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ABSTRACT

Krylov subspace methods are the state-of-the-art iterative algorithms for solv-

ing large, sparse systems of equations, which are ubiquitous throughout scientific

computing. Even with Krylov methods, these problems are often infeasible to solve

on standard workstation computers and must be solved instead on supercomput-

ers. Most modern supercomputers fall into the category of “heterogeneous archi-

tectures”, typically meaning a combination of CPU and GPU processors. Thus,

development and analysis of Krylov subspace methods on these heterogeneous ar-

chitectures is of fundamental importance to modern scientific computing.

This dissertation focuses on how this relates to several specific problems. The

first analyzes the performance of block GMRES (BGMRES) compared to GM-

RES for linear systems with multiple right hand sides (RHS) on both CPUs and

GPUs, and modelling when BGMRES is most advantageous over GMRES on the

GPU. On CPUs, the current paradigm is that if one wishes to solve a system of

equations with multiple RHS, BGMRES can indeed outperform GMRES, but not

always. Our original goal was to see if there are some cases for which BGMRES

is slower in execution time on the CPU than GMRES on the CPU, while on the

GPU, the reverse holds. This is true, and we generally observe much faster exe-

cution times and larger improvements in the case of BGMRES on the GPU. We

also observe that for any fixed matrix, when the number of RHS increase, there is

a point in which the improvements start to decrease and eventually any advantage
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of the (unrestarted) block method is lost. We present a new computational model

which helps us explain why this is so. The significance of this analysis is that it first

demonstrates increased potential of block Krylov methods on heterogeneous archi-

tectures than on previously studied CPU-only machines. Moreover, the theoretical

runtime model can be used to identify an optimal partitioning strategy of the RHS

for solving systems with many RHS.

The second problem studies the s-step GMRES method, which is an imple-

mentation of GMRES that attains high performance on modern heterogeneous ma-

chines by generating s Krylov basis vectors per iteration, and then orthogonalizing

the vectors in a block-wise fashion. The use of s-step GMRES is currently limited

because the algorithm is prone to numerical instabilities, partially due to break-

downs in a tall-and-skinny QR subroutine. Further, a conservatively small step size

must be used in practice, limiting the algorithm’s performance. To address these

issues, first a novel randomized tall-and-skinny QR factorization is presented that

is significantly more stable than the current practical algorithms without sacrificing

performance on GPUs. Then, a novel two-stage block orthogonalization scheme is

introduced that significantly improves the performance of the s-step GMRES algo-

rithm when small step sizes are used. These contributions help make s-step GMRES

a more practical method in heterogeneous, and therefore exascale, environments.
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CHAPTER 1

INTRODUCTION

At the core of scientific computing, solving a system of linear equations of the

form Ax = b is imperative, where A ∈ Cn×n. For example, within physics,

chemistry, biological, or engineering simulations, such systems often arise from

the discretization of an ordinary differential equation (ODE) or partial differential

equation (PDE) describing the physical phenomena via a finite difference (FD) or

finite element (FE) method. The specific systems that arise from such discretiza-

tions are often sparse, meaning that the coefficient matrix A consists of mostly zero

entries. More specifically, let nz be the number of non-zero entries of A. We will

consider A sparse provided nz ≪ n2. Such matrices can be stored in a efficient

manner, where only the non-zero entries and their respective locations are stored.

While classical direct methods like Gaussian elimination for solving such sys-

tems exist, applications such as kinetic equations and computational fluid dynamics

problems give rise to systems large enough to render such methods infeasible even

on large, distributed heterogeneous computers. Instead, the state-of-the-art meth-

ods for solving large, sparse systems in high performance environments are Krylov

subspace methods.
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1.1 Outline and Structure

In Chapter 2, necessary background on Krylov subspace methods with a focus on

the GMRES algorithm is introduced, and a discussion of the key concepts and con-

siderations for their implementation on modern heterogeneous machines is given.

Thereafter, in Chapter 3, we introduce and analyze an existing variant of GM-

RES designed to solve systems of equations with multiple right hand sides (RHS),

called block GMRES (BGMRES). It is well known that if one wishes to solve a sys-

tem of equations with s RHS, BGMRES can indeed outperform GMRES on each

of the s RHS separately (s × GMRES), but not always [61, 62, 73]. Our original

goal was to see if this paradigm changes when we implement these algorithms on

graphics processing units (GPUs). In particular, we wanted to see if there are some

cases for which BGMRES is slower in execution time on the central processing

unit (CPU) than s × GMRES on the CPU, while on the GPUs, the reverse holds.

This held true, and we generally observed much faster execution times and larger

improvements in the case of BGMRES. We also observed that for any fixed matrix,

when the number of RHS increase, there is a point in which the improvements start

to decrease and eventually any advantage of the (unrestarted) block method is lost.

The reason for this latter observation is the higher data movement cost of s ×

GMRES weighed against the higher cost of the floating point operations in the

BGMRES, as required by the block Arnoldi procedure and the QR factorizations

needed to orthogonalize the block basis of the block Krylov subspace. The balance
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between a richer block Krylov subspace and the increased computational cost of

BGMRES was first mentioned by Vital when she proposed the algorithm [73].

In this analysis, our contribution consists of first confirming that on GPUs

BGMRES is not only faster, but is more advantageous than s × GMRES in most

practical cases. Second, we observed that there is an optimal number of RHS where

BGMRES takes most advantage of the GPU architecture. Finally, we present a new

computational model which helps us explain why this is so. The significance of this

analysis is that it first demonstrates increased potential of block Krylov methods on

heterogeneous architectures than on previously studied CPU-only machines. More-

over, the theoretical runtime model can be used to identify an optimal partitioning

strategy of the RHS for solving systems with many RHS.

In Chapter 4, we introduce the s-step GMRES algorithm, which is an existing

variant of GMRES designed to attain higher performance on distributed machines

than standard GMRES. We will discuss the difficulties of existing implementations

of s-step GMRES, primarily related to the block orthogonalization procedure it

uses.

We address one of these difficulties in Chapter 5, where we introduce a novel

randomized method to improve the stability of a tall-and-skinny QR factorization

used within the block orthogonalization procedure without sacrificing performance.

This consists of proof-of-concept of the algorithm’s design to justify why it should

be expected to have similar (or better) performance compared to the current state-



4

of-the-art tall-and-skinny QR algorithm, along with rigorous mathematical roundoff

error analysis to prove that it is significantly more stable than the current state-of-

the-art algorithm with high probability. Finally, we analyze our algorithm’s per-

formance against its competitors on a modern high-performance GPU, and demon-

strate that its performance in practice aligns with our expectations from the algo-

rithm’s design, showing its performance is nearly as good, and sometimes even bet-

ter, than the current state-of-the-art scheme. The significance of this contribution is

that we develop a high performance tall-and-skinny QR algorithm, and show that

it is significantly more stable than the current state-of-the-art without sacrificing

performance, both in theory and practice.

Then, we discuss a novel scheme to further improve the performance of the

rest of the block orthogonalization in Chapter 6. In order to improve the perfor-

mance of block orthogonalization using a small step size, we introduced a two-

stage algorithm, which pre-process the s basis vectors at a time to maintain the

well-conditioning of the basis vectors but delay the orthogonalization until enough

basis vectors are generated to obtain higher performance. We presented numerical

and performance results to demonstrate its potential.

The significance of the work in Chapters 5–6 is that improving stability of the

tall-and-skinny QR factorization would help stabilize s-step GMRES, while im-

proving the performance of the block orthogonalization for small block sizes boosts

the method’s performance, both of which are contributions that improve the practi-
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cality of s-step GMRES, and make it an attractive alternative to GMRES in exascale

environments. Additionally, this work makes advances in the cutting edge area of

randomized Krylov methods, which have only very recently been studied in the past

couple of years.
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CHAPTER 2

BACKGROUND ON KRYLOV METHODS,
HETEROGENEOUS COMPUTERS

This section begins with a breakdown of convenient notation that will be used

throughout the thesis. Next, background on Krylov methods from a high-level

and GMRES from a detailed perspective are given. Additionally, the strengths and

weaknesses of modern heterogeneous machines are discussed both within and out-

side the context of Krylov methods.

2.1 Notation

We first establish a few basic notational conventions in Table 2.1, to separate ma-

trices, vectors, and vector spaces, along with a way to distinguish block-structured

matrices, which will appear frequently throughout this thesis, from generic unstruc-

tured ones.

typeset meaning examples
upper-case letters matrices with non-specificed structure A, V

lower-case letters vectors x, b

bold upper-case letters matrices with block structure V

caligraphy vector space V , K

Table 2.1: Symbol typeset used throughout the thesis
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Notation Description
vk kth column of the matrix V

hj,k scalar at row j and column k of the matrix H

Vk:m = [vk, . . . , vm] sub-matrix of V with columns between k and m

Vm = V1:m = [v1, . . . , vm] sub-matrix of V up to column m

Hj:k,p:q sub-matrix of H using rows j–k and columns p–q

Hj,p = H1:j,1:p sub-matrix of H up to row j and column p

V:,p:q sub-matrix of V including all rows and columns p–q

Vj:k,: sub-matrix of V including rows j–k and all columns

V k kth block of the block matrix V

V j:k blocks j–k of the block matrix V

Hj,k vertical blocks j and horizontal block k of block matrix H

Hj:k,p:q vertical blocks j–k and horizontal blocks p–q of block matrix H

v
(k)
j jth column of the kth block of block matrix V

v
(k)
p,q entry (p, q) of the kth block of block matrix V

h
(p,q)
j,k entry (j, k) of the (p, q)th block of block matrix H

σk(V ) kth largest singular value of the matrix V

κ(V ) ℓ2 condition number of V

Π vector space of polynomials (infinite degree)

u unit roundoff

Table 2.2: Matrix and other common linear algebra notation used throughout the
thesis
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In Table 2.2, we define some specific notations for matrices and other common

spaces/concepts used heavily in numerical linear algebra. For matrices or block

matrices with a single subscript, it is assumed the only subscript corresponds to

some indexing of the column(s) of the matrices. In the case of two sets of indices

specified, separated by a comma, the first set of indices corresponds to the row(s)

while the second corresponds to the column(s).

At first glance, the notational differences for the block matrices in Table 2.2

are daunting. To disambiguate them, I provide a few diagrams (Figures 2.1–2.2)

representing what each of the block matrix notations mean. Suppose we have two

different block-structured matrices V and H . First, assume V ∈ Cn×m·s has a

column-wise block structure, containing m blocks of s columns each. Then V can

be described using Figure 2.1. In contrast, assume H ∈ Cn·s×m·s has a block-

wise structure both in its rows and columns, consisting of n row blocks and m

column blocks of width s in both directions. In other words, H has a block structure

partitioned into s× s matrices. Then H can be described using Figure 2.2.

V =


︸ ︷︷ ︸

V 1

| | |
v
(1)
1 v

(1)
2 . . . v

(1)
s

| | | ︸ ︷︷ ︸
V 2

| | |
v
(2)
1 v

(2)
2 . . . v

(2)
s

| | |
. . .

︸ ︷︷ ︸
V m

| | |
v
(m)
1 v

(m)
2 . . . v

(m)
s

| | |



=
[
V 1 V 2 . . . V m

]
Figure 2.1: Notational schematic for matrix with column-wise block structure
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H =



H1,1 H1,2 . . . H1,m

H2,1 H2,2 . . . H2,m

...
... . . . ...

Hn,1 Hn,2 . . . Hn,m


,

Hj,k =



h
(j,k)
1,1 h

(j,k)
1,2 . . . h

(j,k)
1,s

h
(j,k)
2,1 h

(j,k)
2,2 . . . h

(j,k)
2,s

...
... . . . ...

h
(j,k)
s,1 h

(j,k)
s,2 . . . h

(j,k)
s,s


Figure 2.2: Notational schematic for matrix with generalized block structure

2.2 Krylov Subspace Methods

Krylov subspace methods are a broad class of iterative schemes for solving a linear

system. While many Krylov subspace methods exist (exceptional overviews are

given by Liesen and Strakoš [42], and by Saad [58]), the high-level premise of most

Krylov subspace methods is to find an approximate solution to the linear system by:

1. building successively larger Krylov subspaces at each iterate,

2. orthogonalizing the vectors within the Krylov subspace with respect to some

inner product(s), and

3. finding a “good” approximate solution within the subspace.
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Before going into further details, we first define Krylov subspaces and provide their

subspace nesting property.

Definition 2.1. Let A ∈ Cn×n, b ∈ Cn. Krylov subspaces generated by A and b,

denoted by Km(A, b), are defined as

Km(A, b) = span{b, Ab, . . . , Am−1b}.

Proposition 2.2 (Nested Subspace Property). Given A ∈ Cn×n, b ∈ Cn, and a

positive integer m,

Km(A, b) ⊂ Km+1(A, b).

Provided A is non-singular, Krylov subspaces are of mathematical interest, be-

cause it is straightforward to show that by the Caley-Hamilton theorem [4], there

exist constants c0, . . . , cn−1 ∈ C so that A−1b =
∑n

k=1−
ck
c0
Ak−1b ∈ Kn(A, b). By

definition, Kn(A, b) is formed by the span of at most n vectors, and therefore the

true solution lies in a Krylov subspace of dimension at most n. We next define two

concepts to more precisely define the dimension of the Krylov subspace containing

the true solution.
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Definition 2.3 (Grade of a vector). Let A ∈ Cn×n, v ∈ Cn. The grade of v is the

degree of the minimum polynomial of v with respect to A. Specifically,

grade(v) = min
q∈Π

{deg(q) : q(A)v = 0}.

Proposition 2.4 (Dimension of a Krylov Subspace). Let A ∈ Cn×n, b ∈ Cn. Then

Kgrade(b)(A, b) is invariant under A, and therefore

Km(A, b) = Kgrade(b)(A, b) ∀m ≥ grade(b), (2.1)

dim(Km(A, b)) = min{m, grade(b)}. (2.2)

The proof for Proposition 2.4 can be found in [58], though it is a simple conse-

quence of Proposition 2.2 and the definition of the grade. Additionally, the Caley-

Hamilton theorem can be used again to prove that grade(b) ≤ n for any b ∈ Cn.

Therefore the true solution should be recovered by the Krylov subspace method

in grade(b) ≤ n, iterations, provided the method is designed so that some “good”

approximation from the Krylov subspace is chosen at each iteration. The specific

way the approximation is chosen–which is typically done so that the approximate

satisfies some set of attractive properties, such as an error or residual minimization
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property with respect to some norm–is what defines the specific Krylov subspace

method.

2.3 Background on GMRES

The majority of this thesis will be spent on variants of the Generalized Minimum

Residual (GMRES) algorithm, which is a specific Krylov subspace method from

Saad and Schultz [59] which chooses its approximate solution at each iteration by

minimizing the ℓ2 norm of the residual over all vectors in the Krylov subspace.

Pseudocode for a typical backwards stable GMRES implementation is given in Al-

gorithm 1 [54].

Algorithm 1 m iterations of GMRES with MGS Orthogonalization
Input: Right hand side b ∈ Rn, initial guess x0 ∈ Rn

Output: Approximate solution xm ∈ Rn

1: r0 = b− Ax0

2: β = ∥r0∥2, v1 = r0/β
3: for j = 1, . . . ,m do
4: w = Avj
5: for i = 1, . . . , j do
6: hi,j = w∗vi
7: w = w − hi,jvi
8: end for
9: hj+1,j = ∥w∥2, vj+1 = w/hj+1,j

10: end for
11: ym = argminy∈Rm ∥r0 − AVmy∥2
12: xm = x0 + Vmym

The GMRES algorithm begins with some initial guess x0 and the right hand

side (RHS) b, to form the initial residual r0 = b−Ax0 in step 1. The initial residual

is then normalized, and stored as the first basis vector v1 for the Krylov subspace
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Km(A, r0). In lines 3-10, the algorithm executes its main loop where it performs the

Arnoldi process, which is simply the process of forming the rest of the Krylov basis

vectors for the space Km(A, r0) by performing a sparse matrix-vector multiplication

of A to the previous Krylov basis vector and then orthogonalizing the new vector

against the previous ones.

Remark 2.5. Typically, whenever a sparse matrix-vector multiplication is performed

in Krylov methods, it is also done with a preconditioning step to improve conver-

gence and/or stability of the solver on systems with an ill-conditioned coefficient

matrix A. Throughout this thesis, it is therefore assumed that the sparse matrix-

vector multiplication done to generate the Krylov basis and the preconditioning are

combined into a single operation that is much more expensive than a standard sparse

matrix-vector multiplication. Thus, when we refer to “sparse matrix-vector multi-

plication” with respect to the coefficient matrix A, we mean “sparse matrix-vector

multiplication with preconditioning”. The only exceptions to this occur when spec-

ified otherwise, or in the case of sparse random sketches described in Chapter 5.

Algorithm 1 demonstrates this Arnoldi process being executed using a Modified

Gram-Schmidt (MGS) orthogonalization procedure in lines 5-8, though this specific

orthogonalization procedure can be replaced with a myriad of others. Finally, in

step 11, one solves a least squares problem to obtain a vector ym ∈ Cm, and uses

the result of this least squares problem to compute the new approximate solution
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xm = x0 + Vmym in step 12. Since

rm := b− Axm = b− A(x0 + Vmym) = r0 − AVmym,

and x0 + Vmy ∈ x0 +Km(A, r0) for any y ∈ Cm, it follows that

∥rm∥2 = min
y∈Cm

∥r0 − AVmy∥2 = min
y∈Cm

∥b− A(x0 + Vmy)∥2

= min
x∈x0+Km(A,r0)

∥b− Ax∥2,

and therefore xm is chosen to minimize the residual’s ℓ2 norm over all possible

solutions in x0 + Km(A, r0). One can restart this process, using xm as the new

initial guess for another pass of GMRES until an adequate convergence is reached,

which is called restarted GMRES.

While many potential Krylov subspace methods can be defined to minimize the

residual norm, GMRES sets itself apart from the others in the fact that it is able

to do so in a computationally efficient manner. More specifically, using a clever

exploitation of the orthogonality of the Krylov basis vectors, sequential Givens ro-

tations can be applied to quickly solve a Hessenberg least squares problem that

is equivalent to the original GMRES least squares problem (i.e., line 11 of Al-

gorithm 1) while simultaneously providing the residual norm without needing to

compute another sparse-matrix vector product. Define e1 = [1, 0, . . . , 0]T ∈ Cm+1.

It is straightforward to show (e.g., in [58]) that in exact arithmetic, the Arnoldi pro-
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cess in Algorithm 1 produces orthonormal matrices Vk for each k, and an upper

Hessenberg matrix Hm+1,m such that

AVm = Vm+1Hm+1,m, (2.3)

and therefore

V ∗
m+1AVm = V ∗

m+1Vm+1Hm+1,m = Hm+1,m, (2.4)

Moreover, by the orthonormality of the Krylov basis vectors v1, . . . , vm, vm+1 and

the fact that v1 = r0/β, it follows that

V ∗
m+1r0 = βV ∗

m+1v1 = βe1. (2.5)

Using (2.4), (2.5), and the fact that the ℓ2 norm is invariant under orthonormal

transformations [69], the least squares problem in line 11 of Algorithm 1 reduces

to,

ym = argmin
y∈Cm

∥r0 − AVmy∥2 = argmin
y∈Cm

∥V ∗
m+1(r0 − AVmy)∥2

= argmin
y∈Cm

∥βe1 −Hm+1,my∥2. (2.6)

Thus, the GMRES least squares problem can be solved in relatively few operations,

as it is equivalent to solving an m+1×m Hessenberg least squares problem, which
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can be easily transformed to an upper triangular system using Givens rotations suc-

cessively formed at each iteration and solved in only O(m2) operations [59]. Even

better, if one applies the same successive Givens rotations to the vector βe1 from the

least squares problem, the magnitude of the final entry of the resulting vector is the

new approximate’s residual norm, which gives an extremely cheap to check con-

vergence criteria without having to perform another sparse matrix-vector product

or solve a least squares problem at each iterate [59].

2.4 Performance Considerations of Modern Hetero-
geneous Machines

Modern supercomputers and high-performance clusters typically fall into the cat-

egory of distributed heterogeneous machines, which are becoming increasingly

GPU-dominated due to their incredible theoretical floating point performance [68].

These machines, or even single GPUs, achieve this theoretical floating point per-

formance by exploiting massive parallelism [50]. Specifically, modern GPUs have

hundreds to thousands of processors each, making the architectures attractive for

highly parallelizable tasks such as BLAS-3 (matrix-matrix) operations [11].

While this massive parallelism allows for extremely efficient matrix-matrix op-

erations and overall high theoretical performance, the parallelism comes at a cost.

Namely, the cost of communication, which I will use as a blanket term for both the

cost of transferring information between levels of the memory hierarchy and the

cost of synchronizing parallel processes, remains high and is often the major per-
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formance bottleneck of these machines in practice. Therefore, in order to achieve

anywhere close to the theoretical peak performance of these machines with a Krylov

subspace method, one needs to ensure their implementation is crafted mindfully to

reducing communications, or in other words, a communication-avoiding algorithm.

Generally speaking, ideal Krylov methods amenable for these new architectures re-

quire as few communications as possible, and consist of as many BLAS-3 tasks as

possible to maximize the parallelism the machines offer.

More specifically, GPUs and therefore heterogeneous machines have much higher

floating point throughput (typically measured in floating point operations per sec-

ond, or FLOP/s) than memory bandwidth, meaning that relatively speaking, the

cost of doing one floating point operation is much cheaper than transferring one

byte of data throughout the memory for computations. When the time required

to transfer data through memory is higher than the time required to execute the

floating point operations, we consider the operation memory-bound, and when the

opposite occurs, we consider the operation compute-bound. Because GPUs can ex-

ecute floating point operations far more efficiently than performing memory trans-

fers, an operation is only compute-bound if the number of floating point operations

executed is much higher than the number of bytes transferred to execute the oper-

ation. The ratio of floating point operations performed to bytes transferred during

the operation is sometimes referred to as arithmetic intensity, and high arithmetic

intensity is prerequisite for high performance on a modern heterogeneous machine.



18

Specifically, an operation is compute-bound on a specific machine if the arithmetic

intensity of the operation must exceed the ratio of FLOP/s to memory bandwidth

that the machine offers, otherwise it is memory-bound.

For example, sufficiently large matrix-matrix multiplications and other BLAS-3

operations are typically compute-bound and therefore perform excellently on GPUs

and by extension heterogeneous machines [51]. To see this, if one needs to mul-

tiply an n × m matrix by a m × k matrix, one must perform O(nmk) floating

point operations while only transferring O(nm+mk) bytes of data, thereby giving

high arithmetic intensity. On the other hand, matrix-vector multiplication and other

BLAS-1/2 operations are memory-bound, because to multiply a n × m matrix by

a m-dimensional vector, one must perform O(nm) floating point operations while

transferring O(nm) bytes of data, thereby offering very low arithmetic intensity

and therefore low performance on modern machines [51].

Ideally, our application will be mostly compute-bound, and therefore, Krylov

methods amenable to modern high performance machines should ideally minimize

communications and leverage as many compute-bound (e.g., BLAS-3) operations

as possible. In practice, it is best if these compute-bound operations are available

in a hardware-optimized implementation by the chip manufacturer, which is conve-

niently the case with BLAS-3 operations [46].
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2.5 Shortcomings of Traditional Krylov Methods on
Modern Machines

Widely used Krylov methods designed for general non-Hermitian systems typically

either:

1. use an Arnoldi-based orthogonalization procedure, where each new Krylov

vector must be orthogonalized against each previous vector, or

2. use a Lanczos bi-orthogonalization scheme, which uses short-recurrence re-

lation to generate the Krylov vectors.

While Lanczos bi-orthogonalization based methods’ use of a short-recurrence to

generate the new Krylov vectors significantly reduces the computational cost and

the amount of information that must be stored and transferred, the downsides of

such methods are that they do not fully orthogonalize the Krylov basis and that

they require multiple sparse matrix-vector multiplications per iteration [58]. Typi-

cally, this latter challenge alone can make them unattractive in practice compared

to Arnoldi-based methods which only require one sparse matrix-vector multiplica-

tion per iteration. A consequence of the non-orthogonal Krylov bases that Lanczos

bi-orthogonalization based methods rely on is that the methods do not minimize

the residual norm at each iteration. As a result, Krylov methods using a Lanczos

bi-orthogonalization have unpredictable convergence behavior (e.g., BiCGSTAB,

[65, 71]), or their lack of optimality simply leads to a convergence delay compared
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to GMRES (e.g., QMR or TFQMR [25, 26]), which is another reason Arnoldi-based

methods remain popular.

However, Arnoldi-based methods like GMRES have downsides as well. On top

of imposing additional memory requirements to store the entire Krylov basis, the

Arnoldi process done in lines 3-10 of Algorithm 1 consist primarily of vector-vector

operations (BLAS-1), which are memory-bound operations, as explained in Section

2.4. This version of GMRES can be parallelized in a slightly better fashion while

maintaining numerical stability by replacing the modified Gram-Schmidt (MGS)

procedure in lines 5-8 of Algorithm 1 with a reorthogonalized classical Gram-

Schmidt (CGS2) orthogonalization within the Arnoldi process, given in lines 5-7

of Algorithm 2. The advantage of this approach is that many of the BLAS-1 op-

erations are replaced with more parallelizable matrix-vector (BLAS-2) operations.

However, the Arnoldi procedure in lines 4-8 of Algorithm 2 has low arithmetic

intensity and thus is still memory-bound, and therefore the orthogonalization pro-

cedure of the Krylov vectors is sub-optimal on modern GPU systems and poses a

significant performance bottleneck in practice.
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Algorithm 2 m iterations of GMRES with CGS2 Orthogonalization
Input: Right hand side b ∈ Cn, initial guess x0 ∈ Cn

Output: Approximate solution xm ∈ Cn

1: r0 = b− Ax0

2: β = ∥r0∥2, v1 = r0/β
3: for j = 1, . . . ,m do
4: w = Avj // Generate next Krylov vector
5: ĥ = V ∗

j w, w = w − Vjĥ // Orthog. against prior vectors
6: h̄ = V ∗

j w, w = w − Vjh̄

7: h1:j,j = ĥ+ h̄
8: hj+1,j = ∥w∥2, vj+1 = w/hj+1,j // Normalize
9: end for

10: ym = argmin ∥b− AVmym∥2
11: xm = x0 + V ym
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CHAPTER 3

OPTIMAL SIZE OF THE BLOCK OF BLOCK
GMRES ON GPUS

In contrast to the communication-intensive standard GMRES algorithm, the block

version of GMRES (BGMRES) requires less communications by relying heavily

on BLAS-3 operations and reducing the number of accesses to the linear systems’

coefficient matrix but performs more floating point operations than its single right

hand side (RHS) counterpart. Thus, BGMRES is most advantageous over the stan-

dard single RHS GMRES when the cost of communication is high while the cost

of floating point operations is not. This is the particular case on modern Graphics

Processing Units (GPUs) and by extension modern heterogeneous machines, while

it is generally not the case on traditional Central Processing Units (CPUs).

In this chapter, experiments on both GPUs and CPUs are shown that compare

the performance of BGMRES against GMRES as the number of RHS increases.

The experiments indicate that there are many cases in which BGMRES is slower

than GMRES on CPUs, but faster on GPUs. Furthermore, when varying the number

of RHS on the GPU, there is an optimal number of RHS where BGMRES is clearly

most advantageous over GMRES. A computational model is developed using hard-

ware specific parameters, showing qualitatively where this optimal number of RHS

is, and this model also helps explain the phenomena observed in the experiments.
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3.1 Introduction

We consider the problem of solving a linear system with s right hand sides (RHS):

namely, AX = B, where A ∈ Rn×n, B ∈ Rn×s where n ≫ s (i.e., B is a tall-and-

skinny matrix). We assume all vectors and matrices are real in this chapter, though

everything presented also extends to the complex case. Generally, A is sparse, so

let nz ≪ n2 be the number of non-zeros in A.

Block Krylov methods, such as block GMRES (BGMRES), are versions of

traditional Krylov subspace methods used for solving such systems with multiple

RHS, or for accelerating the convergence of a system with one right hand side [53],

[58, Section 6.12]. We have this latter situation very much in mind in our investi-

gations. In particular, one can accelerate the convergence of GMRES by leveraging

a richer BGMRES solution space (usually by adding random vectors to the original

RHS b to produce a block RHS B).

It is well-documented in existing literature that BGMRES can outperform the

classical GMRES method s times separately, which we will refer to as “s×GMRES”

throughout the remainder of the chapter, but not always [61, 62, 73]. Algorithms 3

and 4 explicitly describe the BGMRES and s× GMRES algorithms, respectively.

Our original goal was to see if this paradigm changes when we implement these

algorithms on Graphics Processing Units (GPUs). In particular, we wanted to see

if there are some cases for which the block method is slower in execution time on

the Central Processing Unit (CPU) than the single right hand side method repeated
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Algorithm 3 BGMRES: m iter.
1: R0 = B − AX0

2: [V 1, β] = qr(R0)
3: for j = 1, . . . ,m do
4: W = AV j

5: for i = 1, . . . , j do
6: H i,j = W TV i

7: W = W − V iH i,j

8: end for
9: [V j+1,Hj+1,j] = qr(W )

10: end for
11: Ym = argmin ∥HY − E1β∥F
12: Xm = X0 + V 1:mYm

Algorithm 4 s× GMRES: m iter.
1: for k = 1, . . . , s do
2: r0 = bk − A(X0)k
3: β = ∥r0∥2, v1 = r0/β
4: for j = 1, . . . ,m do
5: w = Avj
6: for i = 1, . . . , j do
7: hi,j = wTvi
8: w = w − hi,jvi
9: end for

10: hj+1,j = ∥w∥2, vj+1 = w/hj+1,j

11: end for
12: ym = argmin ∥Hy − βe1∥2
13: (Xm)k = (X0)k + Vmym
14: end for
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multiple times on the CPU, while on the GPUs, the reverse holds. This holds true,

and we generally observe much faster execution times and larger improvements in

the case of the block method. We also observe that for any fixed matrix, when

the number of RHS increase, there is a point in which the improvements start to

decrease and eventually any advantage of the (unrestarted) block method is lost.

The reason for this latter observation is the higher data movement cost of the

single right hand side GMRES weighed against the higher cost of the floating point

operations in the block method, as required by the block Arnoldi procedure and

the QR factorizations needed to orthogonalize the block basis of the block Krylov

subspace. The balance between a richer block Krylov subspace and the increased

computational cost of BGMRES was first mentioned by Vital when she proposed

the algorithm [73]. Here we develop a simple computational model for the run-

time of each algorithm, which is described in Section 3.3. This model qualitatively

shows that this phenomenon should be expected.

Algorithm 5 GMRES-LI with s RHS: m iter.
1: R0 = B −AX0

2: for k = 1, . . . , s do
3: βk = ∥(R0)k∥2
4: end for
5: V 1 = R0 ∗ diag(1./β)
6: for j = 1, . . . ,m do
7: W = AV j

8: for i = 1, . . . , j do
9: Hi,j = diag(diag(WTV i))

10: W = W − V iHi,j

11: end for
12: V j+1 = W ∗ diag(1./diag(Hj+1,j))
13: end for
14: Ym = least squares solution for each RHS
15: Xm = X0 + V 1:mYm
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Additionally, we discuss an alternative “loop-interchanged” formulation of s×

GMRES, which we refer to as “GMRES-LI” and is given explicitly in Algorithm

5, that avoids unnecessary accesses of the coefficient matrix to reduce data move-

ment costs. This idea is not new, as loop-interchanged Krylov methods have been

proposed in [56] and elsewhere under a variety of names, such as “pseudo-Block

Krylov methods” [10]. We compare the loop-interchanged algorithm to block GM-

RES to study the advantage that the block Krylov subspace method provides over

the standard single RHS Krylov subspace method separate from the reduction in

data movement costs.

In other words, we compare BGMRES to both standard GMRES repeated se-

quentially (s× GMRES) and a loop-interchanged GMRES because BGMRES can

outperform standard GMRES for two major reasons:

1. due to reduced iteration counts (and therefore reduced computational cost)

from the block Krylov space and

2. due to reduced communication costs from the block Arnoldi procedure.

BGMRES and standard GMRES repeated sequentially (s × GMRES) are two

approaches to solving a large sparse non-symmetric problem with multiple RHS

that should naturally be compared. We compare BGMRES to the loop-interchanged

GMRES (GMRES-LI) as well, because the dominant communication costs of the

algorithms are the same, but BGMRES uses a richer block search space and hence
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often requires fewer iterations to converge. Equalizing the communication costs

eliminates any benefits of BGMRES over GMRES due to reason 2, and therefore

comparing BGMRES to GMRES-LI identifies when the speedups can be solely

attributed to reason 1.

When GMRES converges slowly, BGMRES is expected to perform well due

to reason 1. We confirm this on the GPU by experimenting with GMRES-LI. The

analysis is also interesting in cases when GMRES converges quickly. In these cases

BGMRES is often slower than GMRES on CPUs, as BGMRES will incur more

floating point operations than GMRES and communication costs are generally rel-

atively low on CPUs, which eliminates communication considerations. Conversely,

GPU memory latency is high, making communication costs significant [3]. Thus,

on GPUs we observed that BGMRES can outperform GMRES even when GMRES

converges quickly due to reason 2. We confirm that the communication costs are

responsible for the speedups of BGMRES over GMRES in these cases by experi-

menting with GMRES-LI again.

In this chapter, our contribution consists of first confirming that on GPUs BGM-

RES is not only faster, but is more advantageous than s×GMRES in most practical

cases. Second, we observe that there is an optimal number of RHS where BGMRES

takes most advantage of the GPU architecture. We present a new computational

model which helps us explain why this is so.
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3.2 Theoretical Properties of the BGMRES,
s× GMRES, and GMRES-LI Algorithms

Before proceeding, we define block Krylov subspaces to highlight the theoretical

differences between BGMRES and s× GMRES.

Definition 3.1 (Block Krylov Subspace). Given some block vector B ∈ Rn×s, we

first define the space,

Bm(A,B) = Km(A, b1) + · · ·+Km(A, bs).

Then block Krylov subspaces generated by the matrix A and RHS B is defined as,

B□
m(A,B) = Bm(A,B)× · · · × Bm(A,B)︸ ︷︷ ︸

s times

. (3.1)

Now, let R0 ∈ Rn×s be a block vector whose columns are the initial residual

vectors used for each RHS; i.e., R0 is the initial residual for BGMRES and its

columns are the initial residuals for s×GMRES. Let XBG, XG be the solution block

vectors generated after m iterations of BGMRES and s× GMRES, respectively.
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By design, RBG := B − AXBG where XBG ∈ B□
m(A,R0) minimizes the resid-

ual’s Frobenius norm over all solutions X ∈ B□
m(A,R0) [32]. In other words:

XBG = argmin
X∈B□

m(A,R0)

∥B − AX∥F (3.2)

Now, RG := B − AXG, where

XG ∈ Km(A, (R0)1)× · · · × Km(A, (R0)s) (3.3)

is selected so that each column of XG minimizes each column of the residual’s

Euclidean norm [59]. In other words,

XG = [x1, . . . , xs]

xk = argmin
x∈Km(A,(R0)k)

∥bk − Axk∥2 for k = 1, . . . , s,

which is also equivalent to

XG = argmin
X∈Km(A,(R0)1)×···×Km(A,(R0)s)

∥B − AX∥F .

To understand when BGMRES may outperform the s×GMRES, we first review

the dominant costs of each algorithm, similar to analysis performed by Vital when

she proposed the method [73]. In Tables 3.1 and 3.2, we summarize the dominant
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computational costs of BGMRES and GMRES respectively. In this analysis, we

assume that in each case we compute m iterations. We emphasize that this compar-

ison is for the same number of iterations m, though in practice BGMRES should

converge in fewer iterations; see Proposition 3.2.

Floating Point Operations
Op. per Step No. of Steps Total Op.

spmv O(nz · s) m O(nz ·ms)
Block Orthogonalization O(ns2) O(m2) O(nm2s2)
MGS QR Factorization O(ns2) m O(nms2)
Reflections O(s3) O(m2s) O(m2s4)

Data Movement
Op. per Step No. of Steps Total Op.

spmv nz m nz ·m

Table 3.1: Computational costs of m iterations of BGMRES

In BGMRES (Algorithm 3), the sparse coefficient matrix A with nz non-zeros

is accessed once per iteration, so m times total. The dominant floating point costs

occur in the Block Arnoldi procedure (lines 3-10 in Algorithm 3), in which we

multiply A by the previous Krylov basis (block) vector of size n×s, which requires

2·nz ·s floating point operations, and happens m times. Then, in the innermost loop

in the Block Arnoldi procedure (which occurs O(m2) times), we perform a matrix-

matrix multiplication of an s×n and an n× s matrix, requiring 2ns2 floating point

operations. We also perform a block vector update (AXPY of n×s matrices), which

requires the same work as the aforementioned matrix-matrix product. In the outer

loop (which occurs m times), we compute a Modified Gram-Schmidt (MGS) QR
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factorization to orthogonalize the vectors within the new block Krylov basis vector,

which requires O(ns2) floating point operations. Lastly, the cost of performing

the Householder reflections for solving the least squares problem requires O(m2s4)

floating point operations.

Floating Point Operations
Op. per Step No. of Steps Total Op.

spmv O(nz) ms O(nz ·ms)
Orthogonalization O(n) O(m2s) O(nm2s)
Normalization O(n) ms O(nms)
Reflections O(m2) ms O(m3s)

Data Movement
Op. per Step No. of Steps Total Op.

spmv nz ms nz ·ms

Table 3.2: Computational costs of m iterations of s× GMRES

We use a similar analysis for s × GMRES (Algorithm 4). In GMRES, the

coefficient matrix A with nz non-zeros is accessed once per iteration, so m ·s times

total. The dominant floating point costs occur in the Arnoldi procedure (lines 4-

11 of Algorithm 4), where we multiply A by the previous basis vectors of size n,

which requires 2 · nz floating point operations, and happens m · s times. Then, in

the innermost loop of the Arnoldi procedure (which occurs O(m2) · s times), we

perform a dot product and an AXPY, both requiring O(n) floating point operations.

Other operations used in the outer loop (e.g., the normalization of the basis vectors)

occur ms times and require O(n) floating point operations. Lastly, applying Givens

rotations requires O(m2) floating point operations, repeated m · s times.
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Referring to Tables 3.1 and 3.2, we see that m iterations of BGMRES requires

more floating point operations in the orthogonalization procedure than m iterations

s × GMRES. However, s × GMRES accesses A more often and uses the same

number of floating point operations as BGMRES in the spmv step.

Since BGMRES uses a richer block Krylov subspace to find its approximate

solution than the s separate Krylov subspaces used in s×GMRES, BGMRES con-

verges in at most as many iterations (per RHS) as s× GMRES. Although this fact

is well-known, we include a brief proof for completeness.

Proposition 3.2. Fix some positive integer m, and let RBG ∈ Rn×s be the residual

block vector after m iterations of BGMRES and let RG ∈ Rn×s be a block whose

columns are the s residual vectors after applying m iterations of GMRES to each

of the s RHS. Then ∥RBG∥F ≤ ∥RG∥F .

Proof. Recall RBG = B − AXBG for XBG ∈ B□
m(A,R0) that minimizes the resid-

ual’s Frobenius norm over all solutions X ∈ B□
m(A,R0), as in (3.2). On the other

hand, RG = B − AXG, where (3.3) holds.

Since Km(A, (R0)j) ⊂ Bm(A,R0) for each RHS j = 1, . . . , s, we have that

Km(A, (R0)1)× · · · × Km(A, (R0)s) ⊂ B□
m(A,R0)

Therefore, XG ∈ B□
m(A,R0), but since XBG is minimizes the residual’s Frobenius

norm for all block vectors in this space, it follows that ∥RBG∥F ≤ ∥RG∥F , and
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therefore the convergence criteria will be reached by BGMRES no later than when

it is reached by s× GMRES.

Ideally BGMRES converges in far fewer iterations than s × GMRES by lever-

aging the richer block Krylov subspace, perhaps even in s times fewer iterations. In

practice, this is often not the case. Instead, we see a small to moderate reduction in

the iterations by using BGMRES, and in some cases the two algorithms require the

same number of iterations. Understanding precisely how much of an advantage the

block method offers in terms of iteration counts is difficult to predict and depends

on a variety of factors, including the number of RHS s used in the system and the

difficulty of the problem.

Even without knowing the iteration reduction that BGMRES offers over

s×GMRES, it follows from Tables 3.1 and 3.2 that BGMRES is most advantageous

if accessing the coefficient matrix A is very costly and floating point operations are

very inexpensive. This is generally the case for GPUs, while it is not the case for

CPUs.

GPUs are higher-latency machines with extremely high floating point through-

put. Hence, we can expect floating point operations to be cheaper and accessing

information between levels of the memory hierarchy to be more expensive on a

GPU compared to a similarly high-performance CPU. For this reason, one could

expect to find that the relative performance of BGMRES compared to s× GMRES

is better on a high-performance GPU than it is on a high-performance CPU.
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While BGMRES is an attractive option to address the issue of reducing memory

accesses of the coefficient matrix, it is not the only one. Namely, one can carefully

interchange outer loops of the s × GMRES algorithm to perform the spmv opera-

tions for all of the RHS at once like BGMRES, while being mathematically equiva-

lent to s×GMRES. We refer to this version of s×GMRES as “Loop-Interchanged

GMRES” or GMRES-LI, and provide an explicit algorithm in Algorithm 5. We

reiterate that this idea is not new, as loop-interchanged Krylov methods have been

proposed elsewhere under a variety of names, including Loop-Interchanged Krylov

methods or pseudo-Block Krylov methods [10, 56].

Using Algorithm 5, it is straightforward to find the computational costs of

GMRES-LI in a similar manner as before, which we report in Table 3.3.

Floating Point Operations
Op. per Step No. of Steps Total Op.

spmv O(nz · s) m O(nz ·ms)
Orthogonalization O(ns) O(m2) O(nm2s)
Normalization O(ns) m O(nms)
Reflections O(m2) ms O(m3s)

Data Movement
Op. per Step No. of Steps Total Op.

spmv nz m nz ·m

Table 3.3: Computational costs of m iterations of GMRES-LI

GMRES-LI combines the lower number of floating point operations of s ×

GMRES with the reduced data movement cost of BGMRES. Thus, the relative

performance of BGMRES compared to GMRES-LI is driven entirely by iteration
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counts of each algorithm, which depend on how much more of a reduction in the

residual norm that the richer block Krylov subspace provides.

3.3 Qualitative Runtime Model

To qualitatively analyze the runtime of the BGMRES and single RHS GMRES

algorithms, we use a simple “latency-bandwidth model” used by Hoemmen in his

PhD thesis [37]. Namely, we assume communication time is dictated by passing of

messages. A message is a sequence of m words, where a word is a piece of data

(e.g., floating point numbers, integers, etc.). The time required to send a message

of m words can be modeled by the following function:

TimeMessage(m) = α + β ·m

where m is the number of words, α is the latency (in seconds), and β is the inverse

bandwidth (in seconds per word). The time to execute floating point operations is

modeled in a straightforward way via:

Timeflops(m) = γ ·m

where m is the number of floating point operations, and γ is the inverse floating

point throughput (in seconds per floating point operations, or 1/flops).
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Putting these together, we can construct a simple model for the runtime of the

GMRES and BGMRES algorithms by counting the floating point operations re-

quired to execute each algorithm and by counting the number of times data must

be moved between different levels of the memory heirarchy. Before doing so, we

make several additional assumptions to simplify our model:

1. We assume all memory aside from the sparse coefficient matrix in our linear

system resides in fast memory (i.e., cache). Hence, all memory transfers oc-

cur when the coefficient matrix A is accessed.

This is not always the case, for example if the number of non-zeros nz in A,

the number of rows n in A, the number of RHS s, and the number of BGM-

RES iterations m satisfy nz ≈ n ·m · s. In this case, the matrix storing the

block Krylov basis V ∈ Rn×m·s has roughly the same size of the coefficient

matrix. Hence, data transfers would be required to access this information as

well.

2. There are times that the GMRES and BGMRES algorithms require particular

values of an array to be modified (e.g., modifying the first value of a vector

when performing a Householder reflection). If these arrays are stored on the

GPU, we cannot directly modify particular entries of an array without using

a parallel operation. Instead, we must copy these arrays back to the CPU,
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modify the value on the CPU, and then send the updated information back

to the GPU again. While this process certainly can be costly, we neglect

these costs here, as experimental data indicates that the cost of the floating

point operations dominates these costs in our implementations of BGMRES

and GMRES, as our algorithms were written to avoid performing such direct

modifications of arrays whenever it was convenient to do so.

3. The cost of applying a preconditioner is neglected. This can be a non-trivial

cost, but in our experiments, we use a Jacobi preconditioner which can be

applied with minimal computational work, and hence will not dominate the

computational cost of our algorithms.

Since the latency-bandwidth model was designed for CPU performance rather

than GPU performance, our runtime models are not meant to be predictive of the

precise runtime of the BGMRES and GMRES algorithms executed on the GPU.

Modelling GPU runtime accurately is far more complicated than this model, and

requires software to simulate the architecture’s execution times [3]. Instead, our

model is intended to provide a strictly qualitative understanding of how the different

algorithms perform relative to each other as the number of RHS change.

Considering the above assumptions, we now introduce an explicit version of our

runtime model. In Tables 3.1 and 3.2, we summarized the key computational costs
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of BGMRES and GMRES respectively. Using the costs described in Table 3.1, we

obtain the following computational runtime model for BGMRES:

TimeBG(n, nz,m, s) ≈
Data Movement︷ ︸︸ ︷

α ·m+ β · nz ·m

+ γ · (2nz ·ms+ 2nm2s2︸ ︷︷ ︸
Block Arnoldi

+2nms2︸ ︷︷ ︸
QR

+ 2m2s4︸ ︷︷ ︸
Reflections

)

(3.4)

Similarly, using the costs described in Tables 3.2 and 3.3, we obtain the follow-

ing computational runtime models for s× GMRES and for GMRES-LI:

TimeG(n, nz,m, s) ≈
Data Movement︷ ︸︸ ︷

α ·ms+ β · nz ·ms

+ γ · (2nz ·ms+ 2nm2s︸ ︷︷ ︸
Arnoldi

+ 3nms︸ ︷︷ ︸
Normalization

+ 2m3s︸ ︷︷ ︸
Reflections

)

(3.5)

TimeLI(n, nz,m, s) ≈
Data Movement︷ ︸︸ ︷

α ·m+ β · nz ·m

+ γ · (2nz ·ms+ 2nm2s︸ ︷︷ ︸
Arnoldi

+ 3nms︸ ︷︷ ︸
Normalization

+ 2m3s︸ ︷︷ ︸
Reflections

)

(3.6)

Comparing these three approximate runtime models, we notice the following:

1. The GMRES algorithm requires s times as many data transfers as BGMRES

and GMRES-LI. Clearly, this implies that if the cost of data movement is

steep (i.e., if the latency α or inverse bandwidth β are far greater than the
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floating point throughout γ), then BGMRES will be far faster than GMRES

assuming the number of iterations m used in each algorithm is approximately

the same.

2. While the BGMRES method requires a QR factorization at each iteration, the

GMRES and GMRES-LI methods do not, and instead use a normalization

procedure that is O(s) times cheaper than the QR factorization. This is an

additional cost of BGMRES over GMRES and GMRES-LI.

3. In most practical applications, n and nz are far greater than m, s, so the fi-

nal terms in these two models (the 2m2s4 and 2m3s terms in BGMRES and

GMRES/GMRES-LI, respectively) are insignificant compared to the other

operation counts.

4. Purely in terms of floating point operations required, we see that the block

Arnoldi procedure forces BGMRES to use O(nm2s2) operations to construct

the Arnoldi basis, while the single right hand side GMRES and GMRES-

LI only use O(nm2s) operations to do so. In spite of this, since modern

GPUs can execute BLAS-3 operations very efficiently [23, 46], the block

Arnoldi procedure–and by extension the BGMRES method–is not weighed



40

down significantly by this extra floating point cost in practice, but we still

consider the extra operations in our model.

To illustrate the models of the GMRES and BGMRES runtime, Figure 3.1

displays a plot of the “Block Speedup” quantified by TimeG
TimeBG

with n = 147, 000,

nz = 3, 489, 300 and experimentally determined values for mG and mBG. These

are realistic parameters that will be seen in the next section for solving AX =

B using BGMRES and GMRES, where B is a random RHS matrix, and A is

‘FEM 3D thermal2’ from the SuiteSparse Library [18]. We chose the parameters

β = 1.1× 10−12 and γ = 1.3× 10−13 from hardware specifications on the GPU we

used, the NVIDIA V100 SXM2 [52]. We used α = 3 × 10−4 based on numerical

results of applying the latency-bandwidth model with the aforementioned values

for β and γ to a matrix-vector multiplication of A times a vector of ones.

Figure 3.1 indicates if we fix parameters for α, β, γ based on our computer’s

hardware and fix n and nz based on the ‘FEM 3D thermal2’ coefficient matrix,

and mG and mBG based on observed convergence behavior for this problem, then

there is some s such that the Block Speedup peaks.

This phenomenon is consistent with our numerical experiments for the

‘FEM 3D thermal2’ matrix and for every other problem we attempted that does not

require restarts to converge within the GPU’s storage constraints. Namely, we no-

tice that the speed of non-restarted BGMRES relative to GMRES peaks at a certain

number of right hand sides, and performance gains diminish for any number of right
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Figure 3.1: Block Speedup = TimeG/TimeBG with n = 147, 000, nz = 3, 489, 300,
α = 3 × 10−4, β = 1.1 × 10−12, γ = 1.3 × 10−13, using realistic iteration counts
mBG and mG. The vertical axis is above 1 when BGMRES is faster than GMRES.
The horizontal axis is the number of RHS s.

hand sides smaller or larger than this critical point. In general, this phenomenon

does not always hold when the BGMRES method needs restarts to converge. In

Section 3.5, we show that our model is still consistent with our observations when

restarts are required.

3.4 Implementation Details

We wrote and tested parallel implementations of s × GMRES, BGMRES, and

GMRES-LI on both the CPU and GPU using the Kokkos C++ Performance Porta-

bility Library in order to keep our CPU and GPU implementations similar enough

to make a fair comparison [24]. Within Kokkos, our GPU implementations utilized

NVIDIA’s cuBLAS and cuSPARSE linear algebra libraries while CPU implemen-

tations used the Intel MKL library with OpenMP [11, 17, 38, 46, 49]. Our im-
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plementation of BGMRES was inspired by MATLAB code written by Soodhalter

[66].

While we intended for the CPU and GPU implementations of our algorithms to

be similar, we also kept performance considerations in mind. For instance, in order

to edit many data types stored on the GPU directly (e.g., matrices and vectors used

to solve the least squares problem in our GMRES and BGMRES algorithms), one

must copy the data to the host first, then modify the data, and then copy it back to

the GPU. In contrast, CPU code does not require these copies to be made, and so

they were not included on the CPU implementations.

Additionally, we made an effort to be mindful of these memory transfer costs

when creating the GPU implementations and avoided them when it was convenient

to do so. While we were mindful of the communication overhead costs, we did not

use more sophisticated Communication-Avoiding implementations of the subrou-

tines, e.g., in [37, 78].

While many different implementations of the block Arnoldi process within the

BGMRES algorithm can be considered, the block Arnoldi process within our BGM-

RES code is based on a block MGS procedure with a standard MGS QR factoriza-

tion used to orthogonalize the next iterate’s columns. Other options with better sta-

bility properties exist, however, this implementation was chosen as it is reasonably

stable with respect to loss of orthogonality errors without incurring significantly
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more computational work, and it is simple to implement compared to sophisticated

stable low-synch variants [13].

To solve the Frobenius norm minimization process for BGMRES, we computed

the upper triangular part of the QR factorization of the banded Hessenberg H and

the transformed right hand side using Householder reflections, employing the strat-

egy suggested by Gutknecht and Schmelzer [33]. For efficiency, these Householder

reflections were executed in parallel using batched linear algebra routines. All re-

maining parallel tasks were simple and were executed by parallel for-loops over

vectors and matrices, which Kokkos mapped to OpenMP on the CPU and CUDA

on the GPU.

In some applications, the columns of the RHS B may be closely related, or the

columns of the block vectors produced by the block Arnoldi process may become

linearly dependent. This issue is traditionally alleviated through deflation of the

linearly dependent vectors via a Rank-Revealing QR (RRQR) factorization [32].

However, deflating nearly linearly dependent vectors can slow down the conver-

gence of the BGMRES method as the deflated block Krylov Subspace is less rich

than the non-deflated space [41]. To avoid losing information in the search space

while maintaining linear independence of the columns of the Arnoldi vectors, it is

possible to “deflate” by introducing random vectors in place of the nearly linearly

dependent ones [66].
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The exact cost of deflation depends on the strategy used, but in general, deflated

BGMRES can incur more computational cost than using a non-deflated BGMRES.

In our experiments, we used randomly generated RHS. Hence, the likelihood of our

experiments needing deflation was low, so our BGMRES implementation did not

use any deflation scheme. As a result, our code may incur less computational cost

than a more robust implementation of BGMRES, which should be considered when

we compare the runtime of BGMRES to s times GMRES.

We compared the performance of our CPU and GPU implementations of GM-

RES and BGMRES using 10 matrices of varying size and sparsity. We generated

random RHS block-vectors B using a fixed random seed in order to have random

RHS that could be reproducible and exactly the same when we compared the block

and single RHS versions of our algorithms. All test problems used matrices from

the SuiteSparse library and are listed in Table 3.4 [18]. All test problems were pre-

conditioned with a Jacobi preconditioner on the left, and all residuals and relative

residuals computed were the left-preconditioned residuals.

We required that all of our test problems satisfy the following criteria:

1. The coefficient matrix A fit in our GPU’s available memory (16GB)

2. The problem converges to a solution in fewer than 100 restarts for both our

block and single RHS methods

3. The coefficient matrix is too large to fit in our GPU’s cache (16MB)
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Matrix Rows nz Sparsity
shipsec8 114,919 3,303,553 0.0250%
Dubcova3 146,689 3,636,643 0.0169%
FEM 3D thermal2 147,900 3,489,300 0.0160%
SiO2 155,331 11,283,503 0.046%
thermomech dM 204,316 1,423,116 0.0034%
stomach 213,360 3,021,648 0.0066%
hood 220,542 9,895,422 0.0221%
CO 221,119 7,666,057 0.0157%
CoupCons3D 416,800 17,277,420 0.0099%
cage13 445,315 7,479,343 0.0038%

Table 3.4: Coefficient Matrices from SuiteSparse Collection

In order to satisfy these criteria while analyzing problems with many right hand

sides, we chose the number of inner iterations m for the BGMRES method to be

as large as possible (without exceeding the GPU’s total memory) for 50 right hand

sides, and scaled the number of inner iterations m for different numbers of right

hand sides so that the maximal Krylov subspace had the same size for all numbers

of right hand sides. For example, if the GPU could execute a maximum of m =

100 inner iterations of a problem with s = 50 right hand sides before running out

of memory, we allowed m = 500 inner iterations for s = 10 right hand sides,

and m = 5000 inner iterations for s = 1 right hand side, allowing for a total of

m ·s = 5000 columns in the basis of our Krylov subspace, regardless of the number

of RHS s used.

For each of the s RHS bi = B1:n,i, our single RHS GMRES algorithm terminates

when the relative residual in the 2-norm is at most 10−8 for each i = 1, . . . , s. To
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keep a consistent stopping criteria, our BGMRES algorithm terminates when the

relative residual in the Frobenius norm is at most 10−8
√
s.

GMRES-LI was implemented without restarts, as implementing an appropri-

ate restarting strategy becomes tedious when the different RHS converge at differ-

ent speeds. For simplicity, the GMRES-LI algorithm terminates when one of the

RHS converges, since the experiments test random RHS which converge at approx-

imately the same speed. It is worth noting that the BGMRES method is subject to

far more stringent stopping criteria than GMRES-LI.

All test results were obtained using Kokkos 3.1.00, Cuda 10.0.13, and GCC

7.5.0. The C++ code was run on a 20-core Intel(R) Xeon(R) CPU E5-2698 v4

2.2GHz processor. All GPU implementations were performed on a single NVIDIA

V100 SXM2 GPU in the DGX-1 server at Temple University.

3.5 Experimental Results

The numerical results for the unrestarted test problems are shown in Figure 3.2.

Generally, the GPU methods perform very well compared to their CPU counterparts

in terms of runtime, demonstrated in the bar graphs. Moreover, we notice several

cases where the Block Speedup on the CPU is less than 1 while the Block Speedup

on the GPU is above 1. This implies that there are many cases where using the single

RHS GMRES is advantageous over BGMRES on the CPU, while the opposite is

true for the same situation on the GPU.
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While the Dubcova3 results in Figure 3.2 seem to indicate that BGMRES

performs worse on the GPU than on the CPU, one should note that GPU BGMRES

is still far faster than the CPU implementation. The high CPU block speedup in this

example is driven purely by the extremely slow CPU GMRES runtimes.

Additionally, when restarts are not necessary, our experiments show that we get

a clear peak in the Block Speedup on the GPU, and diminished Block Speedups

thereafter. In other words, there is an optimal number of RHS for each problem

where the block GMRES method is most efficient in comparison to the single RHS

GMRES. When we apply our theoretical runtime model to these unrestarted prob-

lems using the real number of iterations required for each number of RHS and

the realistic GPU hardware parameters α = 3 × 10−4, β = 1.1 × 10−12, and

γ = 1.3 × 10−13, we see similar behavior in our model to what we see in the ex-

periments, as shown in Figures 3.4 and 3.5. This supports our belief that when the

number of RHS increases, the benefit of BGMRES over s × GMRES on the GPU

will be determined by weighing computational costs against the cost of accessing

the coefficient matrix.

Since our implementation of GMRES-LI does not allow for restarts, all reported

experiments with GMRES-LI had to converge before the GPU ran out of memory.

This is a significant limitation of GMRES-LI. Although the algorithm is extremely

attractive from the standpoint of having the same data movement cost and lower

computational complexity than BGMRES, GMRES-LI is severely hindered by the



48

fact that it must store m · s vectors from all of the Krylov subspaces for each RHS

simultaneously, but only uses one Krylov subspace per RHS (m vectors) to search

for a solution. In contrast, BGMRES must also store m · s vectors in the block

Krylov subspace, but gets to leverage all m · s vectors for each RHS to find its

solution.

Results for GMRES-LI are shown for cases where the method converged in Fig-

ure 3.2. The method failed for experiments using Dubcova3 with more than 10

RHS and for 50 RHS during experiments on stomach. The relative performance

of GMRES-LI compared to BGMRES depends greatly on the problem. Our experi-

ments here suggest GMRES-LI is not particularly advantageous for these problems,

but this is not always true, as the cage13 and thermomech dM results indicate.

GMRES-LI is most effective when GMRES converges in very few iterations. In

this situation, BGMRES can offer little acceleration in terms of iteration counts,

and therefore will incur higher computational cost than GMRES-LI while requiring

a similar number of iterations to converge. This is exactly the case in the cage13

and thermomech dM examples, where GMRES requires only 16 and 17 itera-

tions to converge respectively, as shown in Tables 3.9 - 3.12. For this problem,

as we increase the number of RHS, BGMRES cannot accelerate convergence very

much, so the increasing computational costs eventually force BGMRES to converge

slower than GMRES-LI. While GMRES-LI can theoretically be advantageous over

BGMRES, our results suggest that on GPUs, BGMRES is still at least as fast as
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GMRES-LI, and is noticably faster for fewer than 20 RHS. Since most practical

problems use fewer than 20 RHS, we can conclude BGMRES is still generally ad-

vantageous on the GPU over GMRES-LI.

Since BGMRES and GMRES-LI both performed well and were competitive

with each other in the cage13 and thermomech dM problems, we can conclude

that the acceleration BGMRES provides in this problem is due mostly to accessing

the coefficient matrix less frequently. For the other non-restarted problems this

is not the case, indicating the acceleration of BGMRES due to the block Krylov

subspace is significant. This is confirmed by the results throughout Section 3.6.

The numerical results for the restarted test problems are shown in Figure 3.3.

While these restarted results report very high Block Speedups on the CPU for over

20 RHS, one should note that GPU BGMRES is still far faster than the CPU im-

plementation. The high CPU Block Speedups is driven purely by the extremely

slow CPU GMRES runtimes. Moreover, most practical applications will use far

fewer than 20 RHS. Thus, BGMRES is still more advantageous on the GPU in the

restarted case when restarts are required. Some restarted problems exhibit sim-

ilar behavior to the non-restarted counterparts, but others exhibit multiple clear

peaks in the Block Speedup on the GPU as the number of RHS increase, such

as CoupCons3D.

The reason that we get multiple peaks in the Block Speedups for these matri-

ces and not for the unrestarted problems is relatively straightforward: when we do
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(a) stomach (b) cage13

(c) FEM 3D thermal2 (d) thermomech dM

(e) Dubcova3

Figure 3.2: Runtimes of the s × GMRES, BGMRES, and GMRES-LI algorithms
on GPUs and CPUs for test problems that do not require restarts, along with the
Block Speedup on the CPU and GPU
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(a) CO (b) CoupCons3D

(c) hood (d) shipsec8

(e) SiO2

Figure 3.3: Runtimes of the GMRES and BGMRES algorithms on GPUs and CPUs
for test problems requiring restarts, along with the Block Speedup on the CPU and
GPU
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not restart, increasing the number of RHS will increase the size of the block Krylov

subspace, and thus the BGMRES method should converge in fewer iterations. How-

ever, each iteration becomes more computationally expensive as the number of RHS

increases, and eventually outweighs the advantage of using fewer iterations. Hence,

we observe a peak in the Block Speedups in practice for unrestarted problems.

In our experiments, we imposed that the size of the Krylov subspace remains

constant in order to satisfy storage constraints on the GPU while offering an equally

rich solution space for each number of RHS. Thus, when the number of RHS for

the BGMRES method increases, the restart parameter must decrease. Therefore,

when restarts are necessary, BGMRES requires more frequent restarting when we

increase the number of RHS, making the convergence behavior of BGMRES less

regular in terms of iteration counts as the number of RHS increases. For this reason,

the iteration counts can increase when we increase the number of RHS for restarted

BGMRES. This non-monotone convergence behavior with respect to changes in the

number of RHS can lead to multiple peaks in the Block Speedup in the non-restarted

case.

Our theoretical runtime model was not applied to these restarted cases, as it

was not designed with restarts in mind, and will therefore not be expected to al-

ways capture the possible multiple peaks in the Block Speedups. Moreover, our

restarted examples require significantly more iterations to converge than our non-

restarted examples; in other words, our examples require many restarts, not just a
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few. Hence, the runtime model will be almost entirely determined by the cost of the

(block) Arnoldi orthogonalization procedure. Since our model does not consider

the parallelization benefit of using BLAS3 operations in the block Arnoldi proce-

dure compared to BLAS2 operations in the standard Arnoldi algorithm, the model

will severely over-estimate the cost of the block Arnoldi orthogonalization in cases

where many restarts are required, such as the cases presented here.

For completeness, tables listing the iteration counts and runtimes for all of our

experiments can be found in Section 3.6.

3.6 Conclusions and Outlook

The experiments in Section 3.5 proved our hypothesis that there are many cases

where BGMRES converges faster (in runtime) than s×GMRES on the GPU while

the opposite is true on the CPU. Further, our experiments suggest that when we use

full BGMRES, i.e., without restarts, there is an optimal number of right hand sides

where the BGMRES algorithm is most advantageous over the single RHS GMRES

method on the GPU. Our theoretical runtime model described in Section 3.3, which

can be used to qualitatively model the Block Speedups for any problem that cannot

fit in the GPU’s cache, confirms this phenomenon when we use observed iteration

counts for unrestarted problems.

To better understand how much of an advantage the block Krylov subspace of-

fers in BGMRES in comparison to the standard Krylov subspaces in GMRES, we

also compared BGMRES to GMRES-LI because BGMRES can outperform stan-
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(a) FEM 3D thermal2

(b) stomach

Figure 3.4: Observed vs. modelled Block Speedups on the GPU for the
FEM 3D thermal2 and stomach problems
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(a) cage13

(b) Dubcova3

(c) thermomech dM

Figure 3.5: Observed vs. modelled Block Speedups on the GPU for the cage13,
Dubcova3, and thermomech dM problems
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dard GMRES due to reduced iteration counts (and therefore reduced computational

cost) from the block Krylov space and/or due to reduced communication costs from

accessing the coefficient matrix fewer times.

Comparing BGMRES to GMRES-LI guarantees the dominant communication

costs of BGMRES and GMRES are the same. This eliminates any benefits of BGM-

RES over GMRES due to communication costs, and therefore identifies when the

speedups are due to the reduction in iteration counts only.

When GMRES converges slowly, BGMRES is expected to perform well, due to

the reduction in iteration counts. This is confirmed on both the CPU and GPU in

Figure 3.2 (a), (c), and (e) where BGMRES is noticeably faster than both GMRES-

LI and s× GMRES.

When GMRES converges quickly, BGMRES is often slower than GMRES on

CPUs due to higher computational cost and insignificant communication costs.

Conversely, GPU memory latency is high, making communication costs very sig-

nificant. On GPUs, we observed that BGMRES can outperform GMRES even

when GMRES converges quickly due to reduced communication costs, which is

confirmed by the fact that GMRES-LI also outperforms standard GMRES in these

cases; see for example Figure 3.2 (b) and (d).

Figure 3.2 indicates that a direct comparison of BGMRES to GMRES-LI gives

mixed results that are entirely dependent on the iteration counts of BGMRES and
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GMRES. However, BGMRES on the GPU seems to perform noticeably better for

fewer than 20 RHS (which is the case for most practical problems), and BGMRES is

often more memory efficient than GMRES-LI in terms of required memory usage to

converge. This is a significant upside of BGMRES on GPUs, because GPU memory

is often far more limited than CPU memory. Therefore, on the GPU, BGMRES

provides benefit over GMRES-LI as well.

Our results apply to the case of other preconditioners. In the computational

model, the cost of the combined matrix-vector product with the coefficient matrix

and the preconditioned has to be taken into account.

The results and ideas of this work could be used in the future to devise a strategy

for partitioning the RHS of systems with many RHS. Specifically, if the optimal

performance is estimated to be attained with 20 RHS, one may choose to partition

a system of 40 RHS into two sets of 20 RHS.

3.7 BGMRES: Complete Results

In the tables, entries with a ‘-’ indicate the method failed to converge. All times

are taken in seconds, and k is the restart parameter. All iteration counts taken for

s× GMRES are the average number of iterations required for each RHS until con-

vergence. Data for GMRES-LI are only included for problems where the method

converges for at least s = 5 RHS.

We note that BGMRES is often slower than s×GMRES for s small, e.g., s = 1.

This is due to different implementations of solving the least squares problem among
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the two algorithms. BGMRES uses Householder reflections, which is advantageous

for multiple RHS, while the Givens rotations in s × GMRES are designed with

minimal effort for one RHS in mind.

BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 4060 39 2.15 4130 39.00 0.83 4060 39 1.08
2 2030 38 5.20 4130 39.00 1.55 2030 39 1.35
5 826 37 13.98 4130 39.00 3.66 826 39 2.11

10 413 36 19.69 4130 39.00 7.13 413 39 2.86
20 207 35 63.42 4130 39.00 13.79 207 39 7.85
30 138 34 26.22 4130 39.00 20.41 138 39 11.12
40 103 34 125.21 4130 39.00 26.71 103 39 14.65
50 83 33 113.25 4130 39.00 32.85 83 39 18.70

Table 3.5: FEM 3D thermal2 CPU Results

BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 4060 39 0.70 4130 39.00 0.48 4060 39 4.42
2 2030 38 0.46 4130 39.00 0.54 2030 39 4.60
5 826 37 0.58 4130 39.00 0.72 826 39 4.64

10 413 36 0.93 4130 39.00 1.02 413 39 3.89
20 207 35 1.83 4130 39.00 1.63 207 39 4.71
30 138 34 3.27 4130 39.00 2.50 138 39 5.10
40 103 34 4.84 4130 39.00 3.08 103 39 6.28
50 83 33 7.54 4130 39.00 3.71 83 39 6.08

Table 3.6: FEM 3D thermal2 GPU Results
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BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 3710 92 12.86 3780 92.00 3.45 3710 92 3.92
2 1855 85 41.94 3780 91.00 6.80 1855 92 12.54
5 756 75 74.72 3780 91.40 19.31 756 92 10.87

10 378 67 81.53 3780 91.20 37.70 378 92 21.58
20 189 58 124.06 3780 91.30 73.68 189 92 48.24
30 126 53 95.79 3780 91.37 110.50 126 92 86.80
40 95 49 269.24 3780 91.33 144.98 95 - -
50 76 47 164.87 3780 91.38 180.17 76 - -

Table 3.7: stomach CPU Results

BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 3710 92 1.25 3780 92.00 0.61 3710 92 9.25
2 1855 85 0.99 3780 91.00 0.80 1855 92 10.12
5 756 75 1.39 3780 91.40 1.38 756 92 11.00

10 378 67 2.25 3780 91.20 2.49 378 92 11.87
20 189 58 4.35 3780 91.30 4.72 189 92 14.24
30 126 53 6.97 3780 91.37 6.97 126 92 15.67
40 95 49 8.64 3780 91.33 8.93 95 - -
50 76 47 12.69 3780 91.38 11.15 76 - -

Table 3.8: stomach GPU Results

BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 2660 16 2.39 2660 16.00 1.06 2660 16 1.78
2 1330 16 4.57 2660 16.00 1.82 1330 16 1.96
5 532 14 9.59 2660 16.00 4.09 532 16 7.60

10 266 14 18.44 2660 16.00 8.65 266 16 10.84
20 133 13 38.97 2660 16.00 16.65 133 16 16.48
30 89 13 63.67 2660 16.00 24.91 89 16 24.25
40 67 12 157.97 2660 16.00 32.66 67 16 27.26
50 53 12 166.59 2660 16.00 40.71 53 16 38.08

Table 3.9: cage13 CPU Results
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BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 2660 16 0.59 2660 16.00 0.43 2660 16 1.40
2 1330 16 0.41 2660 16.00 0.45 1330 16 1.62
5 532 14 0.47 2660 16.00 0.52 532 16 1.66

10 266 14 0.52 2660 16.00 0.64 266 16 1.41
20 133 13 0.84 2660 16.00 0.87 133 16 1.88
30 89 13 1.46 2660 16.00 1.38 89 16 1.89
40 67 12 1.96 2660 16.00 1.63 67 16 2.34
50 53 12 3.23 2660 16.00 1.87 53 16 1.87

Table 3.10: cage13 GPU Results

BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 3640 17 1.40 3640 17.00 0.46 3640 17 0.90
2 1820 16 2.04 3640 17.00 0.78 1820 17 1.04
5 728 16 5.05 3640 17.00 1.67 728 17 2.48

10 364 16 7.94 3640 17.00 3.11 364 17 3.07
20 182 15 11.99 3640 17.00 6.25 182 17 6.00
30 121 15 25.41 3640 17.00 9.18 121 17 10.15
40 91 15 55.79 3640 17.00 12.45 91 17 11.45
50 73 15 47.33 3640 17.00 15.44 73 17 15.01

Table 3.11: thermomech dM CPU Results

BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 3640 17 0.59 3640 17.00 0.72 3640 17 2.06
2 1820 16 0.35 3640 17.00 0.75 1820 17 1.83
5 728 16 0.35 3640 17.00 0.85 728 17 1.81

10 364 16 0.52 3640 17.00 1.04 364 17 1.72
20 182 15 0.79 3640 17.00 1.35 182 17 2.17
30 121 15 1.45 3640 17.00 1.67 121 17 1.97
40 91 15 2.13 3640 17.00 1.98 91 17 2.03
50 73 15 2.99 3640 17.00 2.28 73 17 2.02

Table 3.12: thermomech dM GPU Results
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BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 4850 288 133.91 4850 292.00 30.78 4850 288 54.36
2 4925 257 433.52 4850 290.00 59.28 4925 286 103.69
5 970 192 301.50 4850 287.20 144.30 970 289 175.49

10 485 155 280.85 4850 287.40 274.97 485 288 312.49
20 243 121 317.71 4850 287.15 539.12 243 - -
30 162 102 192.02 4850 287.13 802.20 162 - -
40 121 92 164.28 4850 287.45 1077.20 121 - -
50 97 87 190.16 4850 287.82 1354.82 97 - -

Table 3.13: Dubcova3 CPU Results

BGMRES s× GMRES GMRES-LI
s k Iter. Time k Iter. Time k Iter. Time
1 4850 288 4.30 4850 292.00 2.35 4850 288 85.75
2 4925 257 5.11 4850 290.00 4.26 4925 286 331.43
5 970 192 6.11 4850 287.20 9.23 970 289 50.92

10 485 155 9.10 4850 287.40 17.62 485 288 59.00
20 243 121 13.90 4850 287.15 33.61 243 - -
30 162 102 18.77 4850 287.13 49.65 162 - -
40 121 92 22.20 4850 287.45 66.25 121 - -
50 97 87 29.87 4850 287.82 82.83 97 - -

Table 3.14: Dubcova3 GPU Results

BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 2700 180 93.41 2700 180.00 41.74
2 1350 174 336.04 2700 180.00 79.76
5 540 166 436.69 2700 180.00 190.50

10 270 160 535.80 2700 180.00 369.46
20 135 157 751.46 2700 180.05 692.62
30 90 154 291.04 2700 180.10 1052.58
40 68 157 499.65 2700 180.07 1404.51
50 54 154 657.33 2700 180.06 1748.62

Table 3.15: CoupCons3D CPU Results
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BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 2700 180 2.94 2700 180.00 1.38
2 1350 174 3.12 2700 180.00 2.26
5 540 166 6.51 2700 180.00 4.90

10 270 160 14.10 2700 180.00 9.54
20 135 157 30.35 2700 180.05 18.90
30 90 154 37.29 2700 180.10 28.04
40 68 157 39.69 2700 180.07 37.09
50 54 154 50.83 2700 180.06 46.30

Table 3.16: CoupCons3D GPU Results

BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 4250 566 330.03 4250 564.00 117.02
2 2125 423 778.53 4250 564.00 239.10
5 850 324 677.86 4250 561.60 588.00

10 425 263 630.90 4250 559.10 1159.89
20 213 207 666.33 4250 559.50 2352.35
30 142 203 308.30 4250 559.70 3607.20
40 106 233 445.15 4250 559.40 4368.15
50 85 283 902.32 4250 560.02 5945.07

Table 3.17: CO CPU Results

BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 4250 566 14.96 4250 564.00 6.19
2 2125 423 12.82 4250 564.00 11.88
5 850 324 17.85 4250 561.60 28.89

10 425 263 28.11 4250 559.10 56.97
20 213 207 44.76 4250 559.50 115.97
30 142 203 49.57 4250 559.70 173.79
40 106 233 64.28 4250 559.40 231.99
50 85 283 98.62 4250 560.02 288.14

Table 3.18: CO GPU Results
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BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 3640 1477 2491.04 3650 1479.00 798.09
2 1820 1300 8373.21 3650 1479.00 1714.77
5 728 1152 4749.30 3650 1481.60 4357.76

10 364 988 3378.33 3650 1481.10 8893.71
20 182 1155 3972.07 3650 1481.75 18051.77
30 121 1349 2937.16 3650 1481.87 27442.97
40 91 1385 4549.10 3650 1481.92 34054.49
50 73 1335 4655.02 3650 1482.04 44393.21

Table 3.19: hood CPU Results

BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 3640 1477 102.73 3650 1479.00 37.36
2 1820 1300 127.96 3650 1479.00 76.00
5 728 1152 124.34 3650 1481.60 194.15

10 364 988 134.23 3650 1481.10 388.86
20 182 1155 214.43 3650 1481.75 776.50
30 121 1349 327.32 3650 1481.87 1170.12
40 91 1385 365.00 3650 1481.92 1559.29
50 73 1334 444.88 3650 1482.04 1946.72

Table 3.20: hood GPU Results

BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 4850 933 466.12 4850 924.00 155.58
2 2425 774 1140.85 4850 923.50 361.28
5 970 602 1049.17 4850 928.20 1005.80

10 485 569 1117.53 4850 928.20 1974.79
20 243 666 1550.99 4850 930.30 3785.29
30 162 706 1029.54 4850 931.43 5808.20
40 121 825 1548.81 4850 931.65 8067.60
50 97 948 2411.37 4850 931.24 9754.14

Table 3.21: shipsec8 CPU Results
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BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 4850 933 37.62 9 924.00 14.21
2 2425 774 40.29 9 923.50 27.85
5 970 602 53.16 9 928.20 69.68

10 485 569 81.65 9 928.20 139.84
20 243 666 121.57 9 930.30 276.56
30 162 706 165.54 9 931.43 409.57
40 121 825 223.18 9 931.65 542.04
50 97 948 332.30 9 931.24 674.39

Table 3.22: shipsec8 GPU Results

BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 4000 536 214.66 4000 547.00 86.07
2 2000 418 475.26 4000 545.50 169.42
5 800 273 333.45 4000 539.80 411.61

10 400 223 341.84 4000 542.20 834.58
20 200 182 403.50 4000 543.40 1667.57
30 133 178 185.68 4000 540.67 2483.79
40 100 203 349.97 4000 540.10 3284.45
50 80 231 553.80 4000 539.22 4074.85

Table 3.23: SiO2 CPU Results

BGMRES s× GMRES
s k Iter. Time k Iter. Time
1 4000 536 13.30 4000 547.00 6.04
2 2000 418 11.75 4000 545.50 11.05
5 800 273 12.80 4000 539.80 25.96

10 400 223 18.32 4000 542.20 51.12
20 200 182 31.01 4000 543.40 102.94
30 133 178 36.79 4000 540.67 152.24
40 100 203 52.07 4000 540.10 202.53
50 80 231 73.84 4000 539.22 253.11

Table 3.24: SiO2 GPU Results
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CHAPTER 4

s-STEP GMRES AND BLOCK
ORTHOGONALIZATION SCHEMES

On modern heterogeneous computer architectures, GMRES’ performance can be

limited by its communication cost to orthonormalize Krylov basis vectors. To ad-

dress this potential performance bottleneck, its s-step variant orthogonalizes a block

of s basis vectors at a time, providing the potential to reduce the communication

cost by a factor of s while simultaneously utilizing as many BLAS-3 (and there-

fore compute-bound) operations as possible. Thus, practical implementations of

s-step GMRES give rise to a highly parallelizable GMRES implementation that is

amenable to modern heterogeneous–and by extension exascale–machines. In this

chapter, we provide the necessary background on s-step GMRES along with its

practical challenges to motivate our work in Chapters 5 and 6, which take aim at

specific subroutines to improve the s-step method’s practicality.

4.1 Introduction

To orthogonalize the new basis vector at each iteration, GMRES (e.g., Algorithm

1 or 2) uses BLAS-1 and BLAS-2 operations, which limit data re-use and require

global synchronizations across all parallel processes at each instance. Therefore,

GMRES requires several communications per iteration for the basis orthogonal-

ization alone. As mentioned in Chapter 2.4, on modern machines, these commu-
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nications (e.g., the cost of moving data through the local memory hierarchy and

between the processes) can take much longer than the required computation time

and can limit the performance of the orthogonalization process. As a result, when

efficient and scalable spmv and preconditioners are available, orthogonalization

becomes a significant part of the iteration time and a performance bottleneck.

4.2 s-Step GMRES

To reduce this performance bottleneck, communication-avoiding (CA) variants of

GMRES [12, 37], based on s-step methods [19, 39], were proposed. A highly sim-

plified version of s-step GMRES is given in Algorithm 6. While standard GMRES

generates 1 Krylov basis vector per iteration and then orthogonalizes this vector

against the prior ones, the idea of s-step GMRES is effectively to form a new block

of s Krylov vectors at each iteration, and then orthogonalize in a block-wise fashion

to significantly reduce communication requirements and increase usage of BLAS-3

operations during the orthogonalization procedure. Conceptually, this is similar to

BGMRES, except that instead of forming a new block vector via one application of

a spmv, at least s calls of spmv are done to form the new block vector so that the

algorithm is mathematically equivalent to standard GMRES.

Algorithm 6 s-step GMRES: m iter.
1: for j = 1, . . . ,m do
2: V j = MPK(A, q

(s)
j−1, s)

3: [Qj,H1:j,j] = BlkOrth(Q1:j−1,V j)
4: end for
5: ym = argmin ∥b− AQy∥2
6: xm = x0 +Qym
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To generate the orthogonal basis vectors of the Krylov subspace, s-step GMRES

utilizes two computational kernels:

1. a Matrix Powers Kernel (MPK) to generate s (non-orthogonal) Krylov vectors

by applying spmv and preconditioner s times, followed by

2. a Block Orthogonalization Kernel (BlkOrth) that orthogonalizes a block of s

basis vectors at once.

While sophisticated communication-avoiding MPK algorithms and precondi-

tioning strategies exist [30, 44, 79], the majority of the communication and com-

putational cost is incurred during the block orthogonalization step, and therefore

optimizing the BlkOrth kernel will be the focus of this thesis rather than optimizing

the MPK. Moreover, improvements to the BlkOrth kernel will not only affect the

performance of s-step GMRES, but any algorithm using a block orthogonalization,

like the previously mentioned BGMRES algorithm.

For simplicity, we will assume the MPK is a standard monomial matrix powers

algorithm, given in Algorithm 7.

Algorithm 7 Monomial Matrix Powers Kernel: V = MPK(A, b, s)

1: v1 = Ab
2: for k = 2, . . . , s do
3: vk = Avk−1

4: end for
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4.3 Block Orthogonalization Schemes

While many choices of the block orthogonalization kernel used to orthogonalize

a new block V j against previously orthogonalized blocks Q1:j−1 exist, they all

consist of two primary components:

1. An “inter-block” orthogonalization, which we refer to as the inter-ortho step,

which computes some new matrix Q̂j that is the result of orthogonalizing V j

against Q1:j−1 in a block-wise fashion, and

2. an “intra-block” orthogonalization, which we refer to as the intra-ortho step,

which orthogonalizes the columns of Q̂j against eachother.

It is important to note that for any reasonable choice of the step size s used within s-

step GMRES (or number of RHS used within BGMRES), that Q̂j will be a tall-and-

skinny matrix; that is, it has significantly more rows than it has columns. Therefore,

the intra-ortho procedure is done using a tall-and-skinny QR factorization.

The inter-ortho procedure, on the other hand, is typically handled by some

block Gram-Schmidt procedure, such as block classical Gram-Schmidt (BCGS),

block modified Gram-Schmidt (BMGS), or some iterated version of these algo-

rithms. Regardless of the type of block Gram-Schmidt algorithm chosen, all block

Gram-Schmidt algorithms rely entirely on BLAS-3 operations and synchronize par-

allel processes approximately s times fewer times than analogous standard Gram-

Schmidt procedures. Thus, s-step GMRES has the potential to reduce the commu-
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nication cost of orthogonalizing the s basis vectors by a factor of s, provided that

the intra-ortho (tall-and-skinny QR) can be done efficiently, making them ideal for

modern heterogeneous machines.

4.4 Implementation Issues of s-step GMRES

If s-step GMRES can potentially reduce the communication cost of the Krylov

basis orthogonalization by a factor of s, a natural question arises: is there a limit

on how large s can be? In short, yes, but precisely how large s can be is usually

related to the stability of the inter-ortho and intra-ortho algorithms used in the block

orthogonalization.

In general, even if one had an unconditionally stable inter-ortho and intra-ortho,

s-step GMRES should still use a step size s so that the MPK produces a new block

that is full-rank, otherwise the algorithm performs additional work only to intro-

duce extraneous information into the solution space and is no longer mathemati-

cally equivalent to standard GMRES. In exact arithmetic, as long as the coefficient

matrix A is full rank, it follows from Proposition 2.4 that the MPK will produce a

full rank block V j as long as s ≤ grade(q(s)j−1).

In finite-precision, one must be careful about the notion of “full-rank” matri-

ces used, as there is a limitation on how close to singular a matrix can be before

roundoff errors significantly affect the result of the algorithm, and therefore the

convergence of s-step GMRES. In the same way a matrix having full-rank in ex-

act arithmetic corresponds to a matrix with all non-zero singular values, in finite
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precision, “numerically full-rank” matrices are those whose singular values are nu-

merically non-zero relative to each other. Precise definitions of the numerical rank

of a matrix, along with equivalent statements of full numerical rank, are given in

Definitions 4.1 and 4.2. For clarity, we reiterate that the finite precision unit round-

off error is denoted by u, as indicated in Table 2.2.

Definition 4.1 (Numerical Rank). Let V ∈ Cn×m. The numerical rank of V is the

largest integer r such that

σk(V ) ≥ max{n,m} ∥V ∥2 u, ∀k ≤ r. (4.1)

Definition 4.2 (Numerically Full-Rank). A matrix V ∈ Cn×m is numerically full

rank if the numerical rank of V is min{n,m}. Equivalently, V is numerically full

rank if,

max{n,m} κ(V ) ≤ u−1. (4.2)

Thus in practice, even if we have an unconditionally stable inter-ortho and intra-

ortho, the MPK within the s-step GMRES algorithm should terminate so that the

new block V j still satisfies max{n,m} κ(V j) ≤ u−1. However, because V j is

formed by applying s powers of a matrix A to a single vector, the condition number

of V j often becomes too large even when relatively small values of the step size s

are used. In practice, a conservatively small step size, like s ≈ 5 is often used in
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practice to circumvent this issue, however, reducing the step size s limits the reduc-

tion in communication and gains in parallelism that current block orthogonalization

schemes can offer.

Additionally, practical tall-and-skinny QR factorizations used in the intra-ortho

step are either stable or high-performance on modern machines, but generally not

both. More specifically, many modern implementations of s-step GMRES either

use a Cholesky-based QR factorization or a HouseholderQR intra-ortho. House-

holderQR is unconditionally stable, but is not highly parallelizable and is communi-

cation intensive, making it an impractical choice for modern large-scale machines.

The current state-of-the-art Cholesky-based QR algorithms for tall-and-skinny ma-

trices are the CholeskyQR2 and shifted CholeskyQR3 algorithms [27, 28], which

are given in Algorithms 9 and 10, respectively. Both algorithms are based on the

CholeskyQR algorithm [67], given in Algorithm 8. To simplify the overview of

error and stability properties of existing Cholesky-based QR algorithms in this sec-

tion, we will use the notation f(V ) ⪅ u and f(V ) ⪆ u to mean that there is some

function g(u) = O(u) where f(V ) ≤ g(u) and f(V ) ≥ g(u), respectively.

CholeskyQR is a popular building block for high performance tall-and-skinny

QR factorizations, because each instance of it requires only one processor syn-

chronization total (to compute the Gram matrix in step 1), along with the fact

that it strictly exploits vendor provided highly-optimized dense linear algebra sub-

routines [2, 47, 48], thereby giving excellent performance on modern heteroge-
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neous machines. It is not used as a standalone scheme for computing a QR fac-

torization often for two reasons. The first is simply because it is numerically

unstable, in that when the matrix V has condition number κ(V ) ⪆ u−1/2, the

method may fail1 [77]. The second reason is that even when the algorithm suc-

ceeds, it does not compute an accurate orthogonal factor, giving an orthogonality

error ∥I −QTQ∥2 ⪅ u κ2(V ) [77].

Algorithm 8 Cholesky QR: [Q,R] = cholQR(V )

Input: Matrix V ∈ Rn,m

Output: Orthogonal factor Q ∈ Rn,m, Triangular factor R ∈ Rm,m such that
QR = V .

1: Compute Gram matrix G = V TV
2: Perform Cholesky on G: R = chol(G)
3: Recover orthogonal matrix: Q = V R−1

Algorithm 9 CholeskyQR2: [Q,R] = cholQR2(V )

Input: Full rank matrix V ∈ Rn,m

Output: Orthogonal factor Q ∈ Rn,m, Triangular factor R ∈ Rm,m

1: Perform Cholesky QR on V : [Q0, R0] = cholQR(V )
2: Perform Cholesky QR on Q0: [Q,R1] = cholQR(Q0)
3: Return R: R = R1R0

CholeskyQR2 (Algorithm 9) is designed to remedy the large orthogonality loss

incurred by CholeskyQR by re-orthogonalizing the result with another pass of CholeskyQR,

while simultaneously providing high performance because the method consists of

two passes of CholeskyQR, implying the method only requires two synchroniza-

1The intuition behind why this occurs is due to the fact that in Algorithm 8, κ(R) = κ(G) =
κ(V TV ) = κ(V )2. Numerically, the triangular solve in step 3 is only reliable when R is numerically
full-rank [36], or in other words, when κ(V )2 = κ(R) ≤ m u. Thus, the method cannot succeed
when κ(V ) ⪆ u−1/2. For a rigorous stability analysis explaining all of the details that takes roundoff
errors at each step of the algorithm into consideration, see [77].
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Algorithm 10 Shifted CholeskyQR3: [Q,R] = sCholQR3(V )

Input: Full rank matrix V ∈ Rn,m, scalar shift ω ∈ R
Output: Orthogonal factor Q ∈ Rn,m, Triangular factor R ∈ Rm,m

1: Compute shifted Gram matrix G = V TV + ωI
2: Perform Cholesky on G: R0 = chol(G)
3: Recover orthogonal matrix Q0 = V R−1

0

4: Perform CholeskyQR2 on Q0: [Q,R1] = cholQR2(Q0)
5: Return R: R = R1R0

tions total (one per CholeskyQR) and consists only of highly optimized BLAS-3

routines. While CholeskyQR2 produces an accurate orthogonal term Q with O(u)

orthogonality error when it succeeds, CholeskyQR2 has the same stability require-

ments as CholeskyQR, and it therefore may fail when its input matrix V has con-

dition number κ(V ) ⪆ u−1/2 [77]. This is particularly problematic in the context

of s-step GMRES, as CholeskyQR2’s stability imposition that κ(V j) ⪅ u−1/2 for

each block V j forces users to select the step size s extremely small, which hurts

the overall performance of s-step GMRES.

To combat CholeskyQR2’s instability while still maintaining relatively high

performance, Shifted CholeskyQR3 (Algorithm 10) was developed. Essentially,

Shifted CholeskyQR3 introduces a small diagonal shift ω to V TV in its first CholeskyQR

pass to improve the conditioning of the resulting Gram matrix G, and by extension,

the triangular factor R0 formed in step 2. Shifted CholeskyQR3 provides a sig-

nificant stability improvement over CholeskyQR2 for appropriately chosen shifts

ω, maintaining its stability for input matrices V with κ(V ) ⪅ u−1 [27], which is

preferable within the context of s-step GMRES. A practical choice of the scalar
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shift ω that is cheap to compute and guarantees the aforementioned theoretical sta-

bility results is ω = 11 (nm+m(m+ 1)) u ∥V ∥F [27].

In spite of the stability gains Shifted CholeskyQR3 introduces, it is still not

ideal, as it requires over 50% more computational and communication cost than

CholeskyQR2 [27], which can drastically reduce the performance of iterative schemes

relying on it, like s-step GMRES. Although more stable communication-avoiding

algorithms exist, such as TSQR [21], they rely on Householder QR factorizations,

and are often significantly slower than CholeskyQR2 in practice [28].

4.5 Outlook and Motivation

Based on the issues and considerations posed in Sections 4.3 and 4.4, practical

s-step GMRES implementations on modern heterogeneous machines need the fol-

lowing:

1. a high-performance, stable tall-and-skinny QR algorithm for the intra-ortho

step, and

2. an intra-ortho that is high performance for relatively small step sizes s.

In Chapter 5, we address this first concern by developing and analyzing a novel

randomized tall-and-skinny QR algorithm that combines the superior computational

and communication costs as CholeskyQR2 with the attractive stability guarantees of

Shifted CholeskyQR3. In Chapter 6, we address the second concern by developing

and analyzing a novel two-stage block orthogonalization scheme designed to sig-
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nificantly reduce the communication cost of the block orthogonalization for small

step sizes s, which translates to sizable performance gains of the s-step GMRES

algorithm.
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CHAPTER 5

RANDOMIZED HOUSEHOLDER-CHOLESKY QR
WITH MULTISKETCHING: A MORE STABLE,

HIGH PERFORMANCE TALL-AND-SKINNY QR
ALGORITHM

As pointed out in Chapter 4, practical implementations of s-step GMRES, BGM-

RES, or any iterative numerical method dependent on a block orthogonalization

scheme require a high performance tall-and-skinny QR algorithm to execute the

intra-ortho step of the block orthogonalizaton process. Additionally, s-step GMRES

often forms ill-conditioned blocks, imposing a requirement that the tall-and-skinny

QR algorithm it relies on must also be very stable.

CholeskyQR2 and shifted CholeskyQR3 are two state-of-the-art algorithms for

computing tall-and-skinny QR factorizations since they attain high performance

on current computer architectures. As pointed out in Section 4.4, to guarantee

stability, CholeskyQR2 faces a restriction on the condition number of the under-

lying matrix to factorize that can be prohibitive for many applications, including

s-step GMRES. Shifted CholeskyQR3 relaxes this stability requirement but has

50% more computational and communication costs than CholeskyQR2. In this

chapter, a randomized QR algorithm called Randomized Householder-Cholesky

(rand cholQR) is proposed and analyzed. Using one or two random sketch ma-
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trices, it is proved that with high probability, its orthogonality error is bounded

by a constant of the order of unit roundoff for any numerically full-rank matrix,

and hence it is as stable as shifted CholeskyQR3. An evaluation of the perfor-

mance of rand cholQR on a NVIDIA A100 GPU demonstrates that for tall-and-

skinny matrices, rand cholQR with multiple sketch matrices is nearly as fast as,

or in some cases faster than, CholeskyQR2. Hence, compared to CholeskyQR2,

rand cholQR is more stable with almost no extra computational or memory cost,

and therefore a superior algorithm both in theory and practice.

5.1 Introduction

Computing the QR factorization of tall-and-skinny matrices is a critical compo-

nent of many scientific and engineering applications, including the solution of least

squares problems, block orthogonalization kernels for solving linear systems and

eigenvalue problems within block or s-step Krylov methods, dimensionality re-

duction methods for data analysis like Principal Component Analysis, and many

others. Current state-of-the-art QR algorithms for tall-and-skinny matrices are

the CholeskyQR2 and shifted CholeskyQR3 algorithms [27, 28], thanks to their

communication-avoiding properties along with their exploitation of vendor-

provided highly-optimized dense linear algebra subroutines [2, 47, 48]. However,

CholeskyQR2 may fail to accurately factorize a matrix V when its condition num-

ber κ(V ) ⪆ u−1/2, where u is unit roundoff [77]. Shifted CholeskyQR3 is nu-

merically stable as long as κ(V ) ⪅ u−1, but it requires over 50% more compu-
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tational and communication cost than CholeskyQR2 [27]. Although more stable

communication-avoiding algorithms exist, such as TSQR [21], they rely on House-

holder QR factorizations, and are often significantly slower than CholeskyQR2 in

practice [28].

In this chapter, we present and analyze a randomized algorithm called randQR

for orthogonalizing the columns of a tall-and-skinny matrix with respect to a spe-

cific bilinear form. In order to reduce the cost of the computations, we propose

to use “multisketching,” i.e., the use of two consecutive sketch matrices, obtaining

another algorithm called rand cholQR for computing the QR factorization of a

tall-and-skinny matrix V . Our approach is general in the sense that our analysis

applies to any two ϵ-subspace embedding sketching matrices (see Section 5.3 for

definitions), but what we have in mind is one sparse sketch and one dense sketch,

such as a Gaussian or Radamacher sketch [1]. Our analysis applies in particular to

Count-Gauss (one application of CountSketch followed by a Gaussian sketch), as

described in [40, 63, 64].

We prove that with high probability, the orthogonality error of rand cholQR

is bounded by a constant of the order of unit roundoff for any numerically full-

rank matrix V , and hence it is as stable as shifted CholeskyQR3 and it is signif-

icantly more numerically stable than CholeskyQR2. Our numerical experiments

ilustrate the theoretical results. In addition, the rand cholQR algorithm may be

implemented using the same basic linear algebra kernels as CholeskyQR2. There-
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fore, it is simple to implement and has the same communication-avoiding proper-

ties. We perform a computational study on a state-of-the-art GPU to demonstrate

that rand cholQR can perform up to 4% faster than CholeskyQR2 and 56.6%

faster than shifted CholeskyQR3, while significantly improving the robustness of

CholeskyQR2.

In summary, our primary contribution consists of a new error analysis of a mul-

tisketched randomized QR algorithm, proving it can be safely used for matrices

of larger condition number than CholeskyQR2 can handle. This analysis applies

in particular to the case of one sketch, improving upon the existing results. Our

implementation confirms and illustrates the theory developed in this chapter.

In Section 5.2, we begin by discussing prior work on similar topics. Then, in

Section 5.3, we present some preliminary definitions and known results from ran-

domized linear algebra relevant to this work. We follow with Section 5.4, where

we present multisketching on a conceptual level, and how to incorporate it into a

randomized QR factorization (rand cholQR). We also discuss performance con-

siderations for rand cholQR compared to other high performance tall-skinny QR

algorithms, leading to the motivation as to why multisketching is recommended. In

Section 5.5, we present rigorous error bounds and their proofs for the proposed mul-

tisketched rand cholQR. These bounds can also be applied to the case of a single

sketch matrix, and we compare the new results to those available in the literature.

Numerical experiments are presented in Section 5.6, followed by our conclusions.
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5.2 Related Work

In the case of a single sketch matrix, the concept of sketching a tall-and-skinny ma-

trix, computing its QR factorization, and then preconditioning the matrix with the

resulting triangular factor like randQR is not new. The earliest appearance of such

an algorithm was by Rokhlin and Tygert in 2008 [57] for solving overdetermined

least squares problems, where they proposed a version of randQR with a column-

pivoted QR factorization and a single subsampled randomized Hadamard transform

sketch.

While this thesis was being written, Balabanov proposed the “RCholeskyQR”

and “RCholeskyQR2” methods in an unpublished manuscript [6], which are identi-

cal to what we refer to as randQR and rand cholQR, respectively, in the case of

a single (ε, d,m) oblivious ℓ2-subspace embedding, and gave stability results simi-

lar to Corollary 5.18 of this chapter. However, our results differ from Balabanov’s,

as ours impose no assumptions on the level of accuracy performed by subroutines

within the algorithm, meticulously deriving all bounds from existing roundoff error

analysis of each subroutine. Additionally, Balabanov’s work imposes a far stricter

limit on the subspace embedding parameter ϵ ≤ 1
2
, while ours provides analysis

up to ϵ < 616
634

for a (ε, d,m) oblivious ℓ2-subspace embedding, which is nearly the

theoretical upper limit of ϵ < 1 imposed by the theory in Section 5.3. This is signif-

icant, because stability guarantees for larger values of ϵ ensure high accuracy with

smaller sketch matrices, resulting in a more computationally efficient algorithm.
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Our results extend beyond a single (ε, d,m) oblivious ℓ2-subspace embedding,

and cover the more generalized case of two subspace embeddings (i.e., multisketch).

Also, our work includes explicit analysis of the S2S1-orthogonality error of randQR,

which is a specific notion of orthogonality with respect to a sketched inner prod-

uct, and the loss of orthogonality error in the standard Euclidean inner product of

rand cholQR.

Our work is novel in several ways. To our knowledge, this work is the first to

propose a randomized QR algorithm with multiple sketches. The stability results

in this chapter improve upon and expand the existing stability analysis of randQR

and rand cholQR, and considers the multisketch case for the first time. Ad-

ditionally, our experimental results are the first to demonstrate the performance

of rand cholQR in a parallel heterogeneous computing environment under any

sketching framework, particularly in the multisketch case which allows the algo-

rithm to sometimes run faster than the widely used high-performance cholQR2 al-

gorithm. This tangibly demonstrates the potential of the multisketch rand cholQR

in exascale applications.

5.3 Preliminaries on Random Sketching

Suppose one would like to compress V ∈ Rn×m into a matrix with fewer rows with

nearly the same norm. We denote the sketch matrix by S ∈ Rp×n for p ≪ n. The

sketch matrix is typically chosen to be a ϵ-subspace embedding, or a linear map to
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a lower dimensional space that preserves ℓ2-inner products and norms of all vectors

within the subspace up to a factor of
√
1± ε for ε ∈ [0, 1) [7, 45, 60].

Definition 5.1 (ε-subspace embedding). Given ε ∈ [0, 1), the sketch matrix

S ∈ Rp×n is an ε-subspace embedding for the subspace V ⊂ Rn if ∀x, y ∈ V ,

|⟨x, y⟩ − ⟨Sx, Sy⟩| ≤ ε∥x∥2∥y∥2,

where ⟨·, ·⟩ is the Euclidean inner product.

Proposition 5.2. If the sketch matrix S ∈ Rp×n is an ε-subspace embedding for the

subspace V ⊂ Rn, then ∀x ∈ V ,

√
1− ε ∥x∥2 ≤ ∥Sx∥2 ≤

√
1 + ε ∥x∥2. (5.1)

Corollary 5.3. If the sketch matrix S ∈ Rp×n is an ε-subspace embedding for the

subspace V ⊂ Rn, and V is a matrix whose columns form a basis of V , then

√
1− ε∥V ∥2 ≤ ∥SV ∥2 ≤

√
1 + ε∥V ∥2, (5.2)

√
1− ε∥V ∥F ≤ ∥SV ∥F ≤

√
1 + ε∥V ∥F . (5.3)

Corollary 5.3 is a simple consequence of Proposition 5.2 using the definition

of the ℓ2 and Frobenius matrix norms that gives us a way to bound the norms of a

sketched matrix.
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Proposition 5.4. If the sketch matrix S ∈ Rp×n is an ε-subspace embedding for the

subspace V ⊂ Rn, and V is a matrix whose columns form a basis of V , then

(1 + ε)−1/2 σmin(SV ) ≤ σmin(V ) ≤ σmax(V ) ≤ (1− ε)−1/2 σmax(SV ). (5.4)

Thus,

κ(V ) ≤
√

1− ε

1 + ε
κ(SV ). (5.5)

A proof of Proposition 5.4 is given in [7], and it implies that the singular values

of V are bounded by those of SV . Hence if SV is well conditioned, then so is V .

While ε-subspace embeddings require knowledge of the subspace V ⊂ Rn a

priori, (ε, d,m) oblivious ℓ2-subspace embeddings do not [7].

Definition 5.5 ((ε, d,m) oblivious ℓ2-subspace embedding). S ∈ Rp×n is an (ε, d,m)

oblivious ℓ2-subspace embedding if it is an ε-subspace embedding for any fixed m-

dimensional subspace V ⊂ Rn with probability at least 1− d.

An example of a (ε, d,m) oblivious ℓ2-subspace embedding is S = 1√
s
G for a

fully dense Gaussian matrix G ∈ Rp×n and

s = Ω(ε−2 logm log(1/d));

see, e.g., [60]. Sparse (ε, d,m) oblivious ℓ2-subspace embeddings exist, including

CountSketch, which consists of a single ±1 per column, where the row storing the
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entry and its sign are chosen uniformly at random [15, 76]. In order to be a (ε, d,m)

oblivious ℓ2-subspace embedding, the number of columns of the CountSketch ma-

trix must satisfy

s ≥ m2 +m

ε2d
; (5.6)

see [43]. Other popular (ε, d,m) oblivious ℓ2-subspace embeddings include sub-

sampled randomized Hadamard and Fourier transforms, and “sparse dimension re-

duction maps” [7, 45], though obtaining high performance with these is difficult,

and the complexity of applying them is higher than CountSketch. We do not con-

sider such embeddings in this chapter.

5.4 Multisketching

Next, we consider the case of applying two sketch matrices one after the other,

which is what we refer to as “multisketching” in this chapter, generalizing the ap-

proach of [40, 64], where one application of a large sparse CountSketch is followed

by a smaller dense Gaussian sketch. In these references though, there is no analysis

of stability, as we do here. The main motivation for this approach is to be able to

apply the dense Gaussian sketch to a smaller matrix, obtained after the application

of a sparse sketch, thus obtaining similar good results at a fraction of the cost; see

more details on this motivation in Section 5.4.2.

We first present the algorithm randQR using this multisketching approach, and

then prove bounds similar to those in Proposition 5.4 for the case of two sketches.
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Let V ∈ Rn×m, and suppose S1 ∈ Rp1×n and S2 ∈ Rp2×p1 are (ε1, d1,m) and

(ε2, d2,m) oblivious ℓ2-subspace embeddings, respectively. Let d = d1+d2− d1d2,

so that 1−d = (1−d1)(1−d2). We define the Randomized Householder QR algo-

rithm (randQR) in Algorithm 11, where we use MATLAB function call notation.

Algorithm 11 Randomized Householder QR: [Q,R] = randQR(V, S1, S2)

Input: Matrix V ∈ Rn×m, sketch matrices S1 ∈ Rp1×n, S2 ∈ Rp2×p1

Output: S2S1-Orthogonal factor Q ∈ Rn×m, Triangular factor R ∈ Rm×m

such that QR = V .
1: Apply sketches W = S2S1V
2: Perform Householder QR: [Qtmp, R] = hhqr(W )
3: Recover S2S1-orthogonal matrix: Q = V R−1

Remark 5.6. In exact arithmetic, provided that V ∈ Rn×m is full rank, then

randQR produces a matrix Q that is S2S1-orthogonal1 with probability at least

1− d; i.e., it satisfies (S2S1Q)T (S2S1Q) = I , because

S2S1Q = S2S1V R−1 = WR−1 = Qtmp,

where Qtmp is the orthogonal factor produced by the Householder QR factorization

of W = S2S1V . Observe that Q being S2S1-orthogonal is equivalent to being an

orthonormal matrix with respect to the inner product2 ⟨S2S1·, S2S1·⟩. Unlike tradi-

tional Householder QR, even in exact arithmetic V must have full rank, since step 3

of Algorithm 11 requires rank(V ) = rank(R) = m. In finite precision, intuition

1In exact arithmetic, Q will only fail to be S2S1-orthogonal if V ∈ null(S2S1), which by Propo-
sition 5.4, should only happen with probability at most d.

2Although ⟨S2S1·, S2S1·⟩ is not an inner product over the traditional vector space Rn×m, it is
an inner product over the complement of null(S2S1).
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suggests that an inevitable requirement of randQR is that V must be numerically

full rank.

Next, we introduce some convenient norm, singular value, and condition num-

ber inequalities when one uses the multisketching approach with two oblivious ℓ2

subspace embeddings.

Proposition 5.7. Let S1 ∈ Rp1×n be a (ε1, d1,m) oblivious ℓ2-subspace embed-

ding in Rn, S2 ∈ Rp2×p1 be a (ε2, d2,m) oblivious ℓ2-subspace embedding in Rp1 ,

generated independently. Let εL = ε1 + ε2 − ε1ε2, εH = ε1 + ε2 + ε1ε2, and

d = d1 + d2 − d1d2. Then for any m-dimensional subspace V ⊂ Rn and ∀x ∈ V ,

√
1− εL ∥x∥2 ≤ ∥S2S1x∥2 ≤

√
1 + εH ∥x∥2, (5.7)

with probability at least 1− d.

Proof. Let x ∈ V . By assumption, S2 is a (ε2, d2,m) oblivious ℓ2-subspace em-

bedding, and thus it is an ε2-subspace embedding of S1V ∈ Rp1 with probability at

least 1− d2. Observe that S1x ∈ S1V . Therefore, by (5.1),

√
1− ε2∥S1x∥2 ≤ ∥S2S1x∥2 ≤

√
1 + ε2∥S1x∥2,

with probability at least 1− d2, because this is the probability at which (5.1) holds.
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Again, by assumption, S1 is a (ε1, d1,m) oblivious ℓ2-subspace embedding, and

thus it is an ε2-subspace embedding of V ∈ Rm with probability at least 1−d1. Now,

using (5.1) again for S1 and ϵ1, we have

√
1− ε1∥x∥2 ≤ ∥S1x∥2 ≤

√
1 + ε1∥x∥2,

with probability at least 1− d1.

Combining these results, we find that

√
1− (ε1 + ε2 − ε1ε2)∥x∥2 =

√
(1− ε2)(1− ε1)∥x∥2 ≤

√
1− ε2∥S1x∥2

≤ ∥S2S1x∥2 ≤
√
1 + ε2∥S1x∥2

≤
√

(1 + ε2)(1 + ε1)∥x∥2

=
√

1 + (ε1 + ε2 + ε1ε2)∥x∥2

with probability at least (1− d1)(1− d2) = 1− (d1 + d2 − d1d2).

Proving d and consequently 1 − d are between [0, 1] is equivalent to showing

p(d1, d2) = d1 + d2 − d1d2 ∈ [0, 1] for any (d1, d2) ∈ [0, 1]2. This is straight-

forward, as on the boundaries, p(0, d2) = d2 ∈ [0, 1], p(d1, 0) = d1 ∈ [0, 1],

p(1, d2) = p(d1, 1) = 1 ∈ [0, 1], and ∇p ≥ 0 on [0, 1]2, and therefore p(d1, d2)

cannot go below 0 or above 1.
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If S1, S2 are ε1, ε2 embeddings respectively, then by Propositions 5.4 and 5.7 along

with Corollary 5.3,

√
1− εL∥V ∥2 ≤ ∥S2S1V ∥2 ≤

√
1 + εH∥V ∥2, (5.8)

√
1− εL∥V ∥F ≤ ∥S2S1V ∥F ≤

√
1 + εH∥V ∥F . (5.9)

(1 + εH)
−1/2 σmin(S2S1V ) ≤ σmin(V ) ≤ σmax(V ) (5.10)

≤ (1− εL)
−1/2 σmax(S2S1V ),

and so,

κ(V ) ≤
√

1− εL
1 + εH

κ(S2S1V ). (5.11)

Remark 5.8. By Remark 5.6, in exact arithmetic, the Q factor computed by randQR

is S2S1-orthogonal, and therefore, by (5.11),

κ(Q) ≤
√

1− εL
1 + εH

κ(S2S1Q) =

√
1− εL
1 + εH

= O(1) . (5.12)

Thus, randQR serves well for applications where a well-conditioned set of vec-

tors is sufficient, or as a pre-processing algorithm for less stable orthogonalization

schemes.
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5.4.1 Algorithms and Performance Considerations

We introduce the main algorithm of interest for this chapter, rand cholQR

(Algorithm 12). In this chapter, randQR is strictly used to precondition the tall-

and-skinny matrix V as a pre-processing step for rand cholQR, which is a true

orthogonalization scheme. As a proof of concept for rand cholQR, in step 1, the

algorithm computes a S2S1-orthogonal factor Q0 from randQR (Algorithm 11).

By Remark 5.8, in exact arithmetic, κ(Q0) = O(1). In step 2 of rand cholQR, Q

is computed by re-orthogonalizing Q0 using Cholesky QR (cholQR, Algorithm 8

given in Section 4.4). Since κ(Q0) = O(1), one can expect the resulting Q satisfies

∥QTQ− I∥2 = O(u) using the roundoff error analysis of cholQR [77].

Algorithm 12 Rand. Householder-Cholesky: [Q,R] = rand cholQR(V, S1, S2)

Input: Matrix V ∈ Rn×m, sketch matrices S1 ∈ Rp1×n, S2 ∈ Rp2×p1

Output: Orthogonal factor Q ∈ Rn×m, Triangular factor R ∈ Rm×m such that
QR = V .

1: Recover S2S1-orthogonal matrix Q0: [Q0, R0] = randQR(V, S1, S2)
2: Perform Cholesky QR on Q0: [Q,R1] = cholQR(Q0)
3: Return R: R = R1R0

To examine the expected performance of randQR and rand cholQR, we first

discuss their communication costs compared to cholQR and cholQR2 respec-

tively, and then analyze their arithmetic costs. The most computationally intensive

parts of randQR (steps 1 and 3) are nearly identical to those of cholQR, in the

sense that both perform a product of tall and skinny matrices, followed by a trian-

gular solve of a tall and skinny matrix. Similar to the way cholQR (Algorithm 8,
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given in Section 4.4) requires only one processor synchronization total to compute

the Gram matrix in step 1, randQR only requires one synchronization total to com-

pute W in step 1 provided m ≤ p2 ≤ p1 ≪ n and therefore the algorithms incur

the same number of processor synchronizations3. Moreover, rand cholQR and

cholQR2 simply build on these algorithms, adding passes of cholQR to matrices

of the same size for both algorithms. Thus, like cholQR2, rand cholQR only

requires two synchronizations total.

The computational cost of step 2 of randQR (Algorithm 11) is negligible com-

pared to steps 1 and 3, since W ∈ Rp2×m with p2 ≪ n. The arithmetic cost of step 1

is dependent on the type of sketch matrices used. Suppose one replaces S2S1 with a

single dense Gaussian sketch matrix S ∈ Rp×n, which is conceptually simple, very

efficient in parallel, but computationally expensive since it is fully dense. Then the

arithmetic cost of randQR and rand cholQR (in FLOPs) are:

randQR FLOPs: pm(2n− 1)︸ ︷︷ ︸
Sketching

+2pm2 − 2

3
m3︸ ︷︷ ︸

Householder QR

+ nm2︸︷︷︸
Tri. solve

≈ 2nmp+ nm2.

rand cholQR FLOPs: 2nmp+ nm2︸ ︷︷ ︸
randQR

+ 2nm2︸ ︷︷ ︸
cholQR

+m2(2m− 1)︸ ︷︷ ︸
Matrix mult.

≈ 2nmp+ 3nm2.

Provided that p = O(m), e.g., p ≈ 2m, then rand cholQR FLOPs ≈ 7nm2.

3Specifically, suppose one has p parallel processes and m ≤ p2 ≤ p1 ≪ n so that
S2 ∈ Rp2×p1 can be stored locally on each process. One can distribute block row partitions of
V = [V T

1 , . . . , V T
p ]T and block column partitions of the larger sketch S1 = [(S1)1, . . . , (S1)p]

to each of the processes, along with the entire small sketch S2 to each process. Then on pro-
cess k, one computes Wk = S2(S1)kVk, and then one synchronizes the processes to compute
W = S2S1V =

∑p
k=1 Wk in a single reduction.
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In contrast, CholeskyQR2 (cholQR2), which is explicitly shown in Algorithm 9

(Section 4.4), incurs a cost of

cholQR2 FLOPs: 2nm2︸ ︷︷ ︸
cholQR

+ 2nm2︸ ︷︷ ︸
cholQR

+m2(2m− 1)︸ ︷︷ ︸
Matrix mult.

≈ 4nm2.

Thus, randQR (using a dense Gaussian sketch) and cholQR have about the

same asymptotic arithmetic costs. Because the two algorithms have the same com-

munication costs and rand cholQR has a slightly higher arithmetic cost, in a large

scale parallel setting, one can expect rand cholQR to run slightly slower but on

the same order of runtime as cholQR2 and scale in the same way. However, as

we show in Section 5.5.3, rand cholQR is significantly more stable with high

probability.

5.4.2 Motivation for Multisketching

Using a single Gaussian sketch requires a dense matrix-matrix multiply with a

sketch matrix S of dimension p × n. In addition to performing O(nmp) FLOPs

to apply this sketch, we need to store and load this fully dense p × n sketch ma-

trix. As shown in Section 5.4.1, the time to sketch the matrix with the dense

Gaussian can dominate the total factorization time for randQR and consequently

rand cholQR.

One can reduce the sketching cost using a sparse sketch such as a CountSketch

matrix [15]. Since the CountSketch matrix has only one non-zero per column,
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the cost of applying the CountSketch matrix to V ∈ Rn×m is only O(nm), and

it only requires to store O(n) numerical values. Additionally, CountSketch can

be implemented using the sparse-matrix multiple-vector multiply (SpMM), whose

optimized implementation is often available on specific architectures. A clever im-

plementation can exploit the fact that applying the CountSketch matrix is equivalent

to adding/subtracting subsets of rows of V , and can therefore be parallelized well

using batched BLAS-1 kernels or a highly-optimized sparse linear algebra library.

Hence, CountSketch could obtain high performance using only readily available

linear algebra libraries. However, a CountSketch matrix requires p = O(m2) to

maintain the ε-embedding properties, so one is left to factorize W ∈ Rp×m with

Householder QR, which incurs O(m4) FLOPs. In contrast, the Gaussian sketch

ensures that S is an ε-subspace embedding with p = O(m), meaning the cost of

the Householder QR factorization is only O(m3) FLOPs. Householder QR imposes

high communication costs and does not parallelize well [21]. As a result, on cur-

rent computers, it obtains much lower performance than the BLAS-3 operations

like the dense matrix product (gemm), and these O(m4) FLOPs for Householder

QR become a performance bottleneck for sufficiently large m.

Ideally, we want an embedding that offers low computational and storage costs

like CountSketch, while returning a sketched matrix W ∈ Rp×m with p = O(m)

like the Gaussian sketch does, to avoid a performance bottleneck from Householder

QR. This is possible by using the multisketching framework with first a sparse
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CountSketch and then a Gaussian sketch. To see this, suppose S1 ∈ Rp1×n is a

CountSketch matrix with p1 = m2+m
ε21d1

, cf. (5.6), and suppose S2 ∈ Rp2×p1 is a

Gaussian sketch where p2 = 2m.

We split the computation of W = S2S1V into two steps: first computing

W1 = S1V , then W = S2W1. Storing S1 only requires O(n) bytes of memory,

and the sparse matrix product W1 = S1V costs O(nm) FLOPs. The cost to com-

pute W = S2W1 costs O(m4) FLOPs, but since the dense matrix product (gemm)

obtains much higher performance than the Householder QR, this cost became neg-

ligible in our performance studies with a GPU. The storage of S2 only requires

O(m3) bytes of memory, and the Householder QR factorization of the O(m) ×m

matrix W incurs negligble computational cost as well.

Moreover, the O(nm+m4) total FLOPs incurred using the multisketch frame-

work can actually be lower than the O(nm2) FLOPs required to perform cholQR,

making rand cholQR sometimes cheaper than cholQR2 under the multisketch

framework while incurring the same number of communications (as discussed in

Section 5.4.1). Thus, the multisketch framework provides an avenue for an ex-

tremely efficient, stable QR factorization that can potentially outperform cholQR2

in terms of both stability and practical speed on modern parallel machines.

5.5 Error Analysis of randQR and rand cholQR

Here, we present the main results of this work on theoretical properties (with high

probability) of Q̂ and R̂ computed by randQR and rand cholQR. The structure
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of this section is as follows. First, we highlight the sources of floating point error of

the randQR algorithm in Section 5.5.1. Then, in Section 5.5.2, we introduce our

assumptions for the proofs and some preparatory results for the error analysis.

We identify which results are probabilistic, and explicitly state the necessary

assumptions and some useful initial consequences in Sections 5.5.2.1–5.5.2.2. In

Section 5.5.2.3, we identify bounds on ∥E1∥2, where E1 (given in (5.14)) is the for-

ward error in the matrix-matrix multiplication while sketching. In Sections 5.5.2.4–

5.5.2.7, we formulate the remaining error analysis in terms of ∥E1∥2.

Finally, in Section 5.5.3, we will provide the key theorems on the stability and

accuracy of our randQR and rand cholQR algorithms, and prove them primarily

through the preparatory results from Section 5.5.2.

5.5.1 Sources of Floating Point Error in randQR

We use a hat to denote a computed version of each of the matrix in all algorithms.

First, errors are incurred when performing the matrix products W = S2S1V in

step 1 of Algorithm 11. Specifically, there exist error terms ∆Ŵ1, ∆Ŵ such that

Ŵ1 = S1V +∆Ŵ1,

Ŵ = S2Ŵ1 +∆Ŵ · (5.13)
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We can group these error terms together so that the computed Ŵ satisfies

Ŵ = S2S1V + E1, (5.14)

where E1 = S2∆Ŵ1 +∆Ŵ .

Applying Householder QR to Ŵ in step 2 incurs error E2. Only the triangular

factor R̂ is needed, so some (exactly) orthogonal Qtmp exists such that

QtmpR̂ = Ŵ + E2 = S2S1V + E1 + E2. (5.15)

In step 3, solving the triangular system QR̂ = V also creates errors. These are

analyzed in a row-wise fashion, taking the form

Q̂i,: = Vi,:(R̂ +∆R̂i)
−1 (i = 1, 2, . . .m), (5.16)

where Q̂i,: and Vi,: denote the ith rows of Q̂ and V , respectively, and ∆R̂i is an error

term incurred during the solution of the triangular systems. Finally, we can recast

the errors incurred in step 3 as Q̂ = (V + ∆Ṽ )R̂−1, which simplifies the analysis

of the orthogonality of Q̂.
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5.5.2 Assumptions and Preparatory Results for our Proofs

Let V ∈ Rn×m, n ≫ m, and suppose S1 ∈ Rp1×m and S2 ∈ Rp2×p1 are (ε1, d1,m)

and (ε2, d2,m) oblivious ℓ2-subspace embeddings, respectively, generated indepen-

dently. Define d = d1 + d2 − d1d2, εL = ε1 + ε2 − ε1ε2, εH = ε1 + ε2 + ε1ε2.

5.5.2.1 Assumptions

For the sake of organization, we define a set of assumptions stating V is sufficiently

numerically full rank (i.e., κ(V ) ⪅ u−1), n ≫ m, and that the sketch matrices

S1, S2 simultaneously satisfy the subspace embedding properties, ensuring equa-

tions (5.1)–(5.5), (5.7)–(5.11) hold with probability at least 1− d. We also impose

an assumption that ϵL is sufficiently–but need not be too far–below 1, to obtain a

positive lower bound on σm(Q̂) while maintaining as general of a result as possible.

Assumption 5.9. Suppose S1 ∈ Rp1×m and S2 ∈ Rp2×p1 are (ε1, d1,m) and

(ε2, d2,m) oblivious ℓ2-subspace embeddings respectively, generated independently.

Define d = d1 + d2 − d1d2, εL = ε1 + ε2 − ε1ε2, εH = ε1 + ε2 + ε1ε2, where

εL ∈
[
0,

616

625
− 9

625
εH

)
.
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Further, suppose V ∈ Rn×m has full rank and 1 < m ≤ p2 ≤ p1 ≤ n where

nmu ≤ 1
12

, and

δ =
12

(
1.1cp2m

3/2 + 1.21
√
m∥S2∥2(p1

√
p2
√
1 + ε1 + 1.1n∥S1∥F )

)
√
1− εL

u κ(V ) ≤ 1,

(5.17)

for some small integer constant c.

The assumption that the integers m, p2, p1, and n have the ordering

1 < m ≤ p2 ≤ p1 ≤ n (5.18)

is logical, otherwise the embeddings S2 ∈ Rp2×p1 and S1 ∈ Rp1×n project V into a

larger space, defeating the purpose of sketching. Further, we assume

nmu ≤ 1

12
, (5.19)

which is not directly implied by (5.17), but, depending of the values of p1, p2, and

m, often is a consequence of it.

Define

γk :=
ku

1− ku
·
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Provided ku < 1
11

, it follows that γk ≤ 1.1ku. In particular, since κ(V ) ≥ 1, we

can deduce from (5.17) that

cp2m
3/2u ≤ 1

12
and p1

√
p2u ≤ 1

12
, (5.20)

so (5.18)–(5.20) imply

γn ≤ 1.1nu, γm ≤ 1.1mu, γp1 ≤ 1.1p1u, γp2m ≤ 1.1p2mu,

and γcp2m ≤ 1.1cp2mu , (5.21)

and

1 + γn ≤ 1.1 and 1 + 1.1p2m
3/2u ≤ 1 + 1.1cp2m

3/2u ≤ 1.1 . (5.22)

Finally, we will repeatedly use well-known bounds relating the ℓ2 and Frobenius

norms,

∥X∥2 ≤ ∥X∥F ≤
√
m∥X∥2, (5.23)

∥XY ∥F ≤ ∥X∥2∥Y ∥F , for any X ∈ Rn×m, Y ∈ Rm×k. (5.24)

Remark 5.10. Note that instances of ∥S1∥F and ∥S2∥2 in (5.17) do not dominate

the bound on κ(V ) imposed by (5.17). If S1 ∈ Rp1×n is an unscaled CountSketch
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and S2 ∈ Rp2×p1 is a scaled Gaussian sketch, there is the determinstic bound

∥S1∥2 ≤ ∥S1∥F ≤
√
n,

and there is the probabilistic bound that there is some constant C such that

∥S2∥2 ≤ C

(
1 +

√
p1
p2

+
3

√
p2

)
,

with probability at least 1− 2e−9 ≈ 0.9998 [72]. Thus, in the case of p1 = O(m2)

and p2 = O(m), it follows that ∥S1∥2 = O(
√
n) and ∥S2∥2 = O(

√
m) with very

high probability. Therefore, condition (5.17) ultimately requires

δ ≤ g(n,m, p1, p2)u κ(V ) ≤ 1,

where g is some low-degree polynomial for reasonable choices of sketches S1, S2.

5.5.2.2 Notes on Probabilistic Results

While some bounds constructed throughout the proof are deterministic, several are

probabilistic. Here, we address specifically which equations are not deterministic,

their prerequisite assumptions, and the probabilities with which they hold.

Throughout the proofs, it is assumed that S1 embeds the column space of V and

S2 embeds the column space of S1V simultaneously, which happens with probabil-

ity at least 1−d = (1−d1)(1−d2) because S1 and S2 are independently generated
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(ε1, d1,m) and (ε2, d2,m) oblivious ℓ2-subspace embeddings respectively. There-

fore,

√
1− ε1∥V ∥2 ≤ ∥S1V ∥2 ≤

√
1 + ε1∥V ∥2 (5.25)

√
1− εL∥V ∥2 ≤ ∥S2S1V ∥2 ≤

√
1 + εH∥V ∥2 (5.26)

√
1− ε1∥V ∥F ≤ ∥S1V ∥F ≤

√
1 + ε1∥V ∥F (5.27)

√
1− εL∥V ∥F ≤ ∥S2S1V ∥F ≤

√
1 + εH∥V ∥F , (5.28)

and

(1 + εH)
−1/2 σmin(S2S1V ) ≤ σmin(V ) ≤ σmax(V ) (5.29)

≤ (1− εL)
−1/2 σmax(S2S1V ),

along with the analogous statements for matrices whose column spaces are identical

to V , will simultaneously hold with probability at least 1 − d. Specifically, this

implies equations (5.33), (5.36), (5.43), (5.44), (5.51), and (5.58) simultaneously

hold with probability at least 1 − d, which are used to build all of the results from

(5.33)–(5.63) that are prerequisite to prove Theorems 5.12–5.15.
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5.5.2.3 Forward Error in matrix-matrix multiplication S2S1V

By [36], for A ∈ Rm×n, B ∈ Rn×k, C = AB executed in floating point satisfies

Ĉ = AB +∆C, |∆C| < γn|A||B| .

Thus, in floating point, step 1 of Algorithm 11 becomes:

Ŵ1 = S1V +∆Ŵ1, |∆Ŵ1| < γn|S1||V | , (5.30)

Ŵ = S2Ŵ1 +∆Ŵ , |∆Ŵ | < γp1|S2||Ŵ1| = γp1|S2||S1V +∆Ŵ1| · (5.31)

In other words,

Ŵ = S2S1V + E1, (5.32)

where the forward error of these matrix-matrix products E! is defined as:

E1 = Ŵ −W = ∆Ŵ + S2∆Ŵ1 ·
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By (5.23), (5.24), (5.27), (5.30), and (5.31),

∥E1∥2 ≤ ∥∆Ŵ∥2 + ∥S2∥2∥∆Ŵ1∥2

≤ ∥∆Ŵ∥F + ∥S2∥2∥∆Ŵ1∥F

≤ γp1∥S2∥F∥S1V +∆Ŵ1∥F + ∥S2∥2∥∆Ŵ1∥F

≤ γp1∥S2∥F (∥S1V ∥F + ∥∆Ŵ1∥F ) + ∥S2∥2∥∆Ŵ1∥F

≤ γp1∥S2∥F (
√
1 + ε1∥V ∥F + ∥∆Ŵ1∥F ) + ∥S2∥2∥∆Ŵ1∥F

≤ √
p2γp1∥S2∥2(

√
1 + ε1∥V ∥F + ∥∆Ŵ1∥F ) + ∥S2∥2∥∆Ŵ1∥F

=
√
p2γp1∥S2∥2

√
1 + ε1∥V ∥F + ∥S2∥2(1 +

√
p2γp1)∥∆Ŵ1∥F

≤ √
p2γp1∥S2∥2

√
1 + ε1∥V ∥F + ∥S2∥2(1 +

√
p2γp1)γn∥S1∥F∥V ∥F

= ∥S2∥2
(√

p2γp1
√
1 + ε1 + γn(1 +

√
p2γp1)∥S1∥F

)
∥V ∥F

≤
√
m∥S2∥2

(√
p2γp1

√
1 + ε1 + γn(1 +

√
p2γp1)∥S1∥F

)
∥V ∥2.

Notice (5.20) and (5.21) imply γn(1 +
√
p2γp1) < 1.21nu. Hence,

∥E1∥2 ≤
√
mu∥S2∥2(1.1p1

√
p2
√
1 + ε1 + 1.21n∥S1∥F )∥V ∥2. (5.33)
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Lemma 5.11. If S1 is a ε1 embedding of the column space of V and S2 is a ε2

embedding of the column space of S1V , then

12√
1− εL

(
1.1cp2m

3/2u κ(V ) + 1.1∥E1∥2 σm(V )−1
)
≤ δ ≤ 1 . (5.34)

Proof. Follows directly from applying (5.33) to the definition of δ in (5.17).

5.5.2.4 Backward Error of Householder QR of Ŵ

By [36, Theorem 19.4], Householder QR of Ŵ ∈ Rp2×m returns a triangular

R̂ ∈ Rm×m so that some orthogonal Qtmp ∈ Rp2×m satisfies,

Ŵ + E2 = QtmpR̂, ∥(E2)j∥2 ≤ γcp2m∥ŵj∥2, for j = 1, . . . ,m, (5.35)

for some small integer constant c.

By (5.23), (5.32), and the embedding properties of S2S1 on V given in (5.28),

∥Ŵ∥F ≤ ∥S2S1V ∥F + ∥E1∥F ≤
√
1 + ϵH∥V ∥F + ∥E1∥F

≤
√
m

(√
1 + ϵH∥V ∥2 + ∥E1∥2

)
, (5.36)

and therefore

∥E2∥F ≤ γcp2m∥Ŵ∥F ≤ γcp2m
√
m

(√
1 + ϵH∥V ∥2 + ∥E1∥2

)
, (5.37)
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with probability at least 1− d. Finally, by (5.20) and (5.21),

∥E2∥2 ≤ ∥E2∥F ≤ 1.1cp2mu(
√
1 + ϵH∥V ∥F + ∥E1∥F )

≤ 1.1cp2m
3/2u(

√
1 + ϵH∥V ∥2 + ∥E1∥2)

= 1.1cp2m
3/2u

√
1 + ϵH∥V ∥2 + 1.1cp2m

3/2u∥E1∥2

≤ 1.1cp2m
3/2u

√
1 + ϵH∥V ∥2 + 0.1∥E1∥2 · (5.38)

Additionally, by (5.20) and (5.21),

∥E2∥F ≤ 1.1cp2mu(
√
1 + ϵH∥V ∥F + ∥E1∥F )

≤ 1.1cp2m
3/2u

√
1 + ϵH∥V ∥2 + 1.1cp2mu∥E1∥F

≤ 1.1cp2m
3/2u

√
1 + ϵH∥V ∥2 + 0.1∥E1∥F · (5.39)

5.5.2.5 Backward Error of the Forward Substitution

In Step 3 of randQR, we solve for Q via the triangular system QR̂ = V . By [36,

Theorem 8.5], in floating point, Q̂i,: satisfies

Q̂i,:(R̂ +∆Ri) = Vi,:, |∆Ri| < γm|R̂| for i = 1, . . . n. (5.40)

While it would be convenient to simply write Q̂(R+∆R) = V for some ∆R, each

∆Ri error incurred depends on each right hand side of (5.40), and therefore each
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row must be accounted for separately. For each i = 1, . . . , n,

∥∆R̂i∥2 ≤ ∥∆R̂i∥F = ∥|∆R̂i|∥F < γm∥|R̂|∥F = γm∥R̂∥F · (5.41)

By (5.35), (5.37), and the orthogonality of Qtmp, it follows that

∥R̂∥F = ∥QtmpR̂∥F = ∥Ŵ + E2∥F ≤ (1 + γcp2m)∥Ŵ∥F , (5.42)

∥R̂∥2 = ∥Ŵ + E2∥2 = ∥S2S1V + E1 + E2∥2

≤
√
1 + εH∥V ∥2 + ∥E1∥2 + ∥E2∥2. (5.43)

Therefore, by (5.20)–(5.22), (5.36), (5.41), and (5.42),

∥∆R̂i∥2 ≤ 1.1m3/2u(1 + 1.1cp2mu)
(√

1 + ϵH∥V ∥2 + ∥E1∥2
)

≤ 1.21m3/2u
(√

1 + ϵH∥V ∥2 + ∥E1∥2
)

5.5.2.6 Bounding the 2-norm of R̂−1 and V R̂−1

By (5.29), (5.14), and Weyl’s inequality [75], with probability at least 1− d,

σm(Ŵ + E2) ≥ σm(Ŵ )− ∥E2∥2 ≥ σm(S2S1V )− (∥E1∥2 + ∥E2∥2)

≥
√
1− ϵL σm(V )− (∥E1∥2 + ∥E2∥2). (5.44)
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By Lemma 5.11, and the fact that the fact that ∥V ∥2 = κ(V ) σm(V ),

1.1cp2m
3/2u

√
1 + εH∥V ∥2 + 1.1∥E1∥2 ≤

√
1− ϵL
12

σm(V ) δ. (5.45)

Combining (5.38) and (5.45) and the assumption that δ ≤ 1, results in:

∥E1∥2 + ∥E2∥2 ≤ 1.1cp2m
3/2u

√
1 + εH∥V ∥2 + 1.1∥E1∥2

≤
√
1− ϵL
12

σm(V )δ ≤
√
1− ϵL
12

σm(V ), (5.46)

so by (5.35), (5.44), and (5.46),

σm(R̂) = σm(QtmpR̂) = σm(Ŵ + E2) ≥
11
√
1− ϵL
12

σm(V ). (5.47)

Therefore, by (5.47)

∥R̂−1∥2 ≤
12

11
√
1− ϵL

(σm(V ))−1 . (5.48)

By (5.15), we have that Step 2 of randQR satisfies

S2S1V R̂−1 = Qtmp − (E1 + E2)R̂
−1. (5.49)
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Thus, by (5.46), (5.48), (5.49), the fact that Qtmp is orthogonal,

∥S2S1V R̂−1∥2 ≤ ∥Qtmp∥2 + (∥E1∥2 + ∥E2∥2)∥R̂−1∥2 ≤
12

11
, (5.50)

with probability at least 1 − d. Observe that V and V R̂−1 have the same column

space; therefore if S1, S2 embed the column space of V , they will also embed the

column space of V R̂−1. Therefore, by (5.7),

∥V R̂−1∥2 ≤
1√

1− ϵL
∥S2S1V R̂−1∥2 ≤

12

11
√
1− ϵL

· (5.51)

5.5.2.7 Evaluation of the Backward Error ∆Ṽ = Q̂R̂− V

Instead of using backward errors ∆Ri for each triangular solve in equation (5.16),

we capture the errors of each triangular solve in a matrix ∆Ṽ , where

Q̂ = (V +∆Ṽ )R̂−1 ⇐⇒ Q̂R̂ = V +∆Ṽ . (5.52)

We note that we use the notation ∆Ṽ to diferenciate it from ∆V from (5.30).

From (5.16), we have Q̂i,:(R +∆Ri) = Vi,:. Then ∆Ṽ can be defined row-wise,

∆Ṽi,: = −Q̂i,:∆Ri. (5.53)
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Thus, by (5.40), |∆Ṽi,:| ≤ 1.1mu|Q̂i,:||R̂|, and so |∆Ṽ | ≤ 1.1mu|Q̂||R̂|, hence,

|∆Ṽ:,i| ≤ 1.1mu|Q̂||R̂:,i|.

From this, it follows that for each column i = 1, . . . ,m,

∥∆Ṽ:,i∥2 ≤ 1.1mu∥|Q̂|∥2∥|R̂:,i|∥2 ≤ 1.1mu∥|Q̂|∥F∥|R̂:,i|∥2

= 1.1mu∥Q̂∥F∥R̂:,i∥2 ≤ 1.1m3/2u∥Q̂∥2∥R̂:,i∥2,

and therefore by (5.20), (5.21), (5.36), and (5.42),

∥∆Ṽ ∥2 ≤ ∥∆Ṽ ∥F ≤ 1.1m3/2u∥Q̂∥2∥R̂∥F

≤ 1.1m3/2u∥Q̂∥2(1 + γcp2m)∥Ŵ∥F

≤ 1.1m3/2u∥Q̂∥2(1 + γcp2m)
√
m

(√
1 + εH∥V ∥2 + ∥E1∥2

)
≤ 1.21m2u∥Q̂∥2

(√
1 + εH∥V ∥2 + ∥E1∥2

)
. (5.54)
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By (5.18) it follows that 1.1
√
m ≤ p2, and so by (5.22), (5.46), and (5.54),

∥∆Ṽ ∥F ≤ 1.21m2u∥Q̂∥2
(√

1 + εH∥V ∥2 + ∥E1∥2
)

= ∥Q̂∥2
(
1.21m2u

√
1 + εH∥V ∥2 + 1.21m2u∥E1∥2

)
≤ ∥Q̂∥2

(
1.1p2m

3/2u
√
1 + εH∥V ∥2 + 1.1p2m

3/2u∥E1∥2
)

≤ ∥Q̂∥2
(
1.1p2m

3/2u
√
1 + εH∥V ∥2 + (1 + 1.1p2m

3/2u)∥E1∥2
)

≤ ∥Q̂∥2
(
1.1p2m

3/2u
√
1 + εH∥V ∥2 + 1.1∥E1∥2

)
≤ ∥Q̂∥2

(
1.1cp2m

3/2u
√
1 + εH∥V ∥2 + 1.1∥E1∥2

)
≤ ∥Q̂∥2

√
1− ϵL
12

σm(V ) δ · (5.55)

The remaining issue to resolve is that the bound on ∥∆Ṽ ∥F in (5.55) requires

knowledge of ∥Q̂∥2, which we have not yet found. Combining (5.17), (5.48), and

(5.55) gives,

∥Q̂− V R̂−1∥F = ∥∆Ṽ R̂−1∥F ≤ ∥∆Ṽ ∥F∥R̂−1∥2

≤ ∥Q̂∥2
√
1− ϵL
12

σm(V )δ
12

11
√
1− ϵL

(σm(V ))−1

=
δ

11
∥Q̂∥2 ≤

1

11
∥Q̂∥2· (5.56)
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Now, by (5.46), (5.48), and (5.49),

∥S2S1V R̂−1 −Qtmp∥2 ≤ ∥S2S1V R̂−1 −Qtmp∥F = ∥(E1 + E2)R̂
−1∥F

≤ (∥E1∥F + ∥E2∥F ) ∥R̂−1∥2 ≤
δ

11
· (5.57)

Applying Weyl’s inequality to (5.57) and the fact that Qtmp is orthogonal yields,

1− δ

11
≤ σm(S2S1V R̂−1) ≤ σ1(S2S1V R̂−1) ≤ 1 +

δ

11
·

Since V and V R̂−1 have identical column spaces and S1,S2 embed the column

space of V , the embedding properties in (5.29) also apply to V R̂−1, and so

1− δ
11√

1 + ϵH
≤ σm(V R̂−1) ≤ σ1(V R̂−1) ≤

1 + δ
11√

1− ϵL
≤ 12

11
√
1− ϵL

· (5.58)

Then, we can use Weyl’s inequality again on Q̂− V R̂−1. In particular,

σm(V R̂−1)− ∥Q̂− V R̂−1∥2 ≤ σm(Q̂) ≤ σ1(Q̂) ≤ σ1(V R̂−1) + ∥Q̂− V R̂−1∥2 ·

(5.59)

Then, by (5.56), (5.58), and (5.59),

∥Q̂∥2 = σ1(Q̂) ≤ σ1(V R̂−1) + ∥Q̂− V R̂−1∥2 ≤
12

11
√
1− ϵL

+
1

11
∥Q̂∥2, (5.60)
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and so,

∥Q̂∥2 ≤
6

5
√
1− ϵL

· (5.61)

Then, we obtain from (5.56),

∥Q̂− V R̂−1∥2 = ∥∆Ṽ R̂−1∥2 ≤ ∥∆Ṽ R̂−1∥F ≤ δ

11
∥Q̂∥2 ≤

6δ

55
√
1− ϵL

. (5.62)

5.5.2.8 Bounding ∥S2S1∆Ṽ R̂−1∥2

If no additional assumptions on the embedding of S1, S2 are made, clearly it follows

that

∥S2S1∆Ṽ R̂−1∥2 ≤ ∥S2∥2∥S1∥2∥∆Ṽ R̂−1∥2 ≤
6∥S2∥2∥S1∥2
55
√
1− ϵL

δ. (5.63)

Alternatively, if we assume S1, S2 embed ∆Ṽ R̂−1, by (5.7),

∥S2S1∆Ṽ R̂−1∥2 ≤
√
1 + ϵH∥∆Ṽ R̂−1∥2 ≤

6
√
1 + ϵH

55
√
1− ϵL

δ. (5.64)

5.5.3 Key Theoretical Results

Remark 5.6 indicates that in exact arithmetic, randQR yields a matrix Q that is

orthogonal with respect to ⟨S2S1·, S2S1·⟩. We show next that provided V has full

numerical rank, then in floating point arithmetic, the orthogonality error of the ma-
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trix Q̂ generated by randQR measured in ⟨S2S1·, S2S1·⟩ is O(u)κ(V ), and the

factorization error is O(u)∥V ∥2 with high probability.

Theorem 5.12 (randQR Errors). Suppose Assumptions 5.9 are satisfied. Then the

Q̂, R̂ factors obtained with Algorithm 11 (randQR) satisfy

∥V − Q̂R̂∥2 ≤
δ

10
σm(V ), (5.65)

and

∥(S2S1Q̂)T (S2S1Q̂)− I∥2

≤ 2
δ

11
+

(
δ

11

)2

+
24

11

6∥S2∥2∥S1∥2
55
√
1− ϵL

δ +

(
6∥S2∥2∥S1∥2
55
√
1− ϵL

δ

)2

. (5.66)

with probability at least 1− d, where δ is defined as in (5.17). Furthermore,

∥(S2S1Q̂)T (S2S1Q̂)− I∥2 ≤ 3δ (5.67)

with probability at least (1− d)2.

Proof. Equation (5.65) follows by combining (5.55) and (5.61), since ∆Ṽ = Q̂R̂−

V , and this holds with probability at least 1−d because (5.55) and (5.61) hold with

this probability, as discussed in Section 5.5.2.2.
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Observe that by (5.15), we have S2S1V = QtmpR̂− (E1 + E2), and so

(S2S1V )T (S2S1V ) =

R̂T R̂− (E1 + E2)
TQtmpR̂− R̂TQT

tmp(E1 + E2) + (E1 + E2)
T (E1 + E2).

Using (5.52) to expand S2S1Q̂ = (S2S1V + S2S1∆Ṽ )R̂−1, we get

(S2S1Q̂)T (S2S1Q̂) = I − R̂−T (E1 + E2)
TQtmp −Qtmp(E1 + E2)R̂

−1

+ R̂−T (E1 + E2)
T (E1 + E2)R̂

−1 + (S2S1∆Ṽ R̂−1)T (S2S1V R̂−1)

+ (S2S1V R̂−1)TS2S1∆Ṽ R̂−1 + (S2S1∆Ṽ R̂−1)T (S2S1∆Ṽ R̂−1).

Therefore, by (5.46), (5.48), and (5.50),

∥(S2S1Q̂)T (S2S1Q̂)− I∥2

≤ 2(∥E1∥2 + ∥E2∥2)∥R̂−1∥2 + (∥E1∥2 + ∥E2∥2)2∥R̂−1∥22 (5.68)

+ 2∥S2S1∆Ṽ R̂−1∥2∥S2S1V R̂−1∥2 + ∥S2S1∆Ṽ R̂−1∥22

≤ 2
δ

11
+

(
δ

11

)2

+
24

11
∥S2S1∆Ṽ R̂−1∥2 + ∥S2S1∆Ṽ R̂−1∥22.

(5.69)

Observe that (5.46), (5.48), and (5.50), simultaneously hold with probability at

least 1 − d, because they rely on V and S1V being simultaneously embedded by

S1 and S2 respectively, which with this probability occurs, as discussed in Section
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5.5.2.2. Thus, (5.69) holds with probability at least 1 − d. Observe that (5.63)

requires no further assumptions on the embedding properties of S1, S2 and so ap-

plying (5.63) to (5.69) gives

∥(S2S1Q̂)T (S2S1Q̂)− I∥2

≤ 2
δ

11
+

(
δ

11

)2

+
24

11
∥S2S1∆Ṽ R̂−1∥2 + ∥S2S1∆Ṽ R̂−1∥22

≤ 2
δ

11
+

(
δ

11

)2

+
24

11

6∥S2∥2∥S1∥2
55
√
1− ϵL

δ +

(
6∥S2∥2∥S1∥2
55
√
1− ϵL

δ

)2

,

with probability at least 1− d, producing result (5.66).

On the other hand, observe that (5.64) requires not only the assumption that

S1, S2 simultaneously embed V and S1V respectively, but also that the sketch ma-

trices embed ∆Ṽ R̂−1 and S1∆Ṽ R̂−1 respectively. Thus, (5.64) and (5.69) simul-

taneously hold with probability at least (1− d)2, and the result of applying both of

these results together yields,

∥(S2S1Q̂)T (S2S1Q̂)− I∥2

≤ 2
δ

11
+

(
δ

11

)2

+
24

11
∥S2S1∆Ṽ R̂−1∥2 + ∥S2S1∆Ṽ R̂−1∥22

≤ 2
δ

11
+

(
δ

11

)2

+
24

11

6
√
1 + εH

55
√
1− ϵL

δ +

(
6
√
1 + εH

55
√
1− ϵL

δ

)2

,

(5.70)
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with probability at least (1− d)2. A useful consequence of Assumptions 5.9 is that

1− εL >
9

625
(1 + εH),

and thus

1 + εH
1− εL

<
625

9
⇒

√
1 + εH
1− εL

<
25

3
· (5.71)

Applying (5.71) to (5.70) (which holds with probability at least (1−d)2) along with

the fact that δ ≤ 1 from (5.17) implies δ2 ≤ δ, and so,

∥(S2S1Q̂)T (S2S1Q̂)− I∥2

≤ 2
δ

11
+

(
δ

11

)2

+
24

11

6
√
1 + εH

55
√
1− ϵL

δ +

(
6
√
1 + εH

55
√
1− ϵL

δ

)2

≤ 2

11
δ +

(
1

11

)2

δ +
24

11

6 · 25
55 · 3

δ +

(
6 · 25
55 · 3

)2

δ

=
2 · 11 · 552 · 32 + 552 · 32 + 24 · 6 · 25 · 11 · 55 · 3 + 62 · 252 · 112

112 · 552 · 32
δ

= 3δ ,

with probability at least (1− d)2, and thus result (5.67) follows.

Similar to the analysis of the condition number of Q generated by randQR

in exact arithmetic in Section 5.4, we show next that provided that V has full nu-
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merical rank, then Q̂ generated by randQR in floating point arithmetic also has

κ(Q̂) = O(1).

Theorem 5.13 (Conditioning of randQR). Suppose Assumptions 5.9 are satisfied.

Then with probability at least 1 − d, the Q̂ matrix obtained with Algorithm 11

(randQR) has condition number κ(Q̂) = O(1). In fact,

κ(Q̂) ≤ 33

25
√

1−ϵL
1+ϵH

− 3
· (5.72)

Proof. As a direct consequence of (5.58), (5.59), (5.62), and the fact that δ ≤ 1,

σm(Q̂) ≥ σm(V R̂−1)− ∥Q̂− V R̂−1∥2 ≥
1− δ

11√
1 + ϵH

− 6δ

55
√
1− ϵL

≥ 10

11
√
1 + ϵH

− 6

55
√
1− ϵL

·

Additionally, we found in (5.61) that

σ1(Q̂) = ∥Q̂∥2 ≤
6

5
√
1− ϵL

·

Thus,

κ(Q̂) =
σ1(Q̂)

σm(Q̂)
≤ 33

25
√

1−ϵL
1+ϵH

− 3
·
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Since the intermediate results (5.58), (5.59), (5.61), and (5.62) simultaneously hold

with probability at least 1−d, as discussed in Section 5.5.2.2, the final result (5.13)

holds with this probability as well.

In the following result we show that rand cholQR(V ) (Algorithm 12) pro-

duces a factor Q̂ that is orthogonal in the Euclidean inner product up to a factor of

O(u) and has a factorization error of O(u)∥V ∥2 for any numerically full rank V .

Theorem 5.14 (rand cholQR Errors). Suppose Assumptions 5.9 are satisfied.

Then with probability at least 1 − d, the Q̂, R̂ factors obtained with Algorithm 12

(rand cholQR) has O(u) orthogonality error and O(u)∥V ∥2 factorization error.

In fact,

∥Q̂T Q̂− I∥2 ≤
5445(

25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1)) u, (5.73)

∥V − Q̂R̂∥2 ≤

 56

25 1−εL√
1+ϵH

− 3
√
1− εL

+
1.5√
1− εL

√√√√1 +
5445(nm+m(m+ 1))u(

25
√

1−εL
1+εH

− 3
)2


(√

1 + εH∥V ∥2 +
√
1− εL
12

σm(V )δ

)
m2u +

δ

10
σm(V ), (5.74)

where δ is bounded as in (5.17).

Proof. In Algorithm 12, we obtain Q̂0, R̂0 from randQR (so that the results in

Section 5.5.2 apply to Q̂0, R̂0), and then obtain Q̂, R̂ where R̂ = fl(R̂1R̂0) and

Q̂, R̂1 are the outputs of Cholesky QR applied to Q̂0. As a direct consequence of
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Theorem 5.13, Q̂0 arising from Step 1 of Algorithm 12 satisfies

κ(Q̂0) ≤
33

25
√

1−ϵL
1+ϵH

− 3
·

By [77, Lemma 3.1], it follows that Step 2 of Algorithm 12 gives Q̂ satisfying

∥Q̂T Q̂− I∥2 ≤
5

64
64κ(Q̂0)

2 (nm+m(m+ 1)) u

≤ 5445(
25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1)) u,

and so (5.73) follows.

Now, notice that by (5.19)–(5.21),

√
1 + γnm

1− γm+1m
≤

√
1 + 1.1nmu

1− 1.1(m+ 1)mu
≤

√
1.1

0.9
≤ 1.11. (5.75)

Observe R̂ = R̂1R̂0 + ∆R̂ where R̂1 is the Cholesky factor of Q̂T
0 Q̂0, where Q̂0

results from randQR, and |∆R| < γm|R̂1||R̂0| [36, Eq. (3.13)]. Then, it follows
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by [77, Eq. (3.16)], (5.21), (5.43). (5.46), (5.61), and (5.75), that

∥∆R̂∥2 ≤ ∥∆R̂∥F ≤ γm∥R̂1∥F∥R̂0∥F ≤ mγm∥R̂1∥2∥R̂0∥2

≤ mγm

√
1 + γnm

1− γm+1m
∥Q̂0∥2∥R̂0∥2

≤ 1.23m2u
6

5
√
1− εL

(
√
1 + εH∥V ∥2 +

√
1− εL
12

σm(V )δ)

≤ m2u
1.5√
1− εL

(
√
1 + εH∥V ∥2 +

√
1− εL
12

σm(V )δ) · (5.76)

Next, observe that by (5.52) we have that Q̂0R̂0 = V + ∆Ṽ from randQR.

Using this and [77, Eq. (3.24)] to bound ∥Q̂0 − Q̂R̂1∥2,

−∥∆Ṽ ∥2 + ∥V − Q̂R̂∥2 ≤ ∥V +∆Ṽ − Q̂R̂∥2 = ∥Q̂0R̂0 − Q̂R̂1R̂0 − Q̂∆R̂∥2

≤ ∥R̂0∥∥Q̂0 − Q̂R̂1∥2 + ∥Q̂∥2∥∆R̂∥2

≤ 1.4∥R̂0∥2κ(Q̂0)∥Q̂0∥2m2u + ∥Q̂∥2∥∆R̂∥2· (5.77)

Observe that (5.73) implies

∥Q̂∥2 ≤
√√√√1 +

5445(
25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u .

Additionally, by (5.65) in Theorem 5.12,

∥∆Ṽ ∥2 = ∥V − Q̂0R̂0∥2 ≤
δ

10
σm(V ). (5.78)
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Now, starting from (5.43), we can use (5.46) to obtain

∥R̂0∥2 ≤
√
1 + εH∥V ∥2 + ∥E1∥2 + ∥E2∥2

≤
√
1 + εH∥V ∥2 +

√
1− εL
12

σm(V )δ. (5.79)

Using (5.72) and (5.61) to bound κ(Q̂0) and ∥Q̂0∥2, (5.76) to bound ∥∆R̂∥2, (5.79)

to bound ∥R̂0∥2, adding ∥∆Ṽ ∥2 to both sides of (5.77) and then bounding ∥∆Ṽ ∥2

using (5.78), we finally obtain

∥V − Q̂R̂∥2 ≤

 56

25 1−εL√
1+ϵH

− 3
√
1− εL

+
1.5√
1− εL

√√√√1 +
5445(nm+m(m+ 1))u(

25
√

1−εL
1+εH

− 3
)2


(√

1 + εH∥V ∥2 +
√
1− εL
12

σm(V )δ

)
m2u +

δ

10
σm(V ),

which does indeed satisfy ∥V − Q̂R̂∥2 = O(u)∥V ∥2, since σm(V )δ = O(u)∥V ∥2.

Finally, observe that the probabilistic results used in this proof, namely (5.33)–

(5.63) and Theorems 5.12–5.13, simultaneously hold with probability at least 1− d

(see Section 5.5.2.2 for details), and hence (5.73) and (5.74) hold with this proba-

bility as well.

Theorem 5.13 guarantees randQR(V ) produces a well-conditioned Q̂. We

show next that rand cholQR(V ) produces a factor Q̂ with κ(Q̂) ≈ 1 (up to unit

roundoff) for any numerically full rank V .
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Theorem 5.15 (Conditioning of rand cholQR). Suppose Assumptions 5.9 are

satisfied. Then with probability at least 1−d, the matrix Q̂ obtained with Algorithm

11 satisfies κ(Q̂) ≈ 1. In fact,

κ(Q̂) <

√√√√√√√
1 + 5445(

25

√
1−ϵL
1+ϵH

−3

)2 (nm+m(m+ 1))u

1− 5445(
25

√
1−ϵL
1+ϵH

−3

)2 (nm+m(m+ 1))u
· (5.80)

Furthermore, if 5445(
25

√
1−ϵL
1+ϵH

−3

)2 (nm+m(m+ 1))u < 1
2
, then

κ(Q̂) < 1 +
10890(

25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u. (5.81)

Proof. It follows from (5.73) that the ith eigenvalue of Q̂TQ satisfies

λi(Q̂
T Q̂) ≥ 1− 5445(

25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u,

λi(Q̂
T Q̂) ≤ 1 +

5445(
25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u.
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Thus, the ith singular value of Q̂ satisfies

σi(Q̂) ≥
√√√√1− 5445(

25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1)) u,

σi(Q̂) ≤
√√√√1 +

5445(
25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1)) u,

which gives (5.80). Further, for any x < 1
2
,
√

1+x
1−x

< 1 + 2x, which gives (5.81).

Since (5.73) holds with probability at least 1 − d, (5.80) and (5.81) hold with this

probability as well.

Theorems 5.12–5.15 correspond to multisketchings, that is, to the application

of one sketch matrix after another. In the rest of the section, we recast our error

bounds for a single sketch matrix in Corollaries 5.17–5.20. The results apply for

a single (ε, d,m) oblivious ℓ2-subspace embedding for any ε ∈ [0, 616
634

), covering

nearly the entire range of possible ε ∈ [0, 1) for such embeddings.

We prove all the Corollaries simultaneously, as they are direct consequences

of Theorems 5.12–5.15 by exploiting the fact that a single sketch can be recast as

a product of two sketches, one of which is the identity, which is by definition a

(0, 0,m) oblivious ℓ2-subspace embedding.

Assumption 5.16. Suppose ε ∈ [0, 616
634

) and S ∈ Rp×m is a (ε, d,m) oblivious ℓ2-

subspace embedding. Further, suppose V ∈ Rn×m has full rank and
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1 < m ≤ s ≤ n where nmu ≤ 1
12

and

δ =
12

(
1.1cpm3/2 + 1.21

√
m(p3/2

√
1 + ε+ 1.1n∥S∥F )

)
√
1− ε

u κ(V ) ≤ 1. (5.82)

Corollary 5.17 (randQR Errors). Suppose Assumptions 5.16 are satisfied. Then

the Q̂, R̂ factors obtained with Algorithm 11 (randQR) satisfy

∥V − Q̂R̂∥2 ≤
δ

10
σm(V ), (5.83)

and

∥(SQ̂)T (SQ̂)− I∥2 ≤
2δ

11
+

(
δ

11

)2

+
24

11

6∥S∥2
55
√
1− ϵ

δ +

(
6∥S∥2

55
√
1− ϵ

δ

)2

(5.84)

with probability at least 1− d, where δ is defined as in (5.82). Furthermore,

∥(SQ̂)T (SQ̂)− I∥2 ≤ 3δ (5.85)

with probability at least (1− d)2.

Corollary 5.18 (Conditioning of randQR). Suppose Assumptions 5.16 are satis-

fied. Then with probability at least 1− d, the Q̂ matrix obtained with Algorithm 11
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(randQR) has condition number κ(Q̂) = O(1). In fact,

κ(Q̂) ≤ 33

25
√

1−ϵ
1+ϵ

− 3
· (5.86)

Therefore, if ε ≤ 0.9,

κ(Q̂) ≤ 12.07.

Corollary 5.19 (rand cholQR Errors). Suppose Assumptions 5.16 are satisfied.

Then with probability at least 1 − d, the Q̂, R̂ factors obtained with Algorithm 12

(rand cholQR) has O(u) orthogonality error and O(u)∥V ∥2 factorization error.

In fact,

∥Q̂T Q̂− I∥2 ≤
5445(

25
√

1−ϵ
1+ϵ

− 3
)2 (nm+m(m+ 1)) u, (5.87)

∥V − Q̂R̂∥2 ≤

 56

25 1−ε√
1+ϵ

− 3
√
1− ε

+
1.5√
1− ε

√√√√1 +
5445(nm+m(m+ 1))u(

25
√

1−ε
1+ε

− 3
)2


(√

1 + ε∥V ∥2 +
√
1− ε

12
σm(V )δ

)
m2u +

δ

10
σm(V ), (5.88)

where δ is bounded as in (5.82).

Corollary 5.20 (Conditioning of rand cholQR). Suppose Assumptions 5.16 are

satisfied. Then with probability at least 1−d, the matrix Q̂ obtained with Algorithm
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11 satisfies κ(Q̂) ≈ 1. In fact,

κ(Q̂) <

√√√√√√1 + 5445(
25

√
1−ϵ
1+ϵ

−3
)2 (nm+m(m+ 1))u

1− 5445(
25

√
1−ϵ
1+ϵ

−3
)2 (nm+m(m+ 1))u

· (5.89)

Furthermore, if 5445(
25

√
1−ϵ
1+ϵ

−3
)2 (nm+m(m+ 1))u < 1

2
, then

κ(Q̂) < 1 +
10890(

25
√

1−ϵ
1+ϵ

− 3
)2 (nm+m(m+ 1))u. (5.90)

Proof. We prove Corollaries 5.17–5.20 simultaneously by considering one sub-

space embedding S = S1 is equivalent to two subspace embeddings S2S1 simply

by interpreting S2 = Ip,p as the p × p identity, which is by definition a (0, 0,m)

oblivious ℓ2-subspace embedding, therefore giving ε1 = εH = εL = ε, d = d1,

p = p2 = p1, ε2 = 0 and d2 = 0.

We show next that if ε = εL = εH ∈ [0, 616
634

), then εL ∈ [0, 616
625

− 9
625

εH). Indeed,

εL ∈ [0, 616
625

− 9
625

εH) is equivalent in this case to 0 ≤ ε < 616
625

− 9
625

ε, or 0 ≤ 634
625

ε <

616
625

, or what is the same, ε ∈ [0, 616
634

). This means that when εH = εL = ε ∈ [0, 616
634

),

Assumptions 5.9 imply Assumptions 5.16. Thus, Assumptions 5.9 are satisfied and

Corollaries 5.17–5.20 are direct consequences of Theorems 5.12–5.15.

Remark 5.21. Observe that (5.82) in Assumptions 5.16 is identical to (5.17) in As-

sumptions 5.9 using S1 = S and S2 = Ip,p, where p1 = p2 = p. However, the
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analysis in Section 5.5.2.3 of ∥E1∥2 takes into account roundoff errors for two ma-

trix multiplications for two sketches to compute Ŵ , while in the case of Corollaries

5.17–5.20, only one sketch and therefore one matrix multiplication to compute Ŵ

is necessary. Therefore, we are over-estimating the error ∥E1∥2 in the single sketch

case, and if the analysis in Sections 5.5.2 were carefully performed again, we could

tighten the bound on δ in (5.82), thereby loosening the requirements on κ(V ) in

Assumptions 5.16. However, asymptotically, the requirement on κ(V ) would ulti-

mately still be that δ ≤ g(n,m, p1, p2)u κ(V ) ≤ 1 for some low-degree polyno-

mial g.

5.6 Numerical Experiments

We conducted numerical experiments with two goals in mind. First, we compare the

performance of rand cholQR with the performance of cholQR2, sCholQR3,

and Householder QR on a latest GPU leveraging vendor-optimized libraries. Sec-

ond, we empirically validate the bounds given in Section 5.5.3, and more generally,

compare the stability of rand cholQR to the stability of cholQR2, sCholQR3,

and Householder QR.

5.6.1 Implementation Details

We implemented rand cholQR, cholQR2, sCholQR3 (Algorithm 10 given in

Section 4.4), and Householder QR in C++. To be portable to a GPU, we used

the Kokkos Performance Portability Library [24] and Kokkos Kernels [55]. For
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our experiments on an NVIDIA GPU, we configured and built our code such that

Kokkos Kernels calls NVIDIA’s cuBLAS and cuSPARSE linear algebra libraries

for optimized dense and sparse basic linear algebra routines [46, 49]. To perform

LAPACK routines that are not currently available natively within Kokkos Kernels

(i.e., dgeqrf and dorgqr for computing the Householder QR factorization, and

dpotrf for the Cholesky factorization), we directly called NVIDIA’s cuSOLVER

linear algebra library [2, 47, 48]. Test results were obtained using Kokkos 3.7.01,

Cuda 11.7.99, and GCC 7.2.0 on an AMD EPYC 7742 64-Core 2.25GHz CPU

with a NVIDIA A100-SXM4 40GB GPU. All computations were done in double

precision, so u = 2−52 ≈ 10−16.

We tested a variety of sketching strategies. The simplest was the case of a Gaus-

sian sketch S = 1√
p
G ∈ Rp×n, which were generated within a parallel for loop. The

sketch size chosen for a Gaussian to embed V ∈ Rn×m was

p = ⌈74.3 log(m)⌉, which can be shown to produce a (0.49, 1/m,m) oblivious

ℓ2-subspace embedding [1, Lemma 4.1]. To test using CountSketch, we explic-

itly constructed a sparse matrix and applied the sketch using a sparse-matrix vector

product. The sketch size used to embed V ∈ Rn×m with a S ∈ Rp×n CountS-

ketch matrix was p = ⌈8.24(m2 +m)⌉, which can be shown to be a (0.9, 0.15,m)

oblivious ℓ2-subspace embedding [43, Theorem 1].

In our implementation of multisketching, we chose S1 ∈ Rp1×n as a CountS-

ketch described above with ε1 = 0.9, and S2 ∈ Rp2×p1 a Gaussian sketch with
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Figure 5.1: Runtimes (in seconds) of QR factorizations of V with κ(V ) = 106 for
a fixed number of rows as the number of columns vary.

p2 = ⌈74.3 log(p1)⌉ giving ε2 = 0.49. Thus, S2S1 produced an embedding with

εL ≈ 0.9490, εH ≈ 1.8310, and d ≈ 0.15. It is easily verified that S2S1 is in

line with Assumptions 5.9, and that both of S1 and S2 satisfy Assumptions 5.16,

ensuring the analysis in Section 5.5.3 is relevant to the experiments. Runtimes of

rand cholQR did not include the time to generate the sketch, as this was assumed

to be a fixed overhead time.

5.6.2 Performance and Numerical Results

Figure 5.1 shows the runtimes of each QR method for test problems with n = 106

and n = 107 rows, and m = 10–100 columns. Since cholQR2 is typically

expected to be the fastest algorithm, Table 5.1 shows the relative slowdown of

each QR method compared to cholQR2 averaged across each data point from

Figure 5.1. Table 5.1 and Figure 5.1 indicate that cholQR2 is indeed the fastest

method in general, while multisketch rand cholQR performs the closest to
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Average Slowdown compared to cholQR2
1,000,000 rows 10,000,000 rows

rand cholQR: Gauss Sketch 21.5% 23.1%
rand cholQR: CountSketch 19.5% 5.3%
rand cholQR: multisketch 7.1% 4.9%

sCholQR3 35.9% 33.8%
Householder 84.8% 83.4%

Table 5.1: Average slowdowns of each QR algorithm compared to cholQR2,
taken from experiments shown in Figure 5.1. Smaller values indicate faster run-
times. Slowdowns for each QR algorithm are measured as (QR algorithm runtime−
cholQR2 runtime)/(cholQR2 runtime) × 100%

cholQR2, averaging only a 4.9–7.1% slowdown. Additionally, Figure 5.1 shows

that in some cases, multisketch rand cholQR actually outperforms cholQR2,

specifically for n = 106 rows and m = 70 columns, and for n = 107 rows and

m = 70–80 columns. The most notable result is that for n = 107 rows and m = 70

columns, multisketch rand cholQR is 4% faster than cholQR2. Multisketch

rand cholQR is significantly faster than sCholQR3, as evidenced by Figure 5.1,

and both algorithms have the same O(u)κ(V ) < 1 stability requirement.

Figure 5.2 shows the orthogonalization error ∥I − Q̂T Q̂∥F and the relative

factorization error ∥V − Q̂R̂∥F/∥V ∥F for condition number κ(V ) ∈ [1, 1016].

The results demonstrate that rand cholQR maintains O(u) orthogonality error

and O(u)∥V ∥2 factorization error4 while κ(V ) < O(u−1), as predicted by The-

orem 5.14, and is more robust than cholQR2 and sCholQR3. In practice, it

appears that rand cholQR is stable even when V is numerically rank-deficient.

In summary, Figures 5.1 and 5.2 demonstrate that multisketch rand cholQR sig-

4This follows because ∥V − Q̂R̂∥F /∥V ∥F = O(u).
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Figure 5.2: Orthogonality (left) and relative factorization error (right) of the QR
factorization of a matrix V with varying condition number. To explicitly control
κ(V ), V := LΣRT ∈ Rn×m using random orthogonal matrices L,R, and a diag-
onal Σ with log-equispaced entries in the range [κ− 1

2 (V ), κ
1
2 (V )]. Indicated by a

large dot, lines for cholQR2 and sCholQR3 end at κ(V ) = 108 and κ(V ) = 1012

respectively, as the methods fail beyond these points.

nificantly improves the robustness of cholQR2 and sCholQR3 at little to no cost,

therefore making rand cholQR a superior high-performance QR algorithm.

5.7 Conclusions

The results in Section 5.5.3 indicate that rand cholQR using one or two sketch

matrices orthogonalizes any numerically full-rank matrix V up to O(u) error.

This is a significant improvement over CholeskyQR2, which requires

κ(V ) ⪅ u−1/2 to ensure a stable factorization. Our results for a single sketch apply

for any ε-embedding with ε ∈ [0, 616
634

), covering nearly the entire possible range for

ε-embeddings.

Our performance results in Section 5.6.2 indicate that the significantly better

stability properties of rand cholQR over cholQR2 come at virtually no increase
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in the factorization time on a modern GPU. Additionally, rand cholQR is the-

oretically just as stable and in practice more stable than sCholQR3, while being

substantially faster. This is due to the fact that rand cholQR and cholQR2 incur

the same number of processor synchronizations, while leveraging mostly BLAS-3

or optimized sparse matrix-vector routines for most of the required computation. In

fact, rand cholQR can perform better than cholQR2when using the multisketch

framework. Of the sketching strategies considered, the multisketch framework is

the most advantageous, likely because it requires little additional storage compared

to cholQR2, and applying the sketches in this framework is extremely cheap.

Future work includes applying rand cholQR to Krylov subspace methods that

require tall-and-skinny QR factorizations, particularly block [32, 53],

s-step [16, 37, 74], and enlarged Krylov methods [31], and further investigations

into efficient multisketching implementations on a GPU, as our analysis is amenable

to any multisketching strategy (not just a CountSketch followed by a dense Gaus-

sian). In particular, applying the CountSketch matrix could potentially be optimized

better than using a sparse-matrix vector multiplication by using a custom routine to

add/subtract subsets of randomly selected rows in parallel using batched BLAS-1

routines, which should be investigated. Additionally, the performance of randQR

and rand cholQR using dense Rademacher sketch matrices in place of dense

Gaussian sketches as in [1] should be investigated, as Rademacher sketches impose
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far lower storage requirements than a Gaussian sketch and can be generated much

more efficiently.
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CHAPTER 6

TWO-STAGE BLOCK ORTHOGONALIZATION
TO IMPROVE PERFORMANCE OF s-STEP

GMRES

As mentioned in Chapter 2.5, on modern heterogeneous computer architectures,

GMRES’ performance is often limited by its communication cost to generate the

orthonormal basis vectors of the Krylov subspace. As described in Chapter 4, to ad-

dress this potential performance bottleneck, its s-step variant orthogonalizes a block

of s basis vectors at a time, potentially reducing the communication cost by a factor

of s. Unfortunately, for a large step size s, the solver typically generates extremely

ill-conditioned basis vectors, and to maintain stability in practice, a conservatively

small step size is used, which limits the performance of the s-step solver.

To enhance the solver performance using a small step size, in this chapter, we

introduce a two-stage block orthogonalization scheme. Similar to existing block

orthogonalization schemes, the first stage of the proposed method operates on one

block of s basis vectors at a time, but its objective is to maintain the well-conditioning

of the generated basis vectors with a lower cost. The full orthogonalization of the

basis vectors is delayed until the second stage when enough basis vectors are gen-

erated and thus obtains higher performance.
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Our analysis shows the stability of the proposed two-stage scheme. The two-

stage scheme offers performance improvements because while it still requires the

same amount of computation as the original single-stage schemes, the proposed

scheme performs the majority of the communication at the second stage, reduc-

ing the overall communication requirements. Our performance results with up to

192 NVIDIA V100 GPUs on the Summit supercomputer demonstrate that when

solving a 2D Laplace problem, the two-stage approach can reduce the orthogonal-

ization time and the total time-to-solution by the respective factors of up to 2.6×

and 1.6× over the original s-step GMRES, which had already obtained the respec-

tive speedups of 2.1× and 1.8× over the standard GMRES. Similar speedups were

obtained for 3D problems and for matrices from SuiteSparse [18].

6.1 Introduction

At each iteration, GMRES (Algorithm 1 or 2) generates a new basis vector for the

Krylov subspace using a sparse-matrix vector multiply (spmv), typically combined

with a preconditioner to accelerate its solution convergence rate. The basis vector is

then orthonormalized to maintain the numerical stability of generating the Krylov

subspace in finite precision and to compute the approximate solution that minimizes

the ℓ2 residual norm in the projection subspace, as described in detail in Section 2.3.

As the subspace dimension grows, it becomes expensive to generate the orthonor-

mal basis vectors in terms of both computation and storage. To reduce the costs of
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computing a large subspace, the iteration is restarted after a fixed number m+ 1 of

basis vectors are computed.

To orthogonalize the new basis vector at each iteration, GMRES uses BLAS-1

and BLAS-2 operations, which have limited potential for data reuse, and requires

global synchronizations among all parallel processes. On modern heterogeneous

computers, these communications (e.g., the cost of moving data through the lo-

cal memory hierarchy and between parallel processes) can take much longer than

the required computation time and can limit the performance of the orthogonaliza-

tion process. As a result, when efficient and scalable spmv and preconditioners

are available, the Krylov basis orthogonalization becomes a significant part of the

iteration time and a performance bottleneck.

To reduce this potential performance bottleneck, communication-avoiding (CA)

variants of GMRES [12, 37], based on s-step methods [19, 39], were proposed. To

generate the orthogonal basis vectors of the Krylov projection subspace, the s-step

GMRES utilizes two computational kernels:

1. the matrix powers kernel (MPK), described in detail in Section 4.3, used to

generate the s+1 Krylov vectors by applying spmv and the preconditioner(s)

s times, followed by

2. the block orthogonalization kernel that orthogonalizes a block of s + 1 basis

vectors at once.
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Since the block orthogonalization kernel performs most of its local computation

using BLAS-3 operations and synchronizes only every s steps, compared to the

standard GMRES, the s-step variant has the potential to reduce the communication

cost of orthogonalizing the s basis vectors by a factor of s. This is a very attractive

feature, especially on modern high-performance GPU clusters, where the commu-

nication can be significantly more expensive compared to computation.

Unfortunately, as discussed in Section 4.4, for large step sizes, MPK can gen-

erate extremely ill-conditioned s-step basis vectors. Hence, in practice, in order to

maintain the stability of MPK, a conservatively small step size is used, which limits

the performance advantages of s-step GMRES over the standard GMRES. In this

chapter, we introduce a two-stage orthogonalization scheme to improve the perfor-

mance of the s-step GMRES while still using a small step size s to maintain the

stability of MPK.

There are two main contributions in this chapter. First, we analyze the cur-

rent state-of-the-art block orthogonalization algorithms for s-step GMRES (Sec-

tion 6.4). This motivates a new combination of recently developed block orthog-

onalization algorithms, which we call BCGS-PIP2. Though this new variant im-

proves the performance of the original algorithms, it still has two synchronizations

every s steps. Second, to further enhance the performance, we propose and ex-

tend the study to the two-stage approach, which delays one of the synchronizations

until a large enough number of basis vectors, ŝ, are generated to obtain higher per-
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formance (Section 6.5). In other words, though the two-stage approach performs

about the same amount of computation as the original algorithms, it performs half

of the local computation using the larger block size ŝ instead of the original step

size s, hence increasing the potential for the data reuse. In addition, the two-stage

approach performs only one synchronization at the first stage (every s steps), while

delaying the other synchronization until the second stage (every ŝ steps). In particu-

lar, if we set the second step size same as the Krylov subspace projection dimension

(i.e., ŝ = m), the two-stage approach provides the potential to reduce the commu-

nication cost by a factor of two.

We demonstrate the potential of the new variant (BCGS-PIP2) and of the two-

stage approach through numerical and performance experiments (Sections 6.6 and

6.8):

• We study the numerical stability of BCGS-PIP2 and that of the two-stage

approach. We clarify the conditions that each of the algorithms requires to

maintain its stability, and present numerical experiments to demonstrate the

numerical properties of the algorithms.

• We implement the two-stage approach in Trilinos [70], which is a collection

of open-source software packages for developing large-scale scientific and

engineering simulation codes. Trilinos software stack allows the solvers, like

s-step GMRES, to be portable to different computer architectures, using a

single code base.
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• We present GPU performance of s-step GMRES, combined with the two-

stage approach. Our performance results on the Summit supercomputer demon-

strate that when solving a 2D Laplace problem on 192 NVIDIA V100 GPUs,

our two-stage approach can obtain speedups of 2.6× and 1.6× for orthog-

onalization and for the total time-to-solution, respectively, over the original

s-step GMRES, which had already obtained the respective speedups of 2.1×

and 1.8× over the standard GMRES. Similar speedups were observed for 3D

model problems and for matrices from the SuiteSparse Matrix Collection.

The two-stage approach also alleviates the need of fine-tuning the step size for

each problem on a specific hardware since a conservatively small step-size may be

used for numerical stability while relying on the two-stage approach to obtain the

performance improvement.

In addition to the notation established in Tables 2.1 and 2.2 consistent with

the rest of the thesis, Table 6.1 lists additional notation convenient for this chapter

and how it relates to s-step GMRES and our two-stage block orthogonalization

algorithm. We reiterate that Qℓ:t denotes the blocks column vectors of Q with the

block column indexes ℓ to t, while we will use qk:s as the set of vectors with column

indices k to s. Finally, [Q, V ] is the column concatenation of Q and V .

6.2 Related Work

Block orthogonalization is a critical component in many applications including lin-

ear or eigen solvers, and is an active research area. There are several combinations
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notation description
n problem size

m subspace dimension

s step size (for the first stage)

ŝ second step size (for the second stage and s ≤ ŝ ≤ m)

v
(j)
k kth basis vector within block j

V j jth block of s-step basis vectors including the starting vector, i.e., a set of s+ 1 vectors
generated by MPK. Specifically, V j = [vs(j−1)+1, vs(j−1)+2, . . . , vsj+1] and V 0 = [v0]

V j same as V j except excluding the last vector, which is the first vector of V j+1,
i.e., a set of s vectors V j = [vs(j−1)+1, vs(j−1)+2, . . . , vsj]

V̂ j V j after the first inter-block orthogonalization

Q̂j V j after the pre-processing stage

Qj orthogonal form of V j

Table 6.1: Notation used in this chapter, and its specific relationship to s-step GM-
RES.
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of block orthogonalization schemes [14], but, especially in terms of performance on

current computer architectures, Block Classical Gram-Schmidt (BCGS) combined

with some variants of Cholesky QR (CholQR) [67], is considered the state-of-the-

art scheme. This chapter builds and extends on this combination. Some techniques

that are relevant to this chapter include:

• CholQR computes the QR factorization of a tall and skinny matrix. Unfor-

tunately, CholQR can fail when the condition number of the input matrix

is greater than the reciprocal of the square-root of the machine precision (it

computes the Cholesky factorization of the Gram matrix of the input basis

vectors to be orthogonalized, and the Gram matrix has the condition number

which is the square of the input vectors’ condition number). Nonetheless,

it performs well on current computer architectures because most of its local

computation is based on BLAS-3 and it requires just one global synchroniza-

tion. Hence, it is still used in practice but requires some remedies to maintain

its stability. In addition, to maintain the orthogonality of the column vectors,

it is often applied with reorthogonalization (referred to as CholQR twice, or

equivalently CholQR2 for short).

• Shifted Cholesky QR [27] is introduced to avoid this numerical instability of

CholQR and CholQR2. Though it may require one additional round of the

orthogonalization, increasing the computational and communication costs of
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CholQR2 by a factor of 1.5×, it has the stability guarantee as long as the

input vectors are numerically full-rank.

• A mixed-precision variant of CholQR [81], which has similar stability prop-

erties as the shifted CholQR, was proposed. To ensure stability, the Gram

matrix is accumulated in double the working precision. When working in

double precision, it requires quadruple precision, which can be software-

emulated through double-double precision arithmetic if quadruple precision

is not supported by the hardware [35]. Though double-double arithmetic

has high computational overhead compared to double precision, the mixed-

precision CholQR does not increase the communication cost significantly.

When the performance of CholQR is dominated by communication, it may

obtain performance similar to the standard CholQR. Its application to the

block orthogonalization has also been studied [82].

• There are low-synchronous variants of block orthogonalization algorithms

that reduce the number of synchronizations and improve the performance

of orthogonalization [14, 80]. These techniques require an efficient low-

synchronous intra-block orthogonalization algorithm. Though there is a CA

tall and skinny QR factorization algorithm that is unconditionally stable [20],

its local computation is based on Householder QR (HHQR) factorization,

which is mainly based on BLAS-1 or BLAS-2 and may obtain much lower
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performance than BLAS-3 based CholQR. Hence, in practice, these low-

synchronous techniques rely on some variant of CholQR factorization for

orthogonalizing each block.

Though some of the techniques mentioned above have improved stability, the s-step

basis vectors, generated by MPK, can be extremely ill-conditioned for a large step

size s, and in order to ensure the stability in practice, s-step GMRES still needs

to use a small step-size. Since the performance of the orthogonalization may be

limited by the multiple synchronizations required at every s steps, in this chapter,

we look at avoiding or delaying some of the synchronizations, while using a small

step size s to maintain stability. Moreover, the proposed two-stage approach may

be combined with these previous approaches. In particular, random-sketching tech-

niques have been recently integrated into CholQR [7]. We are investigating the

potential of rand cholQR to improve the stability of our block orthogonalization

process.

6.3 s-Step GMRES

Algorithm 13 shows the pseudocode of s-step GMRES for solving a linear system

Ax = b, which has been also implemented in the Trilinos software framework. The

dominant costs of this algorithm occur in the inner loop in lines 5–12, which include

both the MPK and the block orthogonalization procedure. Solving the least squares

problem in lines 13–17 is much less costly, but the details of the least squares prob-

lem are outlined in this algorithm for completeness.
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Algorithm 13 s-step GMRES
Input: coefficient matrix A, right-hand-side vector b, initial vector x, and
appropriately-chosen “change-of-basis-matrix” T (see [37, Section 3.2.3] for
details)
Output: approximate solution x

1: r = b− Ax
2: γ = ∥r∥2
3: while not converged do
4: v1 = r/γ and h1,1 = 0
5: for j = 1 : m/s do
6: // Matrix Powers Kernel to generate new s vectors
7: for k = 1 : s do
8: v

(j)
k+1 = Av

(j)
k

9: end for
10: // Block orthogonalization of s+ 1 basis vectors
11: [Qj,R1:j,j] := BlkOrth(Q

1:(j−1)
,V j)

12: end for
13: // Generate the Hessenberg matrix H such that AQ1:m/s = Q1:m/s+1H

14: H1:m+1,1:m = R1:m/s+1,1:m/s+1TR
−1
1:m/s,1:m/s

15: // Compute approximate solution with minimum residual
16: ŷ = argminy∈Q1:m/s+1

∥γe1 −H1:m+1,1:my∥2
17: x = x+Q1:m/sŷ
18: r = b− Ax
19: γ = ∥r∥2
20: end while
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Compared to the standard GMRES, this s-step variant has the potential of re-

ducing the communication cost of generating the s orthonormal basis vectors by

a factor of s, where the standard GMRES is essentially s-step GMRES with the

step size of one. For instance, to apply spmv s times (Lines 7 to 9 of the pseu-

docode), several CA variants of the “matrix-powers kernel” (MPK) have been pro-

posed [44]. In practice, spmv is typically applied together with a preconditioner

to accelerate the convergence rate of GMRES. Although a few CA preconditioners

of specific types have been proposed [30, 79], avoiding communication for other

types of preconditioners is still an open research problem. To support a wide range

of application needs, instead of CA MPK, Trilinos s-step GMRES uses a stan-

dard MPK (applying each spmv and preconditioner in sequence), and focuses on

improving the performance of block orthogonalization by reducing its communi-

cation costs. Also, avoiding the global communication in orthogonalization could

lead to a greater performance gain than CA MPK does, when scalable implemen-

tations of spmv and preconditioner are available. This motivates our study of the

block orthogonalization in this chapter.

6.4 Block Orthogonalization
Algorithm 14 Block Classical Gram-Schmidt (BCGS) inter-ortho.

Input: Q1:j−1 and V j

Output: V̂ j and R1:j−1,j

1: // Orthogonalize V j against Q1:j−1

2: R1:j−1,j := QT
1:j−1V j (GEMM for dot-products)

3: V̂ j := V j −Q1:j−1R1:j−1,j (GEMM for vector-update)
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Algorithm 15 Block Classical Gram-Schmidt twice (BCGS2) for inter-ortho, com-
bined with HHQR or CholQR2 intra-ortho.

Input: Q1:j−1 and V j

Output: Qj and R1:j,j

1: if j > 1 then
2: // First inter-block BCGS orthogonalization
3: [V̂ j , R1:j−1,j] := BCGS(Q1:j−1, V j)
4: else
5: V̂ j := V j

6: end if
7: // First intra-block orthogonalization
8: [Q̂j , Rj,j] := HHQR(V̂ j) or [Q̂j , Rj,j] := CholQR2(V̂ j)
9: if j > 1 then

10: // Second inter-block BCGS orthogonalization
11: [Q̃j , T 1:j−1,j] := BCGS(Q1:j−1, Q̂j)
12: // Second intra-block orthogonalization
13: [Qj , T j,j] := CholQR(Q̃j)
14: R1:j−1,j := T 1:j−1,j +R1:j−1,j

15: Rj,j := T j,jRj,j

16: end if

The block orthogonalization algorithm in s-step GMRES consists of two algo-

rithms: the inter and intra block orthogonalization to orthogonalize the new block

of s + 1 basis vectors against the already-orthogonalized previous blocks of vec-

tors and among the vectors within the new block, respectively. There are sev-

eral combinations of the inter- and intra-block orthogonalization algorithms [14],

but the state-of-the-art inter-block algorithm is based on Block Classical Gram-

Schmidt (BCGS), which is entirely based on BLAS-3 operations and requires only

one global synchronization. As a result, BCGS (Algorithm 14) obtains superior

performance on current computers.
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To maintain orthogonality, in practice, BCGS is applied with re-orthogonalization

(BCGS twice, or BCGS2). Algorithm 14 shows pseudocode of BCGS2, which has

two algorithmic options for the first intra-block orthogonalization, while CholQR

is used for the second intra-block orthogonalization. As we discuss in more detail

below, with these combinations of the inter and intra block-orthogonalization algo-

rithms, the orthogonality errors of the computed basis vectors Qj can be bounded

by O(u), where u is the machine precision. For our discussion of BCGS2 using

different algorithms such as HHQR or CholQR2 for the first intra-block orthogo-

nalization, we refer them as “BCGS2 with HHQR” or “BCGS2 with CholQR2”,

respectively.

6.4.1 BCGS2 with HHQR

When the column vectors of the input block-structured matrix V are numerically

full-rank (i.e., κ(V )max{n, s} u < 1), BCGS2 with HHQR in Algorithm 15 gen-

erates the orthonormal basis vectors Q with orthogonality error on the order of

machine precision, i.e., ∥I − QTQ∥2 = O(u) [8, 9]. Unfortunately, for the small

step size that we typically use within s-step GMRES (e.g., s = 5 is the default step

size in Trilinos), the HHQR of V̂ j is based on BLAS-1 or BLAS-2 and requires

O(s) global synchronizations, which often lead to the performance of HHQR and

overall BCGS2 that is far below peak performance of modern high-performance

clusters (e.g., based on the memory bandwidth).
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There have been significant advances in the theoretical understanding of s-step

Krylov methods [12]. However, though the orthogonality error bound to obtain the

backward stability of GMRES has been established [29], to the authors knowledge,

there are no known theoretical bounds on the orthogonality errors required to obtain

the maximum attainable accuracy of s-step GMRES. Hence, in this chapter, we

focus on block orthogonalization schemes that can maintain the O(u) orthogonality

error, like BCGS2 with HHQR does (though this might not be needed to obtain the

maximum accuracy of s-step GMRES), while improving the performance of the

block orthogonalization.

6.4.2 BCGS2 with CholQR2

To generate the orthonormal basis vectors of V̂ j in step 8 of Algorithm 15, HHQR

and CholQR2 (Algorithm 9) require about the same amount of computation. How-

ever, as the pseudocode in Algorithm 8 shows, in contrast to HHQR, CholQR is

mainly based on BLAS-3 and requires only one synchronization. As a result, on

current computer architectures, CholQR often obtains much higher performance

than HHQR, and BCGS2 with CholQR2 is considered to be one of the state-of-

the-art block-orthogonalization algorithms in terms of performance. Hence, in this

chapter, we focus on BCGS2 with CholQR2 and discuss when it obtains the same

stability as BCGS2 with HHQR, which is highly stable but lower performance.
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In [67, 77], it was shown that when the condition number of the input vectors

V̂ j is bounded as

c1(u, n, s)κ(V̂ j)
2 < 1/2, (6.1)

the orthogonality error of Ṽ j computed by the first pass of CholQR on line 1 of

Algorithm 9 is bounded by

∥I − Ṽ
T

j Ṽ j∥2 ≤ c1(u, n, s)κ(V̂ j)
2, (6.2)

where the scalar term c1(u, n, s) is

c1(u, n, s) = 5 (ns+ s(s+ 1)) u. (6.3)

Condition (6.1) implies that the Cholesky factorization of the Gram matrix of V̂ j

is numerically stable, and also that all the Krylov basis vectors generated by MPK

are numerically full-rank (otherwise GMRES has converged).

When condition (6.1), and hence the orthogonality error bound (6.2), hold, we

have the following theorem showing that CholQR2 is as stable as HHQR.

Theorem 6.1. With the bound (6.2) and assumption (6.1), the condition number of

Ṽ j computed by the first CholQR (on Line 2 in Algorithm 9) is bounded by

κ(Ṽ j) <
√
3.
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and hence, the orthogonality error of Q̂j computed by CholQR2 satisfies

∥I − Q̂
T

j Q̂j∥2 = O(u).

Proof. Let σ1(G) ≥ · · · ≥ σs(G) be the singular values of the Gram matrix of

Ṽ j , i.e., G = Ṽ
T

j Ṽ j , and hence σk(G) = σk(Ṽ j)
2 for k = 1, . . . , s. Then, with

the upper-bound (6.2) and assumption (6.1), along with Weyl’s inequality [75], we

have


σ1(Ṽ j)

2 ≤ 1 + ∥Ṽ
T

j Ṽ j − I∥ ≤ 1 + c1(u, n, s)κ(V̂ j)
2 < 3/2

σs(Ṽ j)
2 ≥ 1− ∥I − Ṽ

T

j Ṽ j∥ ≥ 1− c1(u, n, s)κ(V̂ j)
2 > 1/2

giving the above upper-bound on the condition number of Ṽ j and the orthogonality

error of Q̂j .

Hence, overall, when condition (6.1) is satisfied, BCGS2 with CholQR2 generates

the basis vectors Q with orthogonality error on the order of the machine precision.

6.4.3 BCGS-PIP2

Algorithm 16 BCGS with Pythagorean Inner Product (BCGS-PIP).
Input: Q1:j−1 and V j

Output: Q̂j and R1:j,j

1: R1:j,j := [Q1:j−1,V j]
TV j

2: Rj,j := Chol(Rj,j −RT
1:j−1,jR1:j−1,j)

3: V̂ j := V j −Q1:j−1R1:j−1,j

4: Q̂j := V̂ jR
−1
j,j
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Algorithm 17 BCGS-PIP twice (BCGS-PIP2).
Input: Q1:j−1 and V j

Output: Qj and R1:j,j

1: // First orthogonalization
2: [Q̂j , R1:j,j] := BCGS-PIP(Q1:j−1, V j)
3: // Second orthogonalization
4: [Qj , T 1:j,j] := BCGS-PIP(Q1:j−1, Q̂j)
5: R1:j−1,j := T 1:j−1,jRj,j +R1:j−1,j

6: Rj,j := T j,jRj,j

Recently, a “single-synchronization” variant of BCGS with CholQR based on

the Pythagorean Inner Product (BCGS-PIP) was proposed [14, 80]. The pseu-

docode of BCGS-PIP is shown in Algorithm 16, which orthogonalizes a new block

of basis vectors V j against the previously-orthonormalized blocks Q1:j−1. Instead

of explicitly computing the Gram matrix of V̂ j for CholQR, BCGS-PIP computes

it by updating the Gram matrix of V j based on the block generalization of the

Pythagorean theorem, allowing to orthonormalize the block vector V j with a sin-

gle synchronization.

Moreover, it was shown [14, Theorem 3.4] that if the previous basis vectors

have been orthogonalized to satisfy1

∥I −QT
1:j−1Q1:j−1∥ = O(u), (6.4)

1This is a much stronger condition than that required by [14, Theorem 3.4], but is satisfied by
the algorithm discussed in this chapter.
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and the MPK generates the next set of the block vector V j such that

c2(u)κ([Q1:j−1,V j])
2 < 1/2, (6.5)

then the orthogonality error of Q̂j computed by BCGS-PIP satisfies

∥I − [Q1:j−1, Q̂j ]
T [Q1:j−1, Q̂j ]∥ ≤ c3(u)κ([Q1:j−1,V j ])

2, (6.6)

where c2(u) and c3(u) are two functions that behave asymptotically like O(u), sim-

ilar to that given by (6.3).

Here, in order to generate the orthogonal basis vectors Qj with orthogonality

error of the order of the machine precision, we apply BCGS-PIP twice (BCGS-

PIP2). The pseudocode of the resulting algorithm is shown in Algorithm 17. If

conditions (6.4) and (6.5) are satisfied, we have the following theorem showing the

stability of BCGS-PIP2.

Theorem 6.2. With the bound (6.6) and the assumptions (6.4) and (6.5), BCGS-

PIP computes Q̂j such that the condition number of the accumulated basis vectors

[Q1:j−1, Q̂j] satisfies,

κ([Q1:j−1, Q̂j]) = O(1), (6.7)

and the resulting Qj from BCGS-PIP2(Q1:j−1,V j) satisfies

∥I −QT
1:jQ1:j∥ = O(u). (6.8)
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Proof. The proof is based on Weyl’s inequality similar to that for Theorem 6.1.

While BCGS2 with CholQR2 needs five synchronizations every s steps, this

new variant BCGS-PIP2 needs just two synchronizations and reduces the total com-

putational cost of the intra-block orthogonalization by a factor of 1.5×.

We note that when there are no previous blocks (i.e., j = 1), BCGS-PIP2 is

CholQR2, which satisfies the condition (6.4) due to Theorem 6.1. Theorems 6.1 and

6.2 imply that when the required assumptions hold, BCGS followed by CholQR and

BCGS-PIP are both stable pre-processing algorithms for BCGS2 with CholQR2 and

BCGS-PIP2, respectively, and obtain O(1) condition number of the pre-processed

block vectors.

Nevertheless, to obtain the best performance of the block orthogonalization, the

step size s needs to be carefully chosen for each problem on a different hardware.

Unfortunately, it is often infeasible to fine-tune the step size in practice, and for a

large step size s, MPK can generate ill-conditioned basis vectors V j with a large

condition number. Hence, instead of fine-tuning the step size, in practice, a con-

servatively small step size is used to satisfy the conditions discussed in this section

and avoid numerical instability (e.g., s = 5). Though BCGS-PIP2 improves the or-

thogonalization performance by reducing the number of the synchronizations, the

small step size may still limit the performance gain that s-step methods can bring.
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Algorithm 18 Two-stage BCGS-PIP2 block orthogonalization.
Input: Q1:ℓ−1, s, ŝ
Output: Qℓ:t and R1:t,k:t

1: // t is last block column ID of the next big panel
2: t := ℓ+ ŝ/s− 1
3: for j = ℓ, ℓ+ 1, . . . , t do
4: // Matrix-Powers Kernel
5: if j == ℓ then
6: v

(j)
1 := q

(j−1)
s+1

7: else
8: v

(j)
1 := q̂

(j−1)
s+1

9: end if
10: for k = 1, 2, . . . , s do
11: v

(j)
k+1 := Av

(j)
k

12: end for
13: // First Stage (Preprocessing of each panel)
14: [Q̂j , R1:j,j] := BCGS-PIP([Q1:ℓ−1, Q̂ℓ:j−1], V j)
15: end for
16: // First Stage (Block-orthogonalization of big panel)
17: [Qℓ:t,T 1:t,ℓ:t] = BCGS-PIP(Q1:ℓ−1, Q̂ℓ:t)
18: R1:ℓ−1,ℓ:t := T 1:ℓ−1,ℓ:tRℓ:t,ℓ:t +R1:ℓ−1,ℓ:t

19: Rℓ:t,ℓ:t := T ℓ:t,ℓ:tRℓ:t,ℓ:t

6.5 Two-Stage Block Orthogonalization

In order to improve the performance of block orthogonalization in s-step GMRES

while using a small step size s, we propose a “two-stage” block orthogonalization

process, shown in Algorithm 18. Instead of performing BCGS-PIP2 at every s

steps to generate the orthonormal basis vectors, we call BCGS-PIP only once on

the new s + 1 basis vectors generated by MPK. The objective of this first stage

is to pre-process the s-step basis vectors to maintain a small condition number of

the generated basis vectors. In particular, since the s-step basis vectors Q̂1:j−1 are

being “roughly” orthogonalized, when MPK generates the next s-step basis vector
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V j using the last vector of the block Q̂j−1 as the starting vecctor, the condition

number of the accumulated basis vectors [Q̂ℓ:j−1,V j] is hoped to be roughly the

same as that of V j (we will show the numerical results in Section 6.6). Then once

a sufficient number of basis vectors, ŝ, are generated to obtain higher performance,

we orthogonalize the ŝ basis vectors at once by calling BCGS-PIP for the second

time, but now on a larger block size ŝ instead of the original step size s.

This two-stage approach in Algorithm 18 is similar to BCGS-PIP2 in Algo-

rithm 17. To compare these two approaches, we distinguish between the blocks of

two different block sizes s and ŝ for the first and second stages by referring to them

as the “panels” and “big panels”, respectively. Hence, the two-stage approach pre-

processes the panels of s columns at a time, followed by BCGS-PIP on the big panel

of ŝ columns. For the two extreme cases, with ŝ = s and ŝ = m the two-stage ap-

proach becomes the standard one-stage BCGS-PIP2 and BCGS-PIP on each panel

followed by CholQR on the entire m+ 1 basis vectors, respectively.

Compared to the original one-stage BCGS-PIP2, the two-stage approach per-

forms about the same number of floating point operations, but it reduces the num-

ber of global synchronizations and performs the orthogonalization using a larger

block size. In particular, BCGS2 with CholQR2 in Algorithm 15 or BCGS-PIP2 in

Algorithm 17 performs five or two synchronizations at every s steps, respectively.

In contrast, the two-stage approach in Algorithm 18 has only one synchronization

every s steps, and one more synchronization every ŝ steps. Hence, with ŝ = m,
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the two-stage approach reduces the number of synchronizations by a factor of 2×

(and could also reduce the amount of the required data movement through the local

memory hierarchy). As a result, the two-stage approach often obtains much higher

performance as we show in Section 6.8.

Next, we provide intuition behind the orthogonality errors of the two-stage ap-

proach. Since the two-stage approach uses BCGS-PIP on each panel and then on

the big panel, we can apply error analysis similar to Section 6.4 but require the as-

sumption (6.5) on the big panel. In particular, if the following condition on the big

panel V ℓ:t is satisfied:

c2(u)κ([Q1:ℓ−1,V ℓ:t])
2 < 1/2 (6.9)

with ∥I −QT
1:ℓ−1Q1:ℓ−1∥ = O(u),

then by [14, Theorem 3.4], the first BCGS-PIP pre-processes the big panel such that

the generated basis vectors satisfy

∥I − [Q1:ℓ−1, Q̂ℓ:t]
T [Q1:ℓ−1, Q̂ℓ:t]∥ ≤ c3(u)κ([Q1:ℓ−1,V ℓ:t])

2. (6.10)

Hence, similar to Theorem 6.2, under condition (6.9), after the first stage, we expect

the condition number of the accumulated big panels [Q1:ℓ−1, Q̂ℓ:t] to be O(1), and

when the big panel Q̂ℓ:t is orthogonalized by BCGS-PIP at the second stage, we
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expect an O(u) orthogonality error of Q1:t by combining (6.10) with the O(1)

condition number.

Specifically, by applying Weyl’s inequality, we have the following theorem.

Theorem 6.3. With the condition (6.9) and the bound (6.10), the condition number

of the big panel after the pre-processing is given by

κ([Q1:ℓ−1, Q̂ℓ:t]) = O(1). (6.11)

As a result, when the second stage calls BCGS-PIP on [Q1:ℓ−1, Q̂ℓ:t], the orthogo-

nality error of the generated basis is bounded as

∥I −QT
1:tQ1:t∥ = O(u). (6.12)

The new condition (6.9) is on the condition number of the big panel, while the

condition (6.5) for BCGS-PIP2 only required the condition number of each panel

to be less than O(u−1/2). The key feature of the two-stage approach is that the

starting vector for MPK is the last column of Q̂j−1, which has been pre-processed

by BCGS-PIP, whose objective is to maintain the small enough condition number

of the big panel that satisfies (6.9).

In the next section, we study how the condition number of the pre-processed big

panel grows, and compare the orthogonality errors of the two-stage approach with
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the standard algorithms. In particular, the numerical results show that

κ([Q1:ℓ−1,V ℓ:j]) ≈ κ([Q1:ℓ−1, Q̂ℓ:j−1,V j]),

making assumption (6.9) required for the two-stage BCGS-PIP2 a similar stability

requirement to assumption (6.5) required for the one-stage BCGS-PIP2.

6.6 Numerical Results

Figure 6.1: Orthogonality error and condition number with CholQR2 on 105-by-5
Logscaled matrix.

We compared the orthogonality errors of the proposed block orthogonalization

schemes using the default double precision in MATLAB. We first study how the

orthogonality errors grow with the condition number of the input vectors. For

these studies, instead of studying the numerical properties of the proposed methods

within s-step GMRES, we treat them as a general block orthogonalization scheme
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and use synthetic matrices as the input vectors such that we can control the con-

dition number of the matrix easily. We start by showing that both CholQR2 and

one-stage BCGS-PIP2 obtain O(u) orthogonality error given that conditions (6.1)

and (6.5) are satisfied, respectively (Figures 6.1 and 6.2). We then show that the or-

thogonality errors of the two-stage approach are also O(u) when the condition (6.9)

is satisfied (Figure 6.3). Since these synthetic matrices are generated using random

numbers, we show the minimum, average, and maximum errors using ten differ-

ent random seeds. Finally, we study how the condition numbers grow for the basis

vectors generated by MPK using various positive indefinite matrices of dimension

between 200,000 and 300,000 from the SuiteSparse Matrix Collection [18] in Fig-

ure 6.4. In order to maintain the stability of the original s-step method, we scaled

the columns and then rows of the matrices by the maximum nonzero entries in the

columns and rows (hence, all the resulting matrices are non-symmetric). For all

of our experiments with MPK and s-step GMRES, we used monomial basis, even

though using more stable bases, like Newton or Chebyshev bases, could reduce the

condition number and improve the applicability of our approaches to a wider class

of problems.

Figure 6.1 shows the condition numbers and orthogonality errors when CholQR2

is used to orthogonalize the 105-by-5 panel V̂ j of varying condition numbers (i.e.,

V̂ j := XΣY T with random orthonormal X and Y , and diagonal matrix Σ with

logspace singular values). It shows that as indicated by the bound (6.2), the or-
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(a) Condition number. (b) Orthogonality errors.

Figure 6.2: Condition number and orthogonality error with one-step BCGS-PIP2
on glued matrix.

thogonality error of Q̂j after the first CholQR grows as κ(V̂ j)
2O(u). Hence, when

κ(V̂ j) ⪅ u1/2, the condition number of Q̂j stays O(1), and we obtain the O(u)

orthogonality error of Qj as indicated by Theorem 6.1.

Figure 6.2 shows the condition number and the orthogonality error when BCGS-

PIP2 is used to orthogonalize the gluedmatrix that has the same specified order of

the condition number for each panel and for the overall matrix. As expected, when

the condition number of the input matrix is smaller than u−1/2, the orthogonality

error of the basis vectors Q̂ after the first BCGS-PIP is bounded by κ(V )2O(u),

and as a result, their condition number remained to be O(1). Consequently, after the

second BCGS-PIP, the orthogonality error of the basis vector Q was O(u), which

was the same error obtained by BCGS2 with CholQR2.

Figure 6.3 shows the orthogonality errors using the two-stage approach. The

test matrix is the glued matrix, where each panel V j has the condition number
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(a) Condition number (marker at every s steps).

(b) Orthogonality errors (orange circle marker at every s steps, while green triangle marker
at every ŝ steps).

Figure 6.3: Condition number and orthogonality error using two-stage approach on
glued matrix with (n,m, ŝ, s) = (100000, 180, 60, 5).
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(a) Condition number of [Q1:ℓ−1,V ℓ:j−1, v
(j)
1:k] (marker at every step).

(b) Condition number of [Q1:ℓ−1, Q̂ℓ:j−1, v
(j)
1:k] (marker at every step).

(c) Orthogonality error of Q (marker at every ŝ steps).

Figure 6.4: Condition number and orthogonality error with Krylov vectors gener-
ated by MPK.
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O(107) but the condition number of V 1:j grows as 2j−1O(107). For this synthetic

matrix with the pre-generated panels, after the first stage, the accumulated condi-

tion number of the panels [Q1:ℓ−1,V ℓ:j] was still about the same as the condition

number of the original big panel V ℓ:j . Even though this synthetic matrix breaks the

required condition (6.9), the pre-processing step managed to keep the O(1) condi-

tion number of the big panel [Q1:ℓ−1, Q̂ℓ:t], and the overall orthogonality error of Q

was O(u).

Finally, Figure 6.4 shows the condition number of the basis vectors that are

generated by MPK combined with the two-stage block orthogonalization scheme.

Unlike the pre-generated panels of the synthetic matrix in Figure 6.3, the s-step

basis vectors of the big panel V ℓ:t are now generated by MPK, being interleaved

with the pre-processing by BCGS-PIP. As a result, unlike what we have observed

in Figure 6.3a, the accumulated condition number of [Q1:ℓ−1,V ℓ:j] in Figure 6.4

did not increase significantly as more panels were appended, and except for the

two matrices “HTC 336 4438” and “Ga41As41H72”, the condition number of the

big panel satisfied the required condition (6.9). The condition number of the basis

vectors are managed likely because BCGS-PIP now pre-processes the basis vectors

Q̂j−1 before MPK generates the next set of the s-step basis vectors V j such that

the starting vector v(j)1 is roughly orthogonal to the space spanned by the previous

panels V ℓ:j−1. Without pre-processing the basis vectors, the condition number will

continue to increase, preventing us from using a large step size. Overall, after the
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second BCGS-PIP on big panel, the orthogonality errors of Q was O(u) for all the

matrices tested.

6.7 Implementation

We have implemented all the block orthogonalization algorithms for s-step GM-

RES within the Trilinos software framework [34, 70]. Trilinos is a collection of

open-source software libraries, called packages, for solving linear, non-linear, op-

timization, and uncertainty quantification problems. It is intended to be used as

a building block for developing large-scale scientific or engineering applications.

Hence, any improvement in the solver performance could have direct impacts to

the application performance. In addition, Trilinos software stack provides portable

performance of the solver on different hardware architectures, with a single code

base. In particular, our implementation is based on Tpetra for distributed matrix and

vector operations and Kokkos-Kernels for the on-node portable matrix and vector

operations (which also provides the interfaces for the vendor-optimized kernels like

NVIDIA cuBLAS, cuSparse, and cuSolver).

On a GPU cluster, our GMRES uses GPUs to generate the orthonormal basis

vectors, where the matrices and vectors are distributed among MPI processes in 1D

block row format (e.g., using a graph partitoner like ParMETIS). The operations

with the small projected matrices, including solving a small least-squares problem,

is redundantly done on CPU by each MPI process.
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Our focus is on the block orthogonalization of the vectors, which are distributed

in 1D block row format among the MPI processes. The orthogonalization process

mainly consists of dot-products, vector updates, and vector scaling (e.g.,

R1:j−1,j := QT
1:j−1V j and V j := V j −Q1:j−1R1:j−1,j of BCGS in Algorithm 14,

and Qj := V jR
−1
j,j of CholQR in Algorithm 8, respectively). The dot-products

QT
1:j−1V j requires a global synchronization among all the MPI processes, and the

resulting matrix R1:j−1,j is stored redundantly on all the MPI processes. Given the

upper-triangular matrix, the vectors can be updated and scaled locally without any

additional communication. All the local computations are performed by optimized

kernels through Kokkos Kernels.

6.8 Performance Results

ŝ
GMRES s-step 5 20 40 60

# iters 60251 60255 60255 60260 60280 60300
spmv 100.1 103.6 103.4 103.7 104.3 103.8
Ortho 150.4 128.6 102.8 96.9 75.2 61.1
Total 249.7 232.3 206.4 201.3 180.2 165.7

Table 6.2: Time-to-solution for 2D Laplace, n = 20002 on 4 NVIDIA V100 GPUs,
with the two-stage approach using different values of second step size ŝ, while the
first step size is fixed as s = 5. The first two columns, “GMRES” and “s-step”,
show the time using the standard and s-step GMRES, respectively.

We now study the impact of different block orthogonalization schemes on the

performance of s-step GMRES. We used the restart length of 60 (i.e., m = 60), and

considered GMRES to have converged when the relative residual norm is reduced
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GMRES + CGS2 s-step + BCGS2-CholQR2 s-step + BCGS-PIP2 s-step + Two-stage(ŝ = m)
# nodes # iters SpMV Ortho Total # iters SpMV Ortho Total # iters SpMV Ortho Total # iters SpMV Ortho Total

1 60251 63.5 100.2 164.3 60255 64.2 71.9 134.1 60255 66.2 54.5 117.8 60300 66.6 32.0 99.2
1.4× 1.2× 1.8× 1.4× 3.1× 1.7×

2 60251 38.2 72.9 108.5 60255 35.2 43.9 78.9 60255 35.0 30.1 65.2 60300 35.7 18.8 54.7
1.7× 1.4× 2.4× 1.7× 3.9× 2.0×

4 60251 27.7 59.8 85.6 60255 25.3 30.8 57.1 60255 25.2 19.9 45.4 60300 27.1 12.6 40.2
1.9× 1.5× 3.0× 1.9× 4.7× 2.1×

8 60251 20.0 51.9 70.8 60255 20.0 27.2 47.0 60255 20.1 16.4 36.3 60300 19.5 10.8 30.6
1.9× 1.7× 3.2× 2.0× 4.8× 2.3×

16 60251 17.1 48.0 64.3 60255 16.7 22.8 40.2 60255 17.1 14.1 30.9 60300 16.8 9.3 26.1
2.1× 1.6× 3.4× 2.1× 5.2× 2.5×

32 60251 16.0 46.9 61.9 60255 15.6 22.3 38.2 60255 15.6 12.6 28.1 60300 16.0 8.7 24.5
2.1× 1.8× 3.7× 2.2× 5.4× 2.5×

Table 6.3: Parallel Strong Scaling of time-to-solution with 9-points 2D Laplace,
n = 20002. On each node, we launched six MPI processes (one MPI per GPU),
and hence used 192 GPUs on 32 nodes. The table also shows the speedup gained
using s-step and two-stage over standard GMRES for orthogonalization and total
solution time.

by six orders of magnitude. We generated the right-hand-side vector such that the

solution is a vector of all ones.

As discussed before, the step size s may need to be carefully chosen. For ex-

ample, in Figure 6.3, our two-stage algorithm pre-processes the basis vectors at

every fifth step to keep the condition number of the generated basis vectors small,

but without the pre-processing step, the condition number will continue to increase

exponentially after the fifth step. In practice, it is often infeasible to tune the step

size as the condition number of the matrix could change significantly during the

simulation. Hence, to avoid numerical instability of MPK, in practice, a conserva-

tive step size like s = 5 is used as the default step size. Since we are interested in

improving the performance of block orthogonalization while using the small step

size to maintain the stability of MPK, we use this default step size of s = 5 for all
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the performance results shown in this section, and study the effects of the two-stage

algorithms on the performance of s-step GMRES.

Table 6.2 shows the performance with the two-stage approach using different

values of the second step size ŝ. The performance tests were conducted on the

Advanced System Technology Testbed named Vortex at the Sandia National Lab-

oratories. Each node of Vortex has dual IBM Power 9 CPUs and four NVIDIA

V100 GPUs. We compiled our code using GCC version 8.3 and CUDA version

11.0 compilers. As expected, the two-stage approach obtained higher performance

using a larger step size, and it obtains the best performance when ŝ = m. For these

experiments, the pre-processing stage allowed us to maintain the numerical stability

of the block orthogonalization process.

We conducted the remaining of our performance tests on the Summit supercom-

puter at Oak Ridge National Laboratory. Each compute node of Summit has two

21-core IBM Power 9 CPUs and six NVIDIA Volta V100 GPUs. The code was

compiled using g++ compiler version 7.5 and NVIDIA CUDA 11.0, and linked

to the IBM Engineering and Scientific Subroutine Library (ESSL) version 6.3 and

Spectrum MPI version 10.4.

Table 6.3 shows the time to solution of s-step GMRES for solving 2D Laplace

problem on a 5-point stencil (strong parallel-scaling), using different block orthog-

onalization schemes:
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• Compared to BCGS2 with CholQR2 that the original s-step GMRES uses,

BCGS-PIP2 reduces the number of synchronizations from five to two at every

s steps, and lowers the computational cost of the intra-block factorization by

a factor of 1.5×. The table shows that BCGS-PIP improved the performance,

especially as the latency starts to become more significant on a larger number

of nodes. Specifically, BCGS-PIP reduced the orthogonalization time by a

factor of 1.3× and 1.7× over the original s-step method on 1 and 32 nodes,

respectively, while achieving the respective speedups of 1.1× and 1.3× for

the time-to-solution.

• Two-stage approach further reduces the orthogonalization time, and with ŝ =

m, it obtained the speedups of 1.7× ∼ 1.4× over BCGS-PIP2, and hence,

the time-to-solution was also reduced by factors of about 1.2×.

(a) Time in seconds. (b) Fraction of time.

Figure 6.5: Orthogonalization time breakdown using BCGS2 with CholQR2 for 2D
Laplace, n = 20002.
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(a) Time in seconds. (b) Fraction of time.

Figure 6.6: Orthogonalization time breakdown using BCGS-PIP2 for 2D Laplace,
n,= 20002.

Figure 6.5 shows the breakdown of the orthogonalization time, using BCGS2

with CholQR2. For BCGS2, we show the time needed to compute the dot-products

and vector-updates. On a larger number of GPUs, the orthogonalization time be-

comes dominated more by the dot-products which require global synchronizations,

which are needed not only for BCGS2 but also for CholQR. In comparison, Figure

6.6 shows the breakdown of the orthogonalization time using BCGS-PIP2 where

the orthogonalization time was reduced by avoiding global synchronizations and

reducing the cost of intra-block orthogonalization of CholQR. Finally, Figure 6.7

shows the breakdown of the orthogonalization time using the two-stage approach

with ŝ = m. The two-stage approach further avoids global synchronizations and

further reduced the orthogonalization time.

To summarize the performance studies, Table 6.4 compares the performance of

s-step GMRES for 3D model problems and matrices from the SuiteSparse Matrix
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(a) Time in seconds. (b) Fraction of time.

Figure 6.7: Orthogonalization time breakdown using two-stage approach for 2D
Laplace, (n, ŝ) = (20002,m).

Collection. Since these matrices have similar dimensions, the required orthogonal-

ization time and the speedups gained using s-step with respective orthogonalization

algorithms were similar. Though the ratio of the orthogonalization time over the

iteration time depends on the required time for spmv with the matrices, BCGS-

PIP reduced the orthogonalization and iteration time by factors of 1.8 ∼ 2.0×

and 1.3 ∼ 1.8× over the original s-step GMRES, which had already obtained the

respective speedups of 1.8 ∼ 2.8× and 1.3 ∼ 1.8× over the standard GMRES.

The two-stage approach further improved the performance obtaining the respective

speedups of 1.4 ∼ 1.8× and 1.1 ∼ 1.3× for the orthogonalization and time-to-

solution.

Finally, Figure 6.8 shows a similar performance trend when a local Gauss-Seidel

preconditioner (block Jacobi with Gauss-Seidel in each block [5]) was used. We
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used the multicolor Gauss-Seidel [22] from Kokkos Kernels to get good perfor-

mance on the GPU.

Figure 6.8: Time per iteration breakdown of s-step GMRES with Gauss-Seidel
preconditioner for 2D Laplace, (n, ŝ) = (20002,m), along with the speedups over
standard GMRES for the orthogonalization (bottom) and iteration (top) time.

6.9 Conclusions and Outlook

We surveyed the current state-of-the-art block orthogonalization algorithms for s-

step GMRES, and this motivated a new method called BCGS-PIP2. We showed

BCGS-PIP2 reduces the cost of the orthogonalization and improves the perfor-

mance of s-step GMRES. Nevertheless, since s-step basis vectors can be extremely

ill-conditioned for a large step size s, to maintain the stability in practice, a small

step size needs to be used, which limits the performance gain that s-step GMRES

can bring. In order to improve the performance of block orthogonalization using
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a small step size, we introduced a two-stage version of BCGS-PIP2, which pre-

processes the s basis vectors at a time to maintain the well-conditioning of the basis

vectors but delay the orthogonalization until enough basis vectors are generated

to obtain higher performance. We presented numerical and performance results to

demonstrate its potential.

We are exploring combining this two-stage approach with other techniques,

such as random sketching. In a similar way that we developed rand cholQR to

significantly improve the stability of cholQR2 without incurring a substantial per-

formance hit in Chapter 5, integrating random sketching into our two-stage block

orthogonalization algorithm may allow us to perform more stable operations at a

lower computation cost, thereby removing many of the conditions required to guar-

antee its stability without significant performance overhead.
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Time / iter (ms)
# iters spmv Ortho Total

Laplace3D (Structured 3D model, SPD, n = 1003, nnz/n = 6.9)
standard 454 0.36 0.87 1.15
s-step 455 0.38 0.43 (2.0×) 0.76 (1.5×)
bcgs-pip2 455 0.37 0.24 (3.6×) 0.60 (1.9×)
two-stage 480 0.37 0.16 (5.4×) 0.52 (2.2×)
Elasticity3D (Structured 3D model, SPD, n = 3 · 1003, nnz/n = 5.7)
standard 36 0.37 0.80 1.17
s-step 40 0.39 0.45 (1.8×) 0.88 (1.3×)
bcgs-pip2 40 0.37 0.23 (3.5×) 0.65 (1.8×)
two-stage 60 0.33 0.14 (5.7×) 0.51 (2.3×)
atmosmodl (CFD, numerically non-symmetric, n = 1.5M, nnz/n = 6.9)
standard 213 0.31 0.79 1.06
s-step 215 0.37 0.38 (2.1×) 0.79 (1.3×)
bcgs-pip2 215 0.31 0.19 (4.2×) 0.50 (2.1×)
two-stage 240 0.35 0.14 (5.6×) 0.47 (2.3×)
dielFilterV2real (Electromagnet, symmetric indefinite, n = 1.2M, nnz/n = 41.9)
standard 491856 0.36 0.99 1.22
s-step 493145 0.33 0.36 (2.8×) 0.66 (1.8×)
bcgs-pip2 491865 0.30 0.19 (5.2×) 0.48 (2.5×)
two-stage 491880 0.31 0.11 (9.0×) 0.42 (2.9×)
ecology2 (Circuit, SPD, n = 1.0M, nnz/n = 5.0)
standard 3471536 0.25 0.80 1.04
s-step 3471540 0.24 0.34 (2.4×) 0.58 (1.8×)
bcgs-pip2 3471535 0.24 0.18 (4.4×) 0.42 (2.5×)
two-stage 3471540 0.25 0.10 (8.0×) 0.36 (2.9×)
ML Geer, (Structural, numerically non-symmetric, n = 1.5M, nnz/n = 73.7)
standard 1596564 0.28 0.74 1.00
s-step 1664400 0.29 0.37 (2.0×) 0.65 (1.5×)
bcgs-pip2 1613060 0.28 0.20 (3.7×) 0.47 (2.1×)
two-stage 1517460 0.28 0.11 (6.2×) 0.39 (2.6×)
thermal2 (Unstructured thermmal FEM, SPD, n = 1.2M, nnz/n = 7.0)
standard 139188 0.26 0.81 1.06
s-step 139190 0.26 0.36 (2.2×) 0.61 (1.7×)
bcgs-pip2 139190 0.25 0.20 (4.1×) 0.44 (2.4×)
two-stage 139200 0.27 0.13 (6.2×) 0.39 (2.7×)

Table 6.4: Time per iteration for 3D model problems and matrices from SuiteSparse
Matrix Collection on 16 Summit nodes; ParMETIS to distribute the matrix among
96 GPUs.
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