programmatic weak supervision to �rst

predict a location that the player wants to reach and then uses a Variational RNN (VRNN)

to predict a trajectory that the player will take to reach it. MACRO VRNN also accounts

for the multi-modality of the problem, with the number of generated paths denoted in the

subscript. We used models provided in [49] trained on roughly the same amount of data.

Note that training takes up to 20 hours, as opposed to only 1 hour for our proposed method.

Finally, we compare to Multiple-Trajectory Prediction (MTP) [45] which resembles our

approach, but instead uses an unrelaxed Kronecker delta (i.e.,� was set to0) and the

distance measure from equation (3.7).

3.2.2 Results

We �rst compare the performance of models trained on data containing all possessions,

with results across different error measures and time horizons presented in Table 3.1.

The CV model, which assumes the player will keep moving with the last observed

velocity, gives relatively small errors for short time horizons, but deteriorates quickly for

longer time horizons. The CNN model outperforms this simple baseline at longer horizons,

while the performance is suboptimal at short horizons. Location-LSTM is comparable to

MBT1 model in terms of ADE and FDE metrics, with much worse MSE metric. As we

will demonstrate later in qualitative results, this difference in MSE can be explained by

2 https://github.com/agrimgupta92/sgan, last accessed November 2020.

18

the fact that location-LSTM produces trajectories that are not physically achievable by the

players.

Next we experiment with the uni-modal MBT1 model and evaluate the in�uence of

different lengths of historical inputsL. Based on the results we con�rm that the MBT1

models only marginally improve with longer input sequences. As a result, in the remainder

of the experiments we use a value ofL � 10, consistent with [49].

In the following experiment we compare different distance functions used for training

MBT methods, where we keepM �xed at 4. We see that the choice of distance

function has limited effect on accuracy measures at a shorter horizon of1:2s. However,

as the horizon increases, MBT4l starts outperforming the competing approaches by a

considerable margin. Taking this result into account, in further experiments we use the

distance function de�ned in (3.8).

When we compare the proposed method to the state-of-the-art models MACRO VRNN

and SocialGAN, we separate the analysis by comparing the same number of modes. When

evaluating a single trajectory, SocialGAN outperforms both our approach and MACRO

VRNN in ADE and FDE. However, MBT1 reaches better MSE than those approaches.

When comparing multiple modes, we see that MBT4l , MBT4v and MBT4MSE performance

is roughly comparable at shorter horizons, but MBT4l outperforms all other methods across

all accuracy measures at longer horizons. Quite notably, MBT4l outperforms the baselines

with a large margin in terms of MSE velocity measure. For example, for horizonH �

40, our MBT4l model achieves ADE24% and21% smaller than MACRO VRNN4 and

SocialGAN4, respectively. The comparison to MTP4l shows problems arising from using

an unrelaxed Kronecker delta during the training process. Observations of the generated

paths reveals that some modes are collapsed or not all have a non-zero probability, as the

poorly initialized paths are not trained at all.

In Figure 3.1 we illustrate predicted trajectories for a randomly picked player.

Trajectories are generated using a single-path model that predicts locations (location-

19

FIGURE 3.2: Evaluation of predicted mode probabilities for MBT4l

LSTM, Figure 3.1(a)), two single-path models that predicts velocities, one based on

a CNN architecture (Figure 3.1(b)) and one based on an LSTM architecture (MBT1,

Figure 3.1(c)), one sample path of MACRO VRNN (Figure 3.1(d)), 4 sampled paths

of SocialGAN (Figure 3.1(e)), and our proposed method using 4 modes MBT4l (Figure

3.1(f)). We can see that location-LSTM output is noisy and does not represent realistic

player movements. Player trajectories predicted by the CNN and MBT1 model are

smoother and more realistic, showing the advantage of predicting velocities instead

of locations. While CNN and MBT1 generate qualitatively similar results, MBT1

outperforms CNN in the quantitative measures. MACRO VRNN generally produces paths

that are less smooth than competing models, explaining the high error in MSE as discussed

above. The multiple paths predicted by SocialGAN are smooth and look plausible, but lack

the diversity of movement that we would expect in basketball trajectories. MBT4l predicts

4 paths that are very distinct from each other. The highest-probability path ends up very

close to the observed �nal player location, while accurately following the ground-truth

trajectory. Other paths produced by the multi-modal model allow for diverse movements,

such as an aggressive drive to the basket or supporting the ball-handling teammate near

the center of the court.

20

Table 3.2: Prediction of speci�c players with and without �ne-tuning forH � 40 (4.8
seconds) using the MBT4l model

Player Fine-tuned? ADE FDE MSE
LeBron James No 4.78 6.63 9.97
LeBron James Yes 4.67 6.24 9.91
Stephen Curry No 6.32 7.80 17.35
Stephen Curry Yes 6.09 7.51 16.62

Russell Westbrook No 5.49 7.15 12.43
Russell Westbrook Yes 5.36 6.90 12.23
DeAndre Jordan No 4.36 6.01 12.20
DeAndre Jordan Yes 3.93 4.94 12.56
Andrew Bogut No 4.54 6.12 9.34
Andrew Bogut Yes 4.29 5.40 9.03

We also evaluate the quality of inferred mode probabilities produced by the MBT4l

model. To this end we compare predicted mode probabilities to empirical ones, computed

as a frequency of how often a mode of certain probability had the lowest FDE. We bucketed

inferred probabilities in 5% bins and for each computed the empirical probability, with the

average per-bucket results presented in Figure 3.2. We can see that the plot closely follows

the identity line, indicating that the predicted mode probabilities are well-calibrated.

To evaluate the hypothesis that the MBT trajectories are more physically realistic, we

calculate acceleration of predicted trajectories on the test set. The maximum acceleration

of MBT4l is 12:2m{s2. We note that the ground truth contains noisy outliers, with

accelerations of up to600m{s2 (the 99:9th percentile is14:5m{s2). In contrast, when

considering MACRO VRNN we observe accelerations of more than500m{s2 (the99:9th

percentile is54:86m{s2). This indicates that in many cases the baseline trajectories are

far from being physically achievable, while the proposed method yielded more realistic

outputs.

Evaluation of per-player models

In this section we compare per-player models to the base model trained on all players, as

well as the per-player models �ne-tuned on players that are playing in the same position,

but are known to have distinct playing styles. We �rst compare the performance of the

21

(a) (b) (c)

FIGURE 3.3: Visualization of predicted trajectories for DeAndre Jordan withH � 20
(2.4s) using 3 different networks MBT4l : a) trained on all players, b) retrained with the
data of DeAndre Jordan and c) retrained with the data of Andrew Bogut

FIGURE 3.4: Visualization of predicted trajectories for Stephen Curry withH � 20(2.4s)
using 3 different networks MBT4l : a) trained on all players; b) retrained with the data of
Stephen Curry; c) retrained with the data of Russel Westbrook

base and per-player models for several example players, with results presented in Table

3.2. The per-player models result in improved performance across the board, as they are

better capturing playing styles of individual players.

Let us consider a speci�c game situation where center DeAndre Jordan just set up

a pick and roll, shown in Figure 3.3 and in the animated video in the Supplementary

Material. The model trained on all players predicts that the so-called roll man will now

move either towards the basket or towards the wide open space on the right-hand side of

the court, shown in the �rst row of Figure 3.3(a). Jordan is a very dynamic and fast center

22

who executes many successful pick and rolls, so our model trained on his data predicts

he will drive to the basket faster and with a higher probability than an average player in

the same situation, as shown in Figure 3.3(b). We also compare to a model trained on

data of Andrew Bogut, a defense specialist who is not as fast as Jordan. According to

stats.nba.com3, Bogut only attempts 0.5 pick and rolls per game, while Jordan attempts

2.4. Our model correctly predicts Bogut's paths to be less dynamic and gives a 25%

probability that he would turn around and focus on defending a counter attack, entirely

relying on his team mate to capitalize on the pick, as shown in Figure 3.3(c).

The following experiment involves a situation where Stephen Curry has possession

of the ball at the top of the circle with a defender to his right, as illustrated in Figure

3.4 (and in the Supplementary Material). This example shows some limitations of our

approach because in actuality Curry �rst acts like he wants to drive inside, but decides to

stop and shoot the ball for a 2-pointer before starting to move backwards. The predicted

trajectories are much simpler, but still capture some interesting options that the player

may choose. The model that was trained on all players predicts that the player may move

towards the basket with about 40% probability as seen in Figure 3.4(a), with other lower-

probability options to move along the arc, stay at the top of the arc, or try to circle around

the defender. The model that was retrained on data of Stephen Curry shown in Figure

3.4(b) slightly adjusts the path along the arc, because Curry often tries to shoot 3-pointers

(more speci�cally, he had the second-most 3-point attempts in the 2015/16 season). As

a result the model also gives him a lower probability to drive towards the basket. We

evaluate the same situation with a network �ne-tuned on data of Russell Westbrook, shown

in Figure 3.4(c). Westbrook attempts much fewer 3-pointers than Curry, and instead has

more 2-point attempts. He is also a very dynamic player that is excellent at driving to the

basket, such that when he makes an attempt he usually gets closer to the basket than an

average player would. Thus, when he moves along the arc our model predicts that he will

3 https://on.nba.com/2ulXVau, last accessed November 2020.

23

not stay behind the 3-point line, but will instead try to get closer to the basket. We can see

the model successfully managed to capture characteristics of individual players, adjusting

the predictions to their own playing styles.

24

CHAPTER 4

GROUP ACTIVITY RECOGNITION IN BASKETBALL
DATA

4.1 Methodology on Group Activity Detection

4.1.1 Problem Setting

The goal of this work is to train an NN to recognize group activities during basketball

games. In this section, we introduce notation and provide de�nitions used in the rest of

the paper.

Notation

Since 2013, every NBA arena has a camera system to track the players (5 from each team)

and the ball during basketball games. The system observes the 11 tracked objects by their

locations in an x-y plane, where the x-axis goes across the length of the court and the y-

axis goes from sideline to sideline. We pre-process the data, such that the offensive team

attacks along the y-axis. We de�ne the location of objecto at time stept as` t
o � r x t

o; yt
os,

with o P O � t B; A 1; : : : ; A5; D1; : : : ; D5u whereO denotes the set of tracked objects,

namely the ballB , each of the 5 attackerst A1; : : : ; A5u, and each of the 5 defenders

t D1; : : : ; D5u. Using an ordered sequence ofL time frames, the trajectory of a tracked

objecto can be expressed as� t � L � 1:t
o � r ` t � L � 1

o ; : : : ; ` t
os, with equally spaced time steps

25

FIGURE 4.1: Illustration of the NETS architecture.

at an interval of� t .

Trajectory Prediction Task

We formulate the self-supervised task of predicting future trajectories for every tracked

objecto, represented by the vector� t � 1:t � H
o � r ` t � 1

o ; : : : ; ` t � H
o s, whereH is the number

of future time steps (or prediction horizon) for which we predict the trajectory.

We denote as� t :t1
the list of trajectories for all objects, i.e.� t :t1

� r � t :t1

B ; � t :t1

A 1
; :::; � t :t1

D 5
s.

Through a simple conversion, we can calculate velocity vector� t :t1
from the trajectory

� t :t1
. Although these two vectors are mathematically interchangeable, previous work on

NBA data has shown that using velocity vectors as target to deep learning models is

advantageous [75]. This leads to the trajectory prediction task, where the objective is

to predict� t � 1:t � H from � t � L � 1:t . This is a self-supervised learning task, because future

trajectories can be automatically extracted from the historical trajectory data and stored in

datasetD � tp � t � L � 1:t ; � t � 1:t � H q|t � L; : : : ; T -H u, whereT is the total number of time

steps.

Group Activity Recognition (GAR)

The objective of GAR is to predict group activity typey t P1; :::; K for each play sequence

� t :t1
, where K is the number of activity types. Similar to the trajectory prediction task,

26

FIGURE 4.2: Base Transformer to generate embeddings. Trainable functions are in blue
boxes.̀ stands for concatenation.

FIGURE 4.3: Trajectory head.

we can generate a labeled data setD � tp � t � L � 1:t ; y tq|t � L; : : : ; T u, where each

play sequence ofL time frames is matched to a label indicating the action type. The

main difference compared to the trajectory prediction is that labels need to be provided

externally.

4.1.2 Framework

A standard approach to train an NN for GAR, would be to use supervised learning on

ground truth labels. However, as mentioned earlier, manual labeling is time consuming

27

FIGURE 4.4: Classi�cation head.
°

stands for summation.

and expensive. We hypothesize that we can effectively train an NN through pretraining

on the trajectory prediction task and �ne-tune it using a large number of low-quality weak

labels followed by �ne-tuning using a small number of high-quality manual labels. To

enable the pretrainaining and �ne-tuning process, we utilize a modular NN architecture,

which is described in Figure 4.1. For the trajectory prediction task, the trajectories

� t � L � 1:t are input to the base model (we specify the chosen model in the next section).

The output of the transformer is then used as input to a trajectory prediction head for

pretrainaining. The GAR task uses the same base model, but uses a classi�cation head for

activity classi�cation. This modular approach allows the �ne-tuning of weights after the

pretrainaining of the trajectory prediction.

4.1.3 Neural Network Architecture

In this section, we will explain the detailed implementation of the base transformer, the

trajectory head and the classi�cation head.

Transformer Encoder

The input data consists of all 11 objects� t � L � 1:t
o of a given play sequence. Because these

input vectors represent a time series for each tracked objecto, we use a Long Short-Term

Memory (LSTM) [76] layer to embed these trajectories into vectors (see Figure 4.2), to

fully exploit the temporal information of the input data.

28

The 11 objects have different properties since the ball behaves differently than an

attacker. We encode this role information as shown in Figure 4.2 and choose a one-hot

positional encoding to differentiate each object class (i.e. the ball, offensive players, and

defensive players). We concatenate these 3-dimensional vectors to the output of the LSTM

layer, creating the input to the �rst attention layerz0
o. Although it would be possible to

create embeddings for each player separately, previous work shows that adding player

embeddings improves results only marginally while requiring a large feature engineering

effort [77].

To generate context-aware player embeddings, given the previously described input

embeddings, we use a Transformer encoder with a multi-head self-attention mechanism

[7]. Transformer encoders consist of multiple attention-based layers. Each layer learns

to adjust the object representations in relation to other objects, where the objects in our

application are the ball and the players. More formally, a Transformer processes the input

z l
o PRdv at layerl to an output embeddingz l � 1

o PRdv , with input and output dimensiondv.

The inputs are transformed into three matrices: queryQ, keyK , and valueV, where each

matrix represents the stacked input embeddingsz l
o. These matrices are then transformed

with trainable matricesW Q
i P Rdg � dv , W K

i P Rdg � dv , W V
i P Rdg � dv andW O

i P Rhdv � dg ,

wheredg is a model hyperparameter andh is the number of self-attention heads. The

multi-head self-attention function includes the residual connection and is calculated as

z l � 1
o � LN pFF pLN pAtt pQ; K; V qqqq �z l

o (4.1)

Att pQ; K; V q � Concatphead1; :::; headhqW O (4.2)

headi � sof tmax

�
pQW Q

i qpKW K
i qT

?
dk

�

V WV
i ; (4.3)

whereLN stands for layer normalization [78] andFF is a fully connected feedforward

network (see Figure 4.2). We use the common practice of simplifying the hyperparameters

by settingdg � dv � dk , which we denote as hidden dimensiondh from here on.

29

The transformer contains a stack ofN identical attention layers. Through this attention

mechanism, the NN generates embeddingszN
o for each tracked objecto, taking into

account the information of all other players and the ball.

Trajectory Prediction Head

After generating the embeddings for each tracked object, we can predict the future

trajectories by using a FeedForward neural network (FF) to generate an output vector� t
o

for each tracked object (see Figure 4.3). Because the physical properties of motion for

the ball are very different from humans and because the behavior of an offensive player

is different from the behavior of a defensive player, we use separate FFs for each role

to generate these trajectories. We denote FFs that share the same weights with the same

subscripts in Figure 4.3.

Classi�cation Head

To predict labels for GAR, we consider the context-aware transformer embeddings of the

players and the ball from the last transformer layer. For GAR, the input order of the

players within a team should not impact the assigned label and our model should be

permutation invariant for each team. We use a team-level pooling layer which sums up

all the embeddings of the players that belong to the offense and defense, respectively (see

Figure 4.4). More formally, we the output values as

y � sof tmax

�

FF

�

zN
B `

5¸

i � 1

zN
A i

`
5¸

i � 1

zN
D i

��

; (4.4)

where` stands for concatenation.y P RK is the output vector containing the probability

for each of theK predicted class.

We use a softmax activation function on the last layer so that the output can be

interpreted as probabilities and trained by minimizing the Negative Log-Likelihood (NLL)

loss forK classes:

L NLL � �
1

|D|

¸

D

Ķ

k� 1

� kyk lnpŷkq; (4.5)

30

where� k stands for class adjustments that balance the unequal class distribution [79].yk

is the one-hot representation of ground truth, andŷk is the predicted probability that the

play belongs to classk.

4.2 Experimental Setup

In this section we describe the data set and the design of our labeling approach.

4.2.1 Data Set

We used publicly available movement data collected from 632 NBA games during the

2015-2016 season1. To avoid including play sequences where there is no signi�cant action,

we segmented the data into possessions, which start when the shot clock resets and end

on the next reset. We only kept the part of the possession when all 10 players are in

the offensive half of the court. Possessions shorter than3s were discarded, resulting in

113,760 possessions. This amounts to 1.1 million seconds of game play where locations

of the players and the ball are captured every0:04s. We downsampled the data by a factor

of 3 to reduce computational cost (similar to [80]) and obtain a sampling rate of� t �

0:12s. For all models, we usedL � 10 time steps as input, corresponding to 1.2s of game

play. We constructed a data set by splitting the possessions into 1.2s long non-overlapping

segments, resulting in 869,905 play sequences. For each of those play sequences, we also

included the future horizon of the nextH time steps, where we experimented with varying

values ofH = 10,H = 20, andH = 40.

4.2.2 Labeling Group Activities in Basketball

We generated labels for pick-and-rolls and handoffs, two commonly used tactics by NBA

teams. Plays that do not fall into these two categories were labeled as ”other”, resulting

in K � 3 classes. Generating such labels manually is very time consuming because it

1 https://github.com/sealneaward/nba-movement-data, last accessed August 2022; we are not associated
with the data creator in any way.

31

not only requires watching entire basketball games, but also requires high concentration

to follow multiple players at the same time. There are also many edge cases that require

multiple viewings to decide on the correct label. We explain the weak-labeling process

in detail in the Supplementary Material. In short, we used domain knowledge to generate

programmatic rules to identify pick-and-roll and handoff behaviors.

A general approach to creating a labeled data for different types of plays is to do

it manually. However, it is very time consuming and tedious. Instead, we develop an

algorithm for automatic labeling, which results in a large number of labels. For any

complex strategy, there is a need to observe multiple frames in order to assign a label.

A reasonable strategy for automatic labeling is to �nd carefully crafted rules with

reasonable coverage and precision. Manual veri�cation over a small number of labels

can provide suf�cient feedback for the quality of a rule.

We �rst �nd rules to detect basic concepts, such as ball possession and defensive

assignments. We say that a playerpi has possession of the ball if he is the closest player

to the ball for at least 5 consecutive frames, the ball is within 5 ft of the player, the ball

is lower than 10 ft from the ground, and the ball's speed is slower than 25 ft/s. Next, we

�nd defensive assignments by matching each defender with an offensive player. This is

a linear sum assignment problem, where the defense is trying to reduce the total sum of

euclidean distances between each defender and his assigned offensive player.

Weak-Labeling Pick-and-rolls

Pick-and-roll is an offensive tactic in which the attacking team tries to block the defender

guarding the ball handler. Another attacker (the so-called roll-man) helps the ball handler

by standing in the way of the defender (see Figure??). This creates a dif�cult situation for

the defender, who has to either run around the roll-man to keep guarding the ball handler

or switch the assignment and guard the roll-man, which leads to a possible mismatch.

In short, the rule-based approach matches each defender to an offensive player and then

identi�es situations in which the roll-man is very close to the ballhandler's defender.

32

We denote the ball handler as playera1 and set up rules to detect the moment when

the roll-mana2 blocks the path of the ball handler's defenderd1. The three players form

a triangle with side lengths� a between the two offensive team mates,� d1 between the

defender and the ball handler, and� d2 between the defender and the roll-man. During a

pick-and-roll, all these three players should be close together, so we set a pick-and-roll

label when these values go below a certain threshold. We validated different thresholds by

manually checking all generated pick-and-rolls during an entire game and found that the

best results are when the thresholds for� a and� d1 are set to 6 ft and the threshold for� d2 is

set to 3 ft. Although the rule involving these distances is based on a single frame, the rule

that decides whether a player is a ball handler involves a possession of at least 5 frames.

A manual inspection of 200 plays con�rmed that 164 plays were actually pick-and-

rolls, giving a speci�city of 82%. Some observed errors are situations where two attackers

are close to each other without performing a pick-and-roll. Although rare, this can happen

in a handoff (see below), since it is possible for a handoff and pick-and-roll to happen

within a few frames of each other.

Weak-Labeling Handoffs

A handoff is a different offensive tactic in which two attackers cross paths, and the ball is

handed off when the players are close to each other. The action can also involve a very

short pass. This tactic allows one to give the ball to another player with a low risk of losing

it, but it can also be used as an opportunity to stand in the defender's way. In this sense,

it is closely related to a pick-and-roll, but the ball possession changes during the action.

The rule-based approach to identifying a handoff tries to identify a change in possession

between two players, with a small distance between the players and a short time of ball

transition.

A handoff is a different offensive tactic in which two attackers cross paths and the ball

is handed off when the players are very close to each other. The action can also involve

a very short pass. This tactic is used to give the ball to the best player with a low risk of

33

losing the ball (compared to a longer pass), but can also be used as an opportunity to set a

screen (i.e. stand in the way of the defender) by the initial ball handler. In this sense, it is

closely related to a pick-and-roll, but the ball possession changes during the action.

To detect a handoff, we try to �nd the frame when the ball changes possession between

two offensive players. We observe that a handoff can be executed simply by stretching out

the ball to another player, and that the average wingspan of an NBA player is rather large–

about 6'6”. Therefore we de�ne a key frame as a handoff if the possession has changed

between two offensive players and the two players are closer than 6.5 ft apart. Manual

evaluation of 200 labeled handoffs show 181 real handoffs for a speci�city of 90.5%.

The weak-labeling process produced 45,802 “pick-and-rolls”, 15,251 “handoffs”, and

808,852 “other” play sequences.

Manual Labeling

We assigned manual labels for a total of 1,800 play segments. Because the data set

is highly unbalanced according to weak-label distribution, we sampled play sequences

equally from all 3 weak-labeled subgroups. To assign the labels, we generated video

representations of 1.2s in length for each play segment. We carefully watched each video,

replaying and freezing it until we were con�dent with its label. We sampled and labeled

one video from each of the 3 weak labels until we found 600 pick-and-rolls manually

labeled samples for each class. We used 50% of these manual labels for testing and 50%

for �ne-tuning our NETS model.

4.3 Results

4.3.1 Trajectory Prediction Problem

We used the self-supervised trajectory prediction problem as a pretraining step for GAR.

This task itself has found recent interest in the computer vision community [48, 80, 81, 75].

In this section, we will show that our Transformer architecture can achieve state-of-the-art

34

performance in trajectory prediction.

Experimental Design

We trained our models using pytorch. We used Adam optimizer with an initial learning

rate of5 � 10� 5 to reduce the mean squared error of predicted velocities

L MSE p� ; �̂ q �
1

2H
}� � �̂ }2

2: (4.6)

We set all hidden dimension todh � 256, and used a Transformer withL � 8 layers

andh � 64prediction heads (also see 4.3.2). We used a ReLU activation function between

all layers except the output. We trained in batches of 512 samples. Early stopping was

applied after 50 epochs if the validation error did not improve, which typically took around

400 epochs, corresponding to about 30 hours of training on a single GPU.

To evaluate the trajectory prediction task, different prediction horizonsH = 10, H =

20 andH = 40 were tested. From the predicted velocities, we computed the trajectories

for the players and evaluated different approaches using two standard metrics [82, 83]

in trajectory prediction: average displacement error (ADE) and �nal displacement error

(FDE). FDE is the expected euclidean distance between the predicted �nal location and

the true �nal location of the tracked object afterH time steps. ADE describes the expected

average euclidean distance between the predicted and the true trajectory at every predicted

time step.

Baselines

Since the trajectory prediction task has been studied in literature before, we compared our

NETS architecture with several strong baselines.

LSTM The baseline LSTM refers to an approach using a 2-layer LSTM, with 128 hidden

nodes in each layer as an input encoder, followed by a 2-layer FF network, also with

128 hidden nodes. We used the same loss function and training setup as for our NETS

experiments.

SocialGAN[82] This model uses an LSTM-based generator, coupled with a social pooling

35

layer, to account for nearby actors and a discriminator that learns to distinguish between

actual and simulated trajectories. We used the same hyperparameter settings as in [82].

It is important to note that SocialGAN was designed for pedestrian prediction, where all

objects are embedded the same way in a shared layer. Therefore, adding the ball location

would require signi�cant modi�cation, which is why this model does not consider the

ball's location in our experiments.

M. VRNN [80] This model uses a hierarchical approach in which a Variatonal RNN is

trained on programmatic weak supervision to �rst predict a location that a player wants to

reach. Then it uses a second identical layer to predict a trajectory that the player will take to

reach it. It is trained like a Variational Autoencoder, aiming to reproduce realistic behavior

of offensive players. We used the same hyperparameter settings as in [82]. Because this

baseline only predicts the trajectories of offensive players, we compared the performance

of all models for the offensive players only.

NETSno LSTM This is an ablation of our NETS model, with the only difference being that

the input embedding is a 2-layer feedforward network with 256 nodes each, instead of the

LSTM-layer in NETS.

Results

We compared the performance of NETS on the trajectory prediction task to several strong

baselines. Results for various prediction horizonsH are shown in Table 4.1. NETSno LSTM

and NETS, which are based on transformers, outperformed the other baselines, showing

improvements on different prediction horizons. The results held for both ADE and FDE,

suggesting that the improvement can be observed along the entirety of a player's path.

MACRO VRNNs trajectories are designed to resemble the behavior of basketball players,

but can be far off from the ground truth. SocialGAN produced reasonably accurate

predictions, but was inferior to other approaches that were speci�cally designed for this

basketball dataset.

Another interesting �nding is that NETSno LSTM performed worse than our full NETS

36

Table 4.1: Comparison of various models in terms of error metrics ADE and FDE (in feet)
for prediction horizonsH = 10 (1.2 seconds),H = 20 (2.4 seconds), andH = 40 (4.8
seconds).

H = 10 H = 20 H = 40
Method ADE FDE ADE FDE ADE FDE

LSTM [75] 1.61 2.98 3.43 6.91 6.59 11.97
M. VRNN [80] 1.70 3.43 4.46 8.66 8.48 14.98

Social GAN [82] 1.25 2.75 3.09 6.67 6.47 12.35
NETSno LSTM 1.18 2.51 2.98 6.42 6.31 11.84

NETS 1.08 2.34 2.78 5.87 5.70 10.88

model. We believe that the LSTM input embedding allows the model to more easily

extract temporally dependent information in the input data, therefore explaining a reduced

accuracy of a model that has to learn temporal patterns from unstructured input data.

4.3.2 Group Activity Recognition (GAR)

In this section, we report the performance of our proposed approach on GAR. We �rst

evaluated the ability of these models to classify a large weak-labeled dataset. We were

particularly interested to investigate if the self-supervised task of trajectory prediction

can improve the accuracy of GAR. Then we evaluated our NETS model on manually

labeled data to determine if a deep learning method can outperform the rule-based labeling

approach.

Experimental Design

Due to our modular architecture design, the neural network architecture was the same as

for the trajectory prediction task, except for the last prediction layer (see Section 4.1.3).

We used an 80 / 10 / 10 train-, validation-, and test-split on all of these play sequences, and

we applied early stopping after 50 epochs. To balance the distribution of 45,802 “pick-and-

rolls”, 15,251 “handoffs”, and 808,852 “other” play sequences, we downsampled other

plays to 45,802 (same as pick-and-roll), we used weighting factors� k of 0.77, 2.34, and

0.77 for pick-and-rolls, handoffs, and other, respectively.

We note that the group activity labels were dominated by play sequences labeled as

37

'other' and a trivial classi�er predicting that the class would achieve 93.0% test accuracy.

Therefore, instead of reporting accuracy, we report the multi-class F1 score to compare the

performance of the models. We calculated the confusion matrixM , whereM ij represents

the numbers of plays with ground truth labelsi classi�ed asj . We calculated F1 scores

by converting the 3-class classi�cation problem into three binary classi�cation problems,

yielding the one vs. all F1-scores

precisioni �
M ii°
j M ji

; recalli �
M ii°
j M ij

(4.7)

F1i � 2 �
precisioni � recalli
precisioni � recalli

: (4.8)

Baselines

We compared our NETS architecture to anLSTM -based neural network with the same

settings described in Section 4.3.1. To allow a fair comparison to our NETS architecture,

we used the same training procedure of pretraining the model using the trajectory

prediction task and then changing the prediction head to enable play classi�cation.

Due to the lack of baselines using deep learning, we used standard shallow baselines,

consisting of logistic regressionLReg, random forest classi�erRForest, and gradient

boosting classi�erGBoost. To establish a baseline, we trained 3 shallow models using

the popularsklearnimplementation. The input to these shallow models were the play

sequences� t � L � 1:t
o consisting of 220 features. We found the optimal parameter settings

through grid search.

Evaluation on Weak-Labels

In Table 4.2 we show F1 scores on the weak labeled data. Our NETS model outperformed

shallow approaches by a large margin. The results show that the classi�cation of group

activities is a dif�cult problem for shallow models such as LReg, RForest, and GBoost, as

indicated by the relatively low F1 scores of these traditional machine learning algorithms.

Interestingly, we did not �nd that the LSTM baseline outperforms GBoost on the GAR

38

Table 4.2: Classi�cation test performance compared to baselines. Tested on 4,581 pick-
and-rolls (p&r), 1,525 handoffs and 80,884 other plays.

p&r handoff other
Method F1-score F1-score F1-score
LReg 0.188 0.099 0.755
RForest 0.329 0.261 0.810
GBoost 0.398 0.443 0.915
LSTM 0.360 0.490 0.905
NETS 0.856 0.768 0.988

Table 4.3: Classi�cation test performance of NETS with different architecture ablations.
Tested on 4,581 pick-and-rolls (p&r), 1,525 handoffs and 80,884 other plays.

LSTM p&r handoff other
pretrain embed. pooling F1-score F1-score F1-score

7 7 3 0.705 0.667 0.973
7 3 7 0.777 0.644 0.980
7 3 3 0.802 0.675 0.982
3 7 3 0.803 0.731 0.983
3 3 7 0.829 0.718 0.985
3 3 3 0.856 0.768 0.988

problem.

We performed an ablation study of the NETS models to evaluate our architecture

design choices: We created a model ablation by removing the LSTM-embedding (see

Figure 4.2), in which the inputs were embedded with a 2-layer feedforward neural network.

We also examined the in�uence of the team-wise pooling layer depicted in Figure 4.4 by

removing the summation and instead concatenating all representationszN
i .

All the models in Table 4.3 were ablations of NETS and were based on a Transformer

architecture. We see that all these models performed better than the shallow models or

the LSTM-based model presented in Table 4.2. All models that were pretrained showed

signi�cant improvement compared to the same models without pretraining. As in the

trajectory prediction task, we noted signi�cant improvement when utilizing an LSTM-

embedding at the input of the base Transformer instead of dense embedding layers.

We also observed an improvement when using the team-pooling layer at the output.

39

Table 4.4: Confusion matrix of weak-labels tested on manually labeled data, consisting of
300 pick-and-rolls (p&r), 300 handoffs and 300 other plays.

ground truth
p&r handoff other

predicted p&r 282 43 24
predicted handoff 5 253 21
predicted other 13 4 260

Table 4.5: Accuracies of four variants of NETS. ”weak-labels” refers to concordance
between weak- and manual labels. Tested on manually labeled data, consisting of 300
pick-and-rolls (p&r), 300 handoffs and 300 other plays.

t

p&r handoff other
method F1-score F1-score F1-score
1) weak-labels 0.869 0.874 0.893
2) NETS 0.915 0.863 0.908
3) NETS, �netune on ml� only 0.784 0.813 0.844
4) NETS, validate on ml� 0.932 0.930 0.908
5) NETS, �netune on ml� 0.951 0.938 0.902
� ml = manual labels

Furthermore, we observed that training GAR without pretraining took around 500 epochs

when we trained from scratch but only roughly 200 epochs when we started with a

pretrained model.

Evaluation on Manual Labels

As described in Section 4.2.2, we manually labeled 600 pick-and-rolls, 600 handoffs and

600 other plays, which we split into 50% train- and 50% test-set.

To get an insight into the performance of our rule-based weak-labeling approach, we

show the confusion table of the weak-labels compared to the assigned ground truth from

manual labeling in Table 4.4. While the weak-labeling rules tended to extract many

correctly labeled play sequences, both rules for pick-and-rolls and handoff included 24

and 21 play sequences that were labeled as other by manual labeling. Furthermore, there

were relatively frequent misclassi�cation of handoffs as pick-and-rolls.

In the previous subsection, we showed that our NETS architecture can predict the

40

(a) Pretraining on trajectory prediction (b) Pretrained on trajectory prediction
and �ne-tuned on pick-and-roll
classi�cation without team-wise
pooling.

(c) Pretrained on trajectory prediction
and �ne-tuned on pick-and-roll
classi�cation.

(d) Pretrained on trajectory prediction,
and �ne-tuned on pick-and-roll and
handoff classi�cation.

FIGURE 4.5: t-SNE of embeddings of - pick-and-rolls (blue), - handoffs (orange) and -
random plays (black).

weak-labels with high accuracy. Next, we evaluated the performance on manual labels.

We also examined the usefulness of weak and manual labels when testing on these manual

labels.

We evaluated the following approaches: 1) Using the rule-based weak-labeling

approach to classify the group activities, which requires human expertise to de�ne the

rules and is not a deep learning approach. 2) Pretrain the NETS model on a trajectory

prediction task and �netune the model using a large amount of weak-labels. 3) Pretrain

the NETS model on a trajectory prediction task and �netune the model only using 900

41

Table 4.6: Classi�cation test performance for models with different parameter settings,
pretrained on trajectory with prediction horizonH .

N h p&r handoffs other
layers dh heads H F1-score F1-score F1-score

16 256 32 20 0.841 0.758 0.986
16 256 128 20 0.846 0.762 0.985
8 256 64 20 0.849 0.769 0.987
16 256 64 10 0.838 0.743 0.983
16 256 64 20 0.856 0.768 0.988
16 256 64 40 0.831 0.719 0.981

manual labels. 4) Pretrain the NETS model on a trajectory prediction task, use the weak-

labels in the training set and the manual labels in the validation set for early stopping. 5)

Pretrain the NETS model on a trajectory prediction task, �netune it �rst on the weak-labels

and then �netune again on the manual labels.

The results in Table 4.5 show the F1 scores for the rule-based weak-labels calculated

from the confusion matrix (Table 4.4). We observed a slight improvement when training

NETS on the weak labels compared to the weak labels themselves, which we hypothesize

stems from the ability of the neural network to generalize better than the rules alone. In

contrast, �netuning only on manual labels performed worse than the rule-based labeling,

indicating that we did not have enough manual labels to train a large NN. Using manual

labels in the validations set further improved the accuracy, implying that NETS over�t

the weak labels without access to manual labels. Using a sequential �netuning paradigm

resulted in the highest accuracy (row 5). When comparing row 5) with the weak-label F1

scores in row 1), we can observe that the accuracy on pick-and-rolls increased from 0.869

to 0.951, for handoffs it increased from 0.874 to 0.938, and for others from 0.893 to 0.902.

Impact of Hyperparameters

Table 4.6 shows classi�cation results on 3-way classi�cation problem that was used to

�netune the hyperparameters. To simplify the hyperparameter tuning process, we set all

hidden dimensionsdg, dk anddv in the attention layers, as well as the hidden dimensions

42

of LSTM and fully connected layers to the same valuedh � 256. All of the models were

pretrained on the trajectory prediction task and then �ne-tuned, with the only difference

between the models being their hyperparameters. We �nd that hyperparameter tuning

generally does not have a large impact on the resulting performance, but that using larger

values for the number of layersN and the hidden dimensiondh improve the results. The

best results are achieved withh � 64attention heads and a prediction horizonH = 20.

4.4 Evaluation of Representations

In this section, our goal is to show that the learned embeddings got increasingly better with

each learning step.

For qualitative analysis, we transformed the higher dimensional embeddings into 2D

space and used t-SNE [84] on the test set. We then visually examined how tightly pick-

and-rolls and handoffs were packed together. Scatterplots shown in Figure 4.5 illustrate

the difference between internal representations of the three NETS models.

Figure 4.5(a) shows the embeddings generated from a model trained on the trajectory

prediction task. The embeddings of pick-and-roll plays and handoffs did not seem to be

clustered together and were scattered within other plays. Some clusters were forming, but

they were not very distinct.

Figure 4.5(c) shows that pick-and-rolls are clearly separated from other plays. More

interestingly, handoffs are often clustered together and are mostly placed between pick-

and-rolls and other plays, correctly indicating that there are some similarities between

the plays. It also shows some unwanted behavior since many handoffs are clearly placed

among pick-and-rolls, indicating that it is dif�cult to distinguish the two types of play from

each other.

Figure 4.5(d) shows the embeddings created after �ne-tuning on both pick-and-rolls

and handoffs. The two types of strategies were now clearly separated, with only few

43

exceptions. Furthermore, we can see more distinct clusters forming among the other plays,

indicating that the embeddings were of higher quality and more capable of distinguishing

different types of strategies, even for those that have no labels.

Impact of Pooling Layer

Figure 4.5(b) shows the clustering after training the model both on the trajectory

prediction task and pick-and-roll classi�cation (but without training on handoffs).

The model in Figure 4.5(b) did not use team-wise pooling (Figure 4.5(c) shows the

corresponding plot with team-wise pooling). We observe that pick-and-rolls are separated

from random plays in both pictures. However, without team-wise pooling we observe the

formation of 10 distinct clusters with sub-clusters. Through further analysis, we found

that the clusters correspond to the player indexes of the 2 involved offensive players (in a

basketball team, there are
� 5

2

�
� 10combinations of 2 players). On one hand, this indicates

that the model successfully learned to identify the involved players, but on the other hand

it uses a lot of resources to indicate at which input position that player is.

4.5 Extension to Multi-Task Representation Learning

4.5.1 Problem Setting

The goal of this work is to present a general framework to learn representations from

tracking data in sports. In particular, we apply this method for the example of the game of

basketball. To do so, we introduce general notation and problem formulations here.

Notation

Through advanced computer vision tracking systems, player and ball locations are

tracked through the all games in the NBA since 2013. This creates a rich dataset of

movement data for the players (5 from each team) and the ball during basketball games.

Following standard notation [85], we describe the location of objecto at time stept as

` t
o � r x t

o; yt
os, with o P O � t B; A 1; : : : ; A5; D1; : : : ; D5u whereO denotes the set of

44

FIGURE 4.6: Overview of the NN framework. The model shares a common Base
Transformer that creates outputs that can predict different challenging tasks through linear
combinations.

tracked objects, namely the ballB , each of the 5 attackerst A1; : : : ; A5u, and each of the

5 defenderst D1; : : : ; D5u. Using an ordered sequence ofT time frames, the trajectory of

a tracked objecto can be expressed as� t � T � 1:t
o � r ` t � T � 1

o ; : : : ; ` t
os, with equally spaced

time steps at an interval of� t .

Problem Formulation

Given an input sequence� t � T � 1:t
o we aim to �nd embeddingsz t

o that provides a

context-aware, high-dimensional representation of objecto at timet. I.e., we want to �nd

a representation that contains as much information as possible for each player and the ball.

Recent work in natural language modeling [86], showed that this can be achieved through

the training of a large transformer on many different tasks. We take inspiration from this

work and will evaluate if such a training approach can be bene�cial for sports analytics.

Additionally, we propose a set of training tasks in sports analytics and will evaluate if the

combination of training multiple tasks concurrently can improve the performance of the

test data.

Framework

As a Base Encoder, we follow work by [85] on group activity recognition using the

same dataset (see Figure 4.6 for an overview). The model �rst encodes the trajectories

45

FIGURE 4.7: Base Transformer to generate embeddings. Trainable functions are in blue
boxes.̀ stands for concatenation.

FIGURE 4.8: Head for player level predictions (e.g. trajectory prediction).

of each objecto using a Long Short-Term Memory (LSTM) encoder, which can encode

inputs of various lengths into an embedding for each objectz0
o (we use the subscript to

denote the layer of embedding, where 0 is the input embedding).

These embeddings are then fed into a multi-layer Transformer with Multi-Head Self-

Attention (we refer to [7] for more details on Self-Attention). Most importantly, the

Transformer allows to aggregate of information between the input objects. E.g. in

the context of basketball, the input embedding of an offensive player will aggregate

information from all other players and the ball. Having multiple layers of Self-Attention

46

FIGURE 4.9: Head for global predictions (e.g. value prediction).

allows one to aggregate in multiple steps and make more and more complex inferences

depending on all of the relations between the players and the ball.

4.5.2 Training Task De�nitions

We train our model on 5 different groups of tasks on either a player level or a global level.

We denote player-level tasks as tasks that need separate labels for each player, such as

trajectory prediction, while we denote global tasks as tasks that predict a property that is

observed as a combination of all players and the ball, such as value prediction or group

activity recognition. We allow for both regression tasks and classi�cation tasks, using

self-, weak- or strong-supervision.

Trajectory Prediction

Trajectory prediction is a well-studied task in both sports data and human trajectory data

in general [87, 82, 75, 80]. In this task, we observe all trajectories forT time steps and

then predict the future trajectories forH time steps. Following consensus in human

trajectory prediction, we predict velocities instead of locations. We predict x- and y-

locations separately, therefore requiring a NN output dimension of2H . For this task,

we use a linear activation function in the last layer and reduce the mean squared error of

the prediction compared to the ground truth. More formally, we de�ne the loss for the

47

trajectory prediction task as

L traj: �
1

|O|HN

¸

oPO

Ḩ

t � 1

Ņ

i � 1

�
v t;i;o � ŷ t;i;o

1

� 2
; (4.9)

wherev t
i;o stands for the velocity of tracked objecto (player or ball) at timet and sample

i , v̂ t
i;o is the predicted velocity andN the number of samples in one batch.

By predicting the future trajectories of the players, we expect the NN to learn important

general concepts in the game of basketball, such as court geometry, defensive assignments,

ball possession, and much more.

Group Activity Recognition

Group activity recognition (GAR) aims to detect whether a group is performing a speci�c

activity in a sequence ofT observations and usually requires the combined efforts of

2 or more members of the group. Because we want to generate a single label for the

entire observed sequence, we call this a global prediction task (in contrast to player-level

predictions). This is a task that has received limited attention in sports analytics when only

using tracking data, but gathered much interest when extracted directly from videos.

For GAR in basketball, we use play-by-play information that contains coarse-grained

information about the game, where we gather information about made shots, missed shots,

and turnovers. Although this play-by-play data is manually collected from experts, we

observe that the information is quite granular, because it only contains accuracy to the

seconds, while our movement data contains time steps of 0.12 seconds. Additionally, we

observed delays in the annotation of up to 2 seconds. However, we can see this as weak-

labeled data. Furthermore, the task is to discriminate whether the group activity occurs

at any point in the play, and with longer play sequences, we �nd the annotations to be

adequately accurate.

In this way, we extractK � 3, different classes. Note that more than one of these

48

activities can occur during a play sequence. Therefore, we predict a probability for each

activity, by having the NN outputK � 3 values, using the sigmoid activation function and

optimizing the binary cross entropy for each activity.

L GAR � �
1

NP

Ņ

i � 1

Ķ

k� 1

wk

�
gi;k lnpŷ i;k

2 q � p 1 � gi;k qlnp1 � ŷ i;k
2 q

	
; (4.10)

To evaluate the usefulness of the generated embeddings, we use the GAR task un

unseen activities to evaluate, how helpful the generated representations are in classifying

unseen tasks. We use an existing dataset containing weak-labeled group activities for

basketball [85] containing weak labels for pick-and-rolls and handoffs, which were created

using rule-based programmatic labeling. Both of these play types are complex strategies

that involve complex interactions between offensive and defensive players. We extend this

dataset by adding a new strategy called isolation play, in which the player with the ball is

separated from the other players, in order to force a one-on-one matchup.

Value Prediction

In basketball, we can think of scoring points as rewardsr t that the offense earns at

time t for scoring points and one might be interested in how good a current position

is, by estimating the expected future rewards. This is a common problem posed in

Reinforcement Learning (RL), where a common target of prediction is to estimate the

expected return. However, returns far in the future should be discounted, because they

might not be the direct result of the current positions. More formally, the returnGt can

be calculated as a sum of discounted rewardsr , which can be reformulated in a recursive

fashion as follows:

Gt �
Tg¸

k� 1

 kr t � k ; (4.11)

Gt � r t �
G t � 1; (4.12)

49

where
 is the discount factor andTg is the time left until the end of the game. Then, we

say that the returnGi
t is the target value, wheret i is the time of the last time step of sample

i and we minimize the error to the predicted valueŷ i
3 leading to the loss

L value �
1
N

Ņ

i � 1

�
Gt i � ŷ i

3

� 2
: (4.13)

Shot Clock Prediction

To avoid NBA teams from stalling, they have a limited time to score points in a possession,

and the time that's left is displayed on the shot clock. The time of possession to score

points is 24 seconds and it resets when the possession changes e.g. when a team scores

points or loses the ball (more rules about the shot-clock can be found online2).

During training, the MSE of the error of the predicted shot clock valueŷ i
2 compared to

the ground truth valueci
2 is minimized leading to the loss

L clock �
1
N

Ņ

i � 1

�
ci � ŷ i

4

� 2
: (4.14)

This is a global regression problem, where we want to predict the numerical value of

the shot clock at the end of the observed sequence, by reducing the mean squared error

between the scalar ground truth and the prediction. Note that this task has some similarities

to the GAR task since e.g. a made shot will reset the shot clock and should in�uence the

prediction strongly. In contrast to the play-by-play annotation, the reset of the shot clock

is much more accurate in the time domain and �ts well with the tracking data at each

step. Furthermore, when the shot clock runs low, we expect the players to act with more

urgency, which might be detected by a good model.

2 https://of�cial.nba.com/rule-no-7-24-second-clock, last accessed December 2022

50

Player Classi�cation

This is a classi�cation task on the player level, i.e. we try to predict each player who he

is. Because there is a large number of players in the NBA and some players only have a

very limited number of plays on the court, we pick 20 of the top players in the league for

this task (see a list of the chosen players in the Appendix). In terms of the classi�cation

task, this means that we want to predict if the observed trajectory of an individual player

is one of these 20 players or none of these, which is a classi�cation task withP � 21

categories. Therefore, the NN has to output a probability distribution with 21 output,

which is achieved by passing it through a softmax activation function. We optimize the

Negative Log Likelihood (NLL) loss

L player � �
1

N |A |P

Ņ

i � 1

¸

aPA

P¸

p� 1

wpplayer a;i;p lnpŷ a;i;p
5 q; (4.15)

whereA represents the set of all offensive players (attackers),player a;i;p is the one-hot

representation of attackera for a samplei , ŷ a;i;p
5 is the predicted probability that attackera

is playerp andwp is a weight to adjust for the unequal number of samples for each player

in the dataset [79].

Note that this is a very dif�cult task to solve, even for human experts. From just

observing the trajectories, we would be very unsure about a de�nite classi�cation of

a speci�c player. However, through expert knowledge, we might be able to identify

the position that a player plays and narrow down the possible candidates. By knowing

speci�c player tendencies, we might further discriminate between players, but with lower

certainty. In this way, it becomes clear that the goal of this prediction task is to form some

probabilistic reasoning about the observed players and learn player tendencies, rather than

making highly accurate predictions.

51

Team Classi�cation

This is a classi�cation task on the global level because we try to predict what team

currently plays on offense. There are30 teams in the NBA, therefore it is a classi�cation

task withO � 30categories. We optimize the Negative Log Likelihood (NLL) loss

L team � �
1

NO

Ņ

i � 1

O¸

o� 1

woteam i;p lnpŷ a;i;p
4 q; (4.16)

whereteam i;p is the one-hot representation of attackera for a samplei , ŷ a;i;p
4 is the

predicted probability that attackera is playerp andwp is a weight to adjust for an unequal

number of samples for each player in the dataset [79].

Note that this is a very dif�cult task to solve, even for human experts. From just

observing the trajectories, we would be very unsure about a de�nite classi�cation of

a speci�c player. However, through expert knowledge, we might be able to identify

the position that a player plays and narrow down the possible candidates. By knowing

speci�c player tendencies, we might further discriminate between players, but with lower

certainty. In this way, it becomes clear that the goal of this prediction task is to form some

probabilistic reasoning about the observed players and learn player tendencies, rather than

making highly accurate predictions.

Total Loss

The optimization problem for the model is to reduce the total loss which we de�ne as the

weighted sum of all losses:

L � � 1L traj: � � 2L GAR � � 3L value �

� 4L clock � � 5L player � � 6L team

(4.17)

4.5.3 Varying Input Time Horizons

The use of LSTM input embeddings (see Figure 4.2) and using only the embedding of the

last time step, allows the ability to use the architecture for different input time horizons

52

T without any modi�cations. To make full use of this, we train the model on 4 different

input time horizons ofT � 2; 5; 10; 20; 40, resulting in sequences corresponding to 0.24s,

0.6s, 1.2s, 2.4s, and 4.8s of gameplay. Previous work on NBA trajectory prediction has

shown that using different time horizons did not have a large impact on the results [75]

but it did not explore the possibility of training on multiple time horizons or the effect on

various other tasks in sports analytics.

When not speci�ed otherwise, we use an input time horizonT � 20when not speci�ed

otherwise.

4.5.4 Implementation Details

In this work, we trained our models using pytorch with the Adam optimizer and an initial

learning rate of5� 10� 5. We used a Transformer withN � 8 layers, withdh � 256hidden

dimensions andh � 64 prediction heads in each layer. A ReLU activation function was

used between all layers except the output. The models were trained in batches of 1024

samples, and early stopping was applied after 50 epochs if the validation error did not

improve. Training typically took around 30 hours on a single GPU.

We normalize the target values for all regression tasks using standard scaling, which

helps to keep the loss for all regression tasks in the same order of magnitude during initial

training. To tune the parameters� 1 - � 6 in Equation 4.17, we �rst trained the models on

all tasks individually and then compare them to the validation performance when training

on all tasks simultaneously. We �nd that satisfactory performance was achieved with a

relatively high value for trajectory prediction and values for classi�cation tasks slightly

higher for the remaining regression tasks. The �nal chosen parameters were� 1 � 10,

� 2 � 1:5, � 3 � 1, � 4 � 1 , � 5 � 1:5, and� 6 � 1:5.

53

training tasks group activity recognition
trajectory shot clock value playtype player teamhandoff pick-and-roll iso play average

7 7 7 7 7 7 0.644 0.673 0.629 0.649
3 7 7 7 7 7 0.691 0.802 0.744 0.746
3 3 7 7 7 7 0.696 0.805 0.754 0.752
3 3 3 7 7 7 0.713 0.814 0.772 0.766
3 3 3 3 7 7 0.722 0.819 0.793 0.778
3 3 3 3 3 7 0.721 0.827 0.821 0.790
3 3 3 3 3 3 0.727 0.833 0.821 0.794

Table 4.7: Effect of pretraining representations on an unseen tasks of GAR for 3 different
strategies. The �rst row signi�es training on the raw movement data.

(a) raw data (b) BBRepTr representations

FIGURE 4.10: Visualization of reducing raw inputs and BBRepTr representations to 2D
using t-SNE. Each dot represents a game segment from the test set of 20 time frames.

4.5.5 Preliminary Results

In this section, we aim to verify the validity of learning different tasks in basketball

movement data. Therefore, the baselines are established from models that do not train

on multiple tasks or only a subset of the tasks described in this paper.

We �rst evaluate our training procedure on a task that was not part of the training data

to verify if our representations can lead to improvements in learning new tasks. We then

evaluate the performance for each task on the original training tasks. Next, we evaluate

the in�uence of the input time window lengthT at test time.

54

trajectory clock value playtype player team
ADE FDE MSE MSE AUC AUC AUC

training procedure training time × × × × Õ Õ Õ
Single task 28h 1.10 2.40 3.69 0.555 0.915 0.694 0.675
BBRepTr 33h 1.22 2.57 3.49 0.416 0.929 0.788 0.678
BBRepTr �netuned 37h 1.08 2.35 3.39 0.412 0.938 0.796 0.695

Table 4.8: Performance on various tasks, evaluated on the test set. ”Single task” means that
only one task was trained and we tested the performance for the corresponding task (i.e. 6
different models were trained and evaluated in that row). ”BBRepTr” is the model trained
on all tasks and we used the same model to evaluate all tasks. ”BBRepTr �netuned” is
BBRepTr but �netuned on a single task and evaluated on the corresponding model.

Results on Unseen Task

A key contribution of our work is to create hidden representations in the deep learning

process that will generalize to many predicted targets for many different tasks. Considering

this in the evaluation, we verify that the learned representations can generalize to a new

task with limited training data.

To this end, we use Group Activity Recognition of weak-labeled strategies pick-and-

roll, handoffs, and isolation plays [85] (see Chapter 4.5.2). We use the trained models to

improve the classi�cation performance as follows: We freeze the trained model weights

and use only the base layer of the model. We then add a linear classi�cation head to

perform GAR on the unseen strategies extracted from the test set, which contains 4,366

pick-and-rolls, 1,002 handoffs, and 1,990 isolation plays. We treat each of these three tasks

as separate binary classi�cation problems and use random majority class subsampling to

avoid the imbalanced class problem. For the evaluation metric, we generate the Receiver

Operating Characteristic (ROC) [88] on the test set and calculate the Area Under Curve

(AUC) as our test metric.

The results in Table 4.7 show the performance of GAR classi�cation on an unseen

task using logistic regression with different input representations. In the �rst row, no

training was performed and the results correspond to using the raw input data as training

input for logistic regression. Note that random guessing would lead to a ROC AUC of

55

trajectory clock value playtype player team
T at test time ADE FDE MSE MSE AUC AUC AUC

× × × × Õ Õ Õ
2 1.70 3.23 3.65 0.445 0.880 0.725 0.623
5 1.38 2.81 3.57 0.424 0.930 0.771 0.665

10 1.22 2.57 3.60 0.414 0.930 0.778 0.670
20 1.21 2.57 3.49 0.416 0.929 0.788 0.678
40 1.20 2.55 3.53 0.409 0.904 0.784 0.672

Table 4.9: In�uence of input time length on test performance for BBRepTr on various
tasks. We trained our model for all the listed input time lengthsT.

T at train time T at test time handoff pick-and-roll iso play average
f 10g 10 0.749 0.809 0.801 0.786

f 2, 5, 10, 20, 40g 10 0.758 0.799 0.834 0.797
f 20g 20 0.733 0.767 0.758 0.753

f 2, 5, 10, 20, 40g 20 0.740 0.785 0.791 0.772
f 40g 40 0.644 0.714 0.706 0.688

f 2, 5, 10, 20, 40g 40 0.648 0.707 0.714 0.690
Table 4.10: In�uence of input time length on test performance on unseen GAR task. We
compare performance when training on data with a �xed hyperparameterT to training on
varying hyperparameterT during training.

0.5. The second row shows the results when training only on trajectory prediction. Using

the resulting representation of the trained model leads to a remarkable improvement over

using raw input data. This indicates that these representations contain features that make it

easier to learn linear separations between speci�c strategies and random game segments.

Adding more and more training tasks in the training process leads to increasing overall

performance on the GAR tasks. However, we observe that on handoffs and pick-and-rolls,

the improvements stagnate when adding more training tasks, indicating that there is an

effect of diminishing returns of increasing the training complexity.

Qualitative Analysis of Representations

To give a more intuitive understanding of representation learning and how internal

representations can be bene�cial in post analysis, we show a visualization of the learned

56

representations in Figure 4.10. To this end, we compare the original raw data to the

representations learned by the BBRepTr model at the layer before the linear head for every

sample of the test set. To enable a visual analysis, we reduce the dimensions to 2D using

t-SNE [84].

The �gure shows that the representations for the raw data (Figure 4.10(a)), shows no

global patterns when reducing the data to 2D, although some local clusters can form.

On the other hand, the representations of the BBRepTr model show some clear global

patterns, where many plays form dense areas in the representation space. By manually

checking some of the embedded plays corresponding to these clusters, we were able to

con�rm that many neighboring plays in representation space have striking similarities in

the game situation (such as shot attempts or throw-ins). A thorough investigation of the

representations would exceed the scope of this paper and we leave it for future work.

Results on Training Tasks

In this section, we compare the performance of every task used during training when

evaluated on the test data. As evaluation metrics for trajectory prediction, we use Average

Displacement Error (ADE) and Final Displacement Error (FDE) which are standard

metrics in trajectory prediction [89, 87]. We use Mean Squared Error (MSE) as the

evaluation metric for the remaining regression tasks and ROC AUC as the evaluation

metric for classi�cation tasks.

The �rst row in results Table 4.8 shows the baseline of training every task individually

as reference results. The second row shows the performance after training on the multi-task

loss shown in 4.17 and we call the resulting model BBRepTr. The results are somewhat

mixed, indicating that we get better results in 5 out of the 6 tasks, with an impressive

improvement on the value prediction task. However, the results on the trajectory prediction

task are signi�cantly worse than those training on trajectory prediction separately. This

indicates that there can be some downsides to training on multiple tasks and that the

57

performance on speci�c tasks may decrease as a result of the multi-task training process.

To alleviate this, we explore adding an additional �netuning step after training

BBRepTr, where we continue training on a single task. We use the validation set to

monitor the validation loss and stop when there is no improvement for 5 epochs. This

only takes roughly 10 to 20 epochs, depending on the training task. The results show that

this improves test performance for every task. Compared to training on single tasks, we

observe better results for all 6 tasks.

We also indicate the typical training time. The training time can slightly vary between

the tasks due to different times to convergence and the indicated results were observed

for the trajectory prediction task. We note that the training time only slightly increases

when adding more tasks because computing the outputs of a few more linear layers leads

to minimal overhead. However, we observed that the convergence of the model is slower

when training on multiple tasks and increasing the training time. Finetuning BBRepTr

converges much faster than training a model from scratch, therefore only increasing the

total training time by approximately 4 hours.

Results on In�uence of Input Time Window

Next, we evaluate the in�uence of input time windowT on evaluation results for different

tasks in this basketball dataset. Table 4.9 shows the test metrics for all tasks when testing

BBRepTr with different input time window lengthsT. The results on the trajectory

prediction task show that the results are better with longer input time horizons, but the

improvements are very small whenT is larger than10. For shorter inputs, there is a large

drop in the evaluation metrics in both ADE and FDE. We observe a different effect of the

test input lengthT for the task of playtype recognition, where even inputs of only 5 time

frames lead to better results than having long input time windows. As a reminder, the task

is to detect whether the game sequence contains a missed shot, made shot, or turnover.

This task seems to become harder, the longer the time window at the input is and the

58

model is capable of detecting these events with only a few time frames.

The �rst takeaway of Table 4.9 is, that the input time window lengthT can have effects

on the test performance which can depend on the task. Since we do not know the exact

behavior before training and because we would have to make a dif�cult trade-off decision

on what input time horizon we should train on, this provides a motivation to train the

model to handle multiple time horizons instead of only choosing one time horizon to train

on.

We now evaluate the effect of training on multiple time horizonsT on the performance

of classifying unseen group activities as outlined in Chapter 4.5.5. To this end, we evaluate

this task on a model that was only trained on input time windows ofT � 10and compare

the performance when training on training windows of 2, 5, 10, 20, and 40 time steps. We

then compare the performance when evaluated atT � 10 time steps, i.e. the same as for

the model that only saw these input lengths. We observe that the average performance on

the classi�cation task is better when training on multiple values forT. We make similar

observations when comparing to a model only trained on 20 and 40 time steps.

These results indicate that the representations generalize better to unseen tasks when

the model was trained on multiple different time windows.

59

CHAPTER 5

PROTEIN MODELING

5.1 Introduction

Epistasis occurs when the combined effect of two or more mutations differs from the sum

of their individual effects, and re�ects molecular interactions that affect the function and

�tness of a protein [90]. For example, pairwise epistasis can occur, single mutations in

two positions are harmless, but simultaneous occurrence of the two mutations leads to

a certain disease. While the recognition of pairwise epistasis dates back to Mendelian

genetics [91], the analysis and study of higher order interactions is a recently evolving

subject of research. The century of research on pairwise epistasis has led to an improved

understanding of evolutionary effects of mutation [92], including the understanding of

pathways of evolution [93, 94] or that evolution can be irreversible [95, 96].

We de�ne higher-order epistasis as coupling effects that depend on more than pairwise

interactions. This may for example occur when pairwise epistasis only emerges in the

presence of yet another mutation. The importance of higher-order epistasis has been

experimentally shown in the functionality of �uorescent proteins [97]. The experimental

analysis evaluation of �tness for 8192 variants of the protein to study mutations in 13 sites,

showing the combinatorial complexity of studying higher-order epistasis.

60

Direct coupling analysis (DCA) is a class of statistical models used to analyze

sequences data in computational biology, which quanti�es the strength of pairwise

relations of two positions of an MSA. The main assumption is that if two positions are

under joint evolutionary pressure, these strength of pairwise interaction will be high, while

the interaction can be neglected if the positions are independent of each other. In general

the probability of a sequence is modeled as

Ppa1; :::; aL q �
1
Z

exp

�
L � 1¸

i � 1

L¸

j � i � 1

J ij pai ; aj q �
L¸

i � 1

h i pai q

�

(5.1)

with a categorical value for amino acidai at positioni , for a sequence of lengthL. h i

is aq-dimensional vector, whereq is the number of possible amino acids.h i depends on

the frequency of the amino acids at positioni . J ij is aq-by-q matrix and depends on the

strength of pairwise interaction.Z is a normalization constant to ensure thatPpa1; :::; aL q

is a well de�ned probability function. While it is mathematically straight forward to

extend DCA models to include higher order (i.e. higher than pairwise) interaction

terms, it becomes computationally intractable because the number of parameters increases

exponentially, which is why DCA models only take into account pairwise interactions.

DCA (and a variety of other protein models) solve the following problem statement:

Given an MSA consisting ofM aligned sequences of lengthL of the same protein domain

(i.e. protein regions that fold into a speci�c 3D-structure), we want to �nd a model to

predict that a speci�c protein sequenceS � p a1; :::; aL q belongs to the given protein

domain. This is problem is of particular interest in biology because a domain generally

describes a certain function and/or 3D-structure of a protein. By solving this problem with

high accuracy, DCA has been shown to be useful in three speci�c applications [98]: 1)

DCA can predict contact patterns with high accuracy either directly, or as subpart of more

complex deep learning models [99, 100, 101, 15]. 2) DCA can be used to as generative

protein sequence models (GPSMs) to generate de-novo proteins that reproduce mutational

61

effects of the training dataset [59] and generate arti�cially designed sequences that fold

to similar 3D structures as the natural sequences. 3) DCA can predict the probability of

mutational effects that correlate with experimentally measured viability [102, 103].

Approaches that potentially can model such higher order interactions using deep

learning have been proposed, e. g. generative models based on Variational AutoEncoders

(VAE) [51, 52]. VAEs try to encode any input sequence into a ”latent” (hidden)

representation and then reconstruct the same sequence from those latent representations.

These approaches show great potential in modeling phylogenetic information in the latent

space, predicting aforementioned functionality and can sample new sequences from the

latent space. However, it is not clear how these models can be of use in diagnostics and do

not give any insight whether any higher order interactions are present. Unlike these VAE

models, our approach enables detection of higher order interactions while still being able

to be used as a generative model.

In recent years, several deep learning approaches have been proposed, such as

Variational AutoEncoders (VAEs) [51, 52, 53], Generative Adversarial Networks (GANs)

[54], Graph Convolutional Neural Networks (GCNNs) [55], and Transformers [56, 57, 58].

However, recent work has shown that these deep learning approaches struggle to learn the

statistical distribution of a speci�c MSAs used as a GPSM [59], when compared to a Potts

model.

The current research suggests that higher-order epistasis can alter evolutionary

outcomes [94, 104, 105], as well as evolutionary trajectories [92], but that the frequency

and the effect is generally smaller than pairwise epistasis.

5.2 Limitation of Direct Coupling Analysis

One of the questions we address in [59] is whether different GPSMs are well speci�ed to

describe protein sequence variation, especially in the case of covariation of many positions

62

in the sequence at once. Of particular interest is whether a model which explicitly includes

only pairwise interactions, such as the Potts model, is suf�cient to model higher order

epistasis, or whether GPSMs with more complex functional forms, such as a VAE, are

necessary.

For clarity, we give a brief example describing how Potts models can predict many

patterns of higher-order covariation, meaning triplet and higher patterns of residue

covariation, despite only modelling pairwise interactions. We illustrate this using a toy

model describing sequences of lengthL � 3 with two residue types A and B, with

23 � 8 possible sequences, and show different forms of higher-order covariation which

a pairwise model can and cannot �t. Detailed discussion and theoretical results suggesting

why pairwise models are often suf�cient to model many datasets have been provided by

others[106, 107, 108].

First, we show how such a Potts model generates triplet covariation. Consider a Potts

model with parameters given byJ 12
AA � J 23

AA � � s for some interaction strengths and all

other �eld and coupling parameters are 0. This directly couples the character “A” between

positions (1,2) and also positions (2,3). These interactions cause pairwise covariation

between the directly coupled residues, and in the limit of larges we �nd C12
AA � C23

AA �

0:08, or 8%, but they also cause covariation between the indirectly coupled pair, asC13
AA �

0:04, or 4%. Furthermore, this Potts model predicts three-body covariation, as can be seen

by computing the three-body covariation terms found in cluster expansions in statistical

physics given by

C123
��
 � f 123

��
 � f 1
� C23

�
 � f 2
� C13

�
 � f 3

 C12

�� � f 1
� f 2

� f 3

 (5.2)

and we �nd thatC123
AAA � 0:024, or 2.4%, which is nonzero. This shows that a Potts model

generates and can �t higher-order covariation between sets of residues even though the

interactions are only pairwise, as a result of indirect covariation through chains and loops

of pairwise interactions.

63

AAA
ABB
BAB
BBA

Table 5.1: Example MSA following the XOR pattern.

An example of MSA triplet statistics which a Potts model is mis-speci�ed to describe

is the XOR pattern in which the dataset is composed in equal proportions of copies of the

four sequences shown in Table 5.1. These sequences follow the XOR function in boolean

logic, so that the 3rd position is the XOR function applied to the �rst two positions. One

can see that both the A and B residues have a 50% probability at each position, and that

for each pair of positions the probability of each of the four combinations AA, AB, BA,

BB is 1/4. This means that the pairwise covariancesC ij
�� � 0:25 � 0:5 � 0:5 are all 0.

Because there are no pairwise covariances, �tting a Potts model to this data will yield a

model with no coupling terms, equivalent to an Indep model. Sequences generated from

this (or any) Indep model have all three-body covariation terms equal to 0. However, the

three-body covariations of the dataset are non-zero andC123
AAA � 0:125. This shows how

a Potts model �t to XOR data will fail to reproduce the correct three-body covariations.

More generally, it will fail to model data which follows a boolean parity function, which

generalizes the XOR function to longer strings, and is de�ned so that the last character is

set to “B” if there are an odd number of “B” characters in the preceding sequence.

A motivation for the VAE is that it may potentially be able to model patterns of

covariation such as the XOR pattern which a Potts model cannot. Whether a VAE is

able to outperform the Potts model when �t to protein sequence data will depend on the

prevalence of patterns such as XOR in the data which cannot be �t by a Potts model. If

they are undetectable, the Potts model will be well speci�ed and third order parameters

are unnecessary. Our results with the natural dataset in the main text suggest no evidence

that the Potts model is mis-speci�ed to our dataset, as it is able to reproduce all the MSA

64

statistics we tested up to the limits imposed by estimation and out-of-sample error.

5.3 Modeling Higher Order Corrections

5.3.1 arHCA Model

We base our model on previous work by Trinquier et al. [109], who formulate Equation

5.1 as autoregressive model and rely on Bayes Theorem to formulate the joint probability

of a sequencePpa1; :::; aL qas a product of conditional probabilities:

Ppa1; :::; aL q � Ppa1q �Ppa2|a1q � � �PpaL |aL � 1; :::; a1q; (5.3)

i.e. the probability distribution of the whole sequence can be decomposed into smaller

sub-sequences (in any arbitrary order). Subsequently, this implies that given an MSA

D, we may solve the problem of estimating the full joint probabilities intoL models,

where each model only predicts the probabilityPpai |ai 91; :::; a1qof one speci�c position

in the MSA, given a sub-sequence as inputs. Each of these models boils down to a

multi-class classi�cation problem which can be solved through supervised learning, where

the labels are based on predicting the next amino acid given all preceding amino acids.

Reformulating the DCA model from Equation 5.1 in this context and writing out the

normalization constantZ , we can formulate it as

Ppai |ai 91; :::; a1q �
e

° i � 1
j � 1 J ij pai ;aj q� h i pai q

°
a e

° i � 1
j � 1 J ij pa;aj q� h i paq

(5.4)

which results in the model called arDCA [109], wherea stands for any of theA amino

acids andai stands for the speci�c amino acid given at positioni in the given sequence.

They noted that this formulation is known as soft-max regression in machine learning and

that it can be solved much faster than solving the full DCA problem, leading to a speed-up

of more than 2 orders of magnitude compared to solving Equation 5.1 with a Boltzman

65

Machine model (bmDCA [110]) with only slightly worse performance in generating de

novo proteins.

More generally, we can formulate such a model as

P� pai |ai 91; :::; a1q �
ef � pai 91 ;:::;a1q

°
a ef � a pai 91 ;:::;a1q

(5.5)

� softmaxpf � pai 91; :::; a1qq (5.6)

wheref � p:q : Rpi � 1q�q ÞÑRq stands for any function parametrized by weights� that

transforms the input ofi � 1 vectors of lengthq (whereq is the length of the alphabet

of residues) to anq-dimensional output vector.� a stands for the weights that predict the

speci�c amino acida out ofq possible values.

As mentioned above, previous work on arDCA [109] was inspired by DCA and

therefore chose a logistic regression function that only considers additive effects of direct

couplings between different positions. In machine learning, such a functionf � p:qcan be

described as a linear combination of all the input vectors and bias for each residue

f � DCApai 91; :::; a1q � xT W � DCA (5.7)

xT � ~1A } a1 } ::: } ai 91 (5.8)

whereW � DCA P Rpi � 1q�q� q is a trainable weight matrix,~1A is a vector of all ones of

lengthA and} is the concatenation operator. We provide a visualization of such a logistic

regressor in Figure 5.1(a) (we omit the bias with input~1A for simplicity). Using linear

combinations of preceding amino acids is a very sensible choice, since it has been shown

that DCA approximate the probability landscape of proteins well. Furthermore, [109]

showed that this approach is fast to train and obtains similar result as more time intense

methods, therefore providing an good speed-accuracy trade-off.

66

On the other hand, the choice of linear combinations can not handle higher order

epistasis effects because it models the full sequence as linear combinations of pairwise

couplings. It is currently unknown how big this theoretical limitation affects the results,

because although higher order epistasis has been observed in some protein domains (such

as the Entacmaea quadricolor �uorescent protein [97]), these effects only modestly affect

the �tness landscape [111] and are sparse [97] but can have important consequences [104].

Therefore it is a dif�cult problem to identify positions that have higher order epistasis

effects.

To avoid the theoretical limitations of direct couplings, one might be tempted to expand

the Equation 5.7 in a way that can learn more complex functions than linear combinations.

Through the universal approximation theorem [112], it is well known that neural networks

can model very complex functions with good accuracy.

f � NNpai 91; :::; a1q � NN� NNpai 91; :::; a1q (5.9)

where NN� NN stands for a neural network parametrized by� NN. Unlike Equation 5.7,

neural networks can model interactions between amino acids that go beyond additive

effects of other inputs. We visualize this model in Figure 5.1(b), using a 2-layer dense

neural network as example.

However, in practice we see that in most cases, the direct couplings in an MSA are

much more important than the higher order couplings in the system [97] and although

(or indeed because) a neural network can approximate complex function, they also tend

to be more prone to over-�tting than logistic regression. Because the in�uence of higher

order interactions is rather small, the additional time spent to train a more complex system

might not outweigh the marginal improvement of the performance. Even worse, in some

instances over-�tting or sub-optimal training can lead to worse performance than logistic

regression, as observed by [109].

67

(a) arDCA model (b) arNN model

(c) arHCA model

FIGURE 5.1: Auto-regressive models model a probability distribution over all possible
residues, taking as input the one-hot embedded input sequences up to positioni � 1.

To remedy this, we propose to combine the logistic regression weights (as in arDCA)

and to learn a correction term to add the in�uence of higher order epistasis.

f � HOCApai 91; :::; a1q � xT W � DCA � NN� NNpai 91; :::; a1q (5.10)

Compared to the model described in equation 5.9, arHCA described in equation 5.10

allows to separate the direct couplings terms and solely focus on higher order epistasis.

We visualize this model in Figure 5.1(c), showing how arHCA is a combination of arDCA

68

with a neural network that allows to correct the output of arDCA.

5.3.2 Experimental Design

It is currently not well understood how large the in�uence of higher order epistasis is on

natural MSA, therefore it is dif�cult to directly verify if a given model correctly models

higher order interactions. Therefore, we �rst evaluate the models on a purely synthetic

dataset, with the goal to verify if arHCA can indeed model higher order interactions. We

also make the detection of the pattern harder by adding more synthetic data that is purely

random and does not contain any epistasis.

To create a synthetic dataset that exhibits epistasis, we use 0 and 1 instead of letters. As

described in [59], we can create a third order coupling using the XOR pattern (see Table)

which can not be modeled through DCA.

Table 5.2: XOR pattern.
000
110
101
011

In general, we can designn-order couplings in such a way that the sum of a tuple of

n values is even. More formally we say that a set ofn positions have to follow the rule
°

i Pn x i � 2k wherek P Z. Note that the parity function has the advantage that we can

speci�cally generate a strong epistasis of a speci�c order, because the knowledge of any

n � 1 positions within the group determines the remaining position. However, knowledge

of anyn � 2 positions doesn't add any restrictions on the next position that is �lled.

In this way we create a dataset with third-order epistasis. We use strings of lengthL �

30, which means that the dataset contains 10 groups of third-order epistasis. To calculate

the total number of possible strings, we observe that each group has exactly one position

that is dependent on the rest and doesn't add any new combination possibility. Therefore,

the dataset has 20 positions that can be chosen freely, which results in220 � 1; 048; 576

69

possible sequences. We sample100; 000sequences without repetition from these possible

sequences and randomly split it into90; 000training sequences and10; 000test sequences.

To verify if the epistasis was detected by the arHCA model, we monitor the NLL loss

only in the positions where epistasis can be detected. Because of the way the synthetic

dataset was generated, this is only possible when predicting the last position of an epistatic

triple. While the �rst two positions show no correlation at all, knowing the �rst two

positions allows to perfectly predict the third position. Therefore, theoretically it would be

possible to predict such a position with 0 NLL loss.

We want to verify if arHCA can be used to determine the positions that are involved in

this epistatic triple. To �nd the interacting positions, we perform sensitivity analysis [113]

for the positions that are predictable. We are particularly interested in the sensitivity of

the correction of the arHCA compared to the prediction made by the linear regression part

(compare to Figure 5.1(c)). We can use the signal generated at the output of the neural

network layer and �nd the derivatives at the input through common back-propagation in

neural networks. If the input at a certain position does not signi�cantly contribute to a

change in output probabilities compared to arDCA, we will expect the derivatives at the

inputs of these positions to be close to 0. However, if the input is important and let's

arHCA predict the next amino acid better, we expect the derivatives at these inputs to be

higher.

We evaluate arHCA on eight publicly available MSAs [51] shown in Table 5.3 and

one MSA that we create ourselves. The MSAs in [51] were obtained using the pro�le

HMM homology search tool jackhmmer [114] searching for similar sequences to the target

in UniRef100 [115] (detailed parameters can be found in [51]). In contrast to [51], we

add an additional data �ltering step. Longer runs of gaps in proteins can introduce some

statistical properties that can not be modeled by second order epistasis. However, these

patterns are not of particular interest of this paper, so we exclude all proteins that introduce

gaps of more than 3 consecutive positions. The sequences are weighted so that sequences

70

with high similarity get a reduced weight. To this end, the normalized hamming distance

DH pX s; X tq is calculated for every sequence pair in the MSA, whereX s stands for the

sequence in rows of the MSA. The sequence weight� s of a sequenceX s is then the

inverse of the number of similar sequences is then� s � p
° T

t DH pX s; X tq � q� 1, where

� is a similarity cutoff parameter that is set to0:2. The effective numberNeff of sequences

in the MSA can be calculated by summing the weight over all sequences:Neff �
° T

t � t .

We additionally create an MSA for PF00520 by obtaininging the pre-built MSA for

the ion channel superfamily for PF00520 from Interpro1, which contained 2179 positions.

From this starting point, we processed the MSA with statistical feature selection, which

entailed computing the residue frequency distribution for each position as a column of the

MSA and using a 20% threshold for the gap character frequency, i.e. retaining only those

columns whose gap frequency was below 20%, resulting in an MSA of 188 positions. The

reasoning for the 20% threshold was that we did not want to include positions that were not

highly conserved across the ion channel superfamily. Coincidentally, this 20% threshold

yielded only the helical trans-membrane regions, which are known to be conserved across

all members of the family. Furthermore, we removed all sequences with contiguous

gaps of length greater than 10; the rationale for this choice is to remove from the MSA

incomplete or truncated sequences. Phylogenetic �ltering was then performed using a

90% threshold. This results in an MSA in which any given sequence pair shows, at most,

90% of sequence identity.

5.3.3 Synthetic Dataset Results

The goal of the evaluation on the synthetic dataset is to check if the proposed MSA models

can identify the epistasis present in the training set. For the second-order epistasis dataset,

we use all32; 768sequences to train and we subsample the third-order epistatic sequences

and only use100; 000to train.

1 https://www.ebi.ac.uk/interpro/entry/pfam/PF00520/, last accessed October 2022

71

Table 5.3: Overview over MSA datasets.
name positions sequences effective sequences
PABP YEAST 82 79,936 9,441
DLG4 RAT 84 56,160 2,170
PYP HALHA 89 115,462 53,007
TRY2 RAT 216 40,221 10,195
AMIE PSEAE 247 31,640 7,003
MK01 HUMAN 288 30,136 2,923
BG STRSQ 441 23,227 3,073
HG FLU 544 24,432 3,264
PF00520 188 40,871 40,871

Table 5.4: In�uence of sequence length: We study a synthetic dataset with 10 third order
epistasis couplings, meaning that 30 positions show epistatic phenomenon. We report the
NLL and success of higher order coupling detection.

prepended
positions

total length NLL in coupled positions epistasis detected

0 30 0.0049 10/10
100 130 0.0195 10/10
200 230 0.0355 10/10
300 330 0.3453 8/10

Figure 5.2 shows the progression of the negative log likelihood during training. We

evaluate every position separately. We �rst train the logistic regression part (which is the

same as arDCA) until convergence. Due to the selected synthetic dataset, no position

has any direct couplings with any other position and arDCA therefore fails to detect

the higher order interactions and arDCA can not outperform a site-independent model.

After convergence of the �rst trianing stage, we train the higher order weights of arHCA.

Because three consecutive positions must ful�ll the XOR rule, every third position can be

deterministically predicted given the two previous positions. arHCA correctly learns these

rules and the resulting NLL loss is close to zero.

From Figure 5.2 we can also see that there is a way to detect positions where higher

order couplings in�uence the prediction. To do so, we identify the difference between NLL

loss on the validation set between arDCA and arHCA. If there is a signi�cant reduction

in NLL, we know that the reduction must come from higher order interactions. In a next

step, we are interested which positions are coupled to effect the reduction in NLL.

Table 5.4 shows the in�uence of sequence length on the performance of arHCA. To

72

FIGURE 5.2: Negative log likelihood loss on test set for arHCA for every position. In the
�rst training step (separated by vertical line) the model is trained with only DCA weights
enabled, reducing it to arDCA. In the next training step, higher order weights are trained.
The synthetic dataset is designed such that two consecutive positions determine the third
position through XOR logic, which can not be learned through DCA. The results show
that every third position can correctly be predicted using arHCA.

do this, we take the synthetic dataset with 10 third order couplings (30 positions) and

prepend it with random letters at the beginning. Because the model predicts from left to

right, this will make the task much harder. When the input is only a few positions, we can

learn the statistical patterns hidden in the inputs through backpropagation. However, due

to the curse of dimensionality, adding more and more inputs will make it much harder to

detect the epistasis. The results are very encouraging, showing that we can prepend many

other positions before the performance deteriorates. Even with 200 prepended positions,

the model is still capable of detecting all the third order epistasis present in the data.

Only when adding more than 200 positions, some epistasis couplings go undetected and

therefore the NLL loss increases signi�cantly. For comparison, arDCA detects none of the

73

epistasis couplings and results in NLL of 1.3866.

5.3.4 Mixture of Synthetic Epistasis and Real MSA

To test if the epistasis can be detected in a more realistic scenario, we augment an existing

MSA (PYP HALHA [51]) in the following way: for every protein in the MSA, we

generate a triple of 1s and 0s with XOR logic. Then, we choose 16 AAs from the possible

alphabet and associate 0 with the �rst half of the letters and 1 with the second half. This

creates positions that have a high entropy, where 16 AAs appear randomly when viewed in

isolation. However, with the knowledge of two positions, the admissible AAs in the third

position reduce to 8 AAs. To make detection through arHCA more dif�cult, we append

these positions at the end of the input order.

FIGURE 5.3: Training history of arHCA. The �rst 89 positions are from a real MSA
ordered by entropy, while the last 3 positions have synthetic 3rd order epistasis.

Figure 5.3 shows the training history of arHCA of the second training step for 50

epochs, i.e. we already trained the logistic regression weights and only train the correction

terms through higher order interactions. We order the MSA positions by their Shannon

entropy (see Section 5.3.1) and we show negative log-likelihood loss for training and

74

validation set for each position individually. To generate the best model, we save the

model parameters for each position when they perform best on the validation set during

the training.

Positions 90, 91 and 92 show the synthetically generated positions. At the beginning

of the training, arHCA has the same performance as arDCA. Because there is no higher

order patterns on positions and 90 and 91, that is the best the model can do. After that,

we observe an over-�tting effect, where the model learns some spurious patterns in the

training set that do not generalize to the validation set. We use the validation set to monitor

the NLL on the validation set and store the best parameters for every individual position.

For the positions with no improvements, the best parameters are saved after few epochs.

In position 92, there is a signi�cant drop in the negative log-likelihood, indicating that

some generalizable pattern was found, indicating the detection of synthetic higher order

epistasis.

The other positions indicate the training process of arHCA on the other positions,

ordered by their Shannon entropy. For the �rst positions, the positions are quite conserved

and arHCA does not show much improvement over arDCA (the performance at the start

of training). Positions between approximately 17 and 60 show a pattern of improvements

over arDCA on the validation set. For the later positions, they have high entropy and the

models tend to over�t before much improvement can be observed on the validation set.

These positions might have frequent mutations and show patterns that are not detectable

in the given MSA.

Figure 5.4 shows the improvements of arHCA over arDCA for every position in terms

of NLL. We can see that the synthetically generated positions show a large improvement

in NLL, due to the possibility of deterministically predicting the last position. However,

arHCA also �nds improvement on predictions in other positions of the MSA, indicating

that higher order interactions where found in these positions. Although Figure 5.3

indicates some over-�tting when training for too long, the performance on the test set

75

FIGURE 5.4: Improvements in log-likelihood of arHCA compared to arDCA on the test
set. The positions are ordered by their Shannon entropy. The last position contains
synthetically generated higher order entropy.

does not suffer due to monitoring the performance of the validation set and saving the best

parameters.

5.3.5 Protein MSA Modeling Results

Table 5.5 show the NLL on the test set, averaged per position for arDCA, arNN and arHCA

(see also Figure 5.1 for a visual comparison of the models). The MSAs are ordered by

their sequence lengths from left to right. We note that arDCA is very fast to train and

only takes few minutes to train on PF00520 MSA which has 40,871 sequences and a

sequence lengthL � 188. In contrast, arNN takes more than 14 hours to train showing

some improvements for shorter MSAs like PABPYEAST or PYPHALHA. However, the

longer the sequences, the worse the results tends to be, showing worse results than arDCA

for �ve out of the nine tested datasets. This result is in line with [109], who also tested a

two-layer version of arDCA (a detailed implementation was not provided). On the other

76

Table 5.5: Average NLL (lower is better) per position for different models on real MSA
datasets. The training time is given for training of the PYPHALHA model.

model arDCA arNN arHCA
PABP YEAST 2.254 2.171 2.090

DLG4 RAT 2.138 2.554 2.066
PYP HALHA 2.554 2.512 2.484
TRY2 RAT 2.066 2.078 2.005

AMIE PSEAE 1.844 1.810 1.773
MK01 HUMAN 1.742 1.798 1.694

BG STRSQ 1.481 1.454 1.437
HG FLU 1.154 1.145 1.135
PF00520 1.850 1.717 1.583

train time (PF00520) 17m 14h06m 1h45m

hand, arHCA needs a modest amount more calculation time but shows reduction in NLL

for every protein family. The reduction in NLL is more signi�cant in shorter sequences

(e.g. PYPHALHA) than in longer sequences (e.g. HGFLU). This shows the viability

of arHCA model, because it improves on arDCA, while needing a longer calculation time

that is reasonable for most practical applications and outperforms a naive improvement

over arDCA (arNN) both in accuracy and training cost.

In Figure 5.5 we show the difference in NLL resulting from arHCA over arDCA at

every position in the eight trained MSAs. The MSAs are ordered by their sequence

lengths from left to right and top to bottom. As observed above, the differences seem

stronger for MSAs with modest length (see the top row). We ordered the positions by

their Shannon entropy with positions with low entropy �rst. The results for TRY2-

RAT show no signi�cant reduction through higher order interactions in positions with

low Shannon entropy. We can see that the most improvement can be achieved at positions

with modest Shannon entropy, while not much improvement can be found with positions

at high Shannon entropy. We note that it is more dif�cult to �nd higher order interactions,

the longer the input to the neural network is (compare to Table 5.4). However, in general

the entropy alone is not an indicator whether higher order interactions can improve the

NLL at a certain position. As we can see in the results for DLG4RAT, some positions

with very high improvement are next to positions with low improvements. This indicates

77

FIGURE 5.5: NLL improvement of arHCA over arDCA at every position for eight
different MSAs. The models are �rst trained with only DCA weights enabled, reducing it
to arDCA. In a second step higher order weights are trained and the y-axis shows the
improvements on the test set. It shows that not all protein domains show signi�cant
in�uence from higher order epistasis and that higher order epistasis is sparse.

that there are positions that are more complex to model than others.

5.3.6 Case Study: Using arHCA to Identify Signature Positions in Two Biologically
Relevant Case Studies

In this this section we will apply our novel method to two biologically relevant case

studies: the PDZ domain family (whose members are contained in the DLG4RAT MSA

[51]) and the family of voltage-gated-like ion channels, (VGLIC,PFAM code: PF00520).

We use the position-speci�c NLL improvement to score MSA columns and thus identify

sequence positions for which the model accuracy improves signi�cantly when considering

higher order terms. The corresponding amino acids are thus potentially involved in

78

high-order epistatic interactions. Our goal here is to analyze the cases of PDZ domain

and VGLIC in light of the available structural and experimental information. We will

thus explore the connection between the predicted statistical dependencies highlighted by

arHCA and the biochemical functions carried out by memebers of these families.

To automatically suggest positions of higher order interactions, we train arHCA on

the given MSA as described in Section 5.3.1. Once the model is trained, we identify

interesting single positions by comparing the NLL on the validation set between arHCA

and arDCA. Position with a high reduction in NLL are chosen to be further investigated.

We then perform a sensitivity analysis (see Equation 5.14) to identify which positions

where most contributing to the reduction in NLL.

5.3.7 Interpretation of Predicted Interactions

We started our analysis from the PDZ domain family, protein modules involved in protein-

protein recognition. This family is ubiquitous and PDZ domains are found in organisms

from all kingdoms of life. As such, the PDZ domain is characterized by a long evolutionary

history and thus by extreme sequence divergence. On the other hand, the biochemical

function of PDZ domains signi�cantly constrains the allowed mutations: given the very

delicate balance of residue-residue interactions required for ligand binding, we expect to

observe speci�c complex patterns as a result of natural selection.

A �rst inspection of the top-ranking positions in terms of NLL improvement highlights

residues surrounding the binding pocket. Despite the fact that our MSA did not include

the ligand, most of the amino acids selected by arHCA are in its close proximity and

located on a beta-strand �anking the binding crevice (Figure 5.6(a)). Importantly, the

ligand peptide binds to this strand in a beta conformation to form an extended beta-sheet.

These secondary structure elements are stabilized by a dense network of residue-residue

interactions. Therefore any sequence mutation occurring in the ligand-peptide ought to

be compensated by signi�cant sequence rearrangements on the receptor. Consistently,

79

most of the amino acids selected by arHCA are in this beta-strand region. We then

re�ned our question and, using sensitivity analysis, we investigated in details the statistical

dependencies involving these sequence positions. In particular, we considered the top

position (i.e. the one characterized by the largest NLL improvement), namely position

XX, and analyzed the position-set with the largest in�uence on its prediction. In other

words, we ranked sequence positions according to their contribution to the prediction at

position XX. Interestingly, this set of positions also line the binding site and they involve

mostly an alpha helix located on the opposite side with respect to the aforementioned

beta-sheet (Figure 5.6(b)).

The second case study considered here was that of voltage-gated-like ion channels.

Also in this case, the positions characterized by the largest improvement in NLL are

those mostly involved in the protein's function. Indeed, when seen in the context of the

homotetrameric structure, these positions form a ring located exactly at the level of the

conduction gate, i.e. the region of the channel undergoing a conformational transition to

allow or prevent ion conduction (Figure 5.7). Notably, the top position (Figure 5.7(a)) is

pore-facing and clearly involved in de�ning the ion conduction pathway (Figure 5.7(b)).

The analysis of the position set that mostly contribute to the prediction of residue XX

reveals an intriguing long-range statistical coupling between the amino acids forming the

conduction gate and those controlling the activation state of the channel or the selectivity

for speci�c ionic species. Indeed a �rst cluster of amino acids is located in the peripheral

four-helix bundle called S1-S4 domain, i.e. the voltage-sensor domain in voltage gated

ion channels. A second group of positions is located in the selectivity �lter, i.e. where the

chemical identity if the side chains lining the conduction pore determines the selectivity

for any given ionic species. This strong statistical connection between amino acids that are

tens of angstroms away from one another highlights the complex nature of the mutational

patterns that ought to preserve the correlation between distant functional domains of the

ion channel. In summary, the results obtained on the family of voltage-gated-like ion

80

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Human Trajectory Data Mining
	Generative Protein Modeling
	Physical Property Prediction of Oxide Crystals

	Literature Review
	Human Trajectory Data Mining
	Generative Protein Modeling
	Physical Property Prediction of Oxide Crystals

	Trajectory Prediction from NBA Movement Data
	Methodology on Trajectory Prediction
	Problem Setting
	Trajectory Prediction Approach

	Experiments on Trajectory Prediction
	Experimental Setting
	Results

	Group Activity Recognition in Basketball Data
	Methodology on Group Activity Detection
	Problem Setting
	Framework
	Neural Network Architecture

	Experimental Setup
	Data Set
	Labeling Group Activities in Basketball

	Results
	Trajectory Prediction Problem
	Group Activity Recognition (GAR)

	Evaluation of Representations
	Extension to Multi-Task Representation Learning
	Problem Setting
	Training Task Definitions
	Varying Input Time Horizons
	Implementation Details
	Preliminary Results

	Protein Modeling
	Introduction
	Limitation of Direct Coupling Analysis
	Modeling Higher Order Corrections
	arHCA Model
	Experimental Design
	Synthetic Dataset Results
	Mixture of Synthetic Epistasis and Real MSA
	Protein MSA Modeling Results
	Case Study: Using arHCA to Identify Signature Positions in Two Biologically Relevant Case Studies
	Interpretation of Predicted Interactions
	Information Gain of Identified Interactions

	Methods
	Modeling Protein Sequences with Pretrained Transformer Models

	Material Property Prediction
	Method
	Training Process for Atom Motif Dual GNN

	Results
	Main Results
	Comparison with the Atom-Based Graph Learning Model CGCNN
	Graph Embeddings in the AMDNet and Band Gap Predictions

	Discussion

	Bibliography

