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Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular
beads confined in coupled columns may oscillate as a new type of granular clock. To trigger this
oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-
density clustering phase supported from below by a gas-like low-density phase (Leidenfrost effect) in
each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics
between the phases can amplify any small asymmetry between the columns, and lead to a giant
oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the
corresponding phase diagram can be universally described with a characteristic height of the density-
inverted structure. A minimal two-phase model is proposed and linear stability analysis shows that
the triggering mechanism of the oscillation can be explained as a switchable two-parameter Hopf
bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the
simulation results.

PACS numbers: 45.70.Qj

Nonequilibrium systems may exhibit self-sustained os-
cillations, which play important roles in the generation of
periodic rhythms in nature, especially in biological sys-
tems [1]. A purely physical and macroscopic illustration
of such nonequilibrium oscillations is the recently dis-
covered granular clock [2–9], which shows that bidiperse
beads can oscillate horizontally between connected com-
partments under vertical vibrations. The oscillation is
facilitated by the vertically heterogeneous species distri-
bution of beads in each compartment and the coupling
that naturally allows beads of different species to alter-
nately move between the compartments. Unlike some
previously-reported coupling induced oscillations [10–13],
this oscillation does not rely on purposely-designed frus-
trations or unidirectional coupling mechanisms. How-
ever, the complicate conditions for the oscillation in this
bidisperse system are too specific to provide any general
ideas on how to make oscillations through simple cou-
plings, which is a core problem in understanding many
biological dynamics. Thus it would be of great interest to
clearly show a coupling-induced spontaneous oscillation
in an even simpler granular system.

In this Letter, we numerically show that density het-
erogeneity, instead of bidispersity, may drive a simple
monodisperse granular system to oscillate in coupled
columns, as a new type of granular clock. The coupling
strength of the system can be monotonically tuned, and
we find that the oscillation is triggered only for an inter-
mediate range of the coupling strength. An oscillation
phase diagram is mapped out for different total num-
ber of beads and vibrational strength. A scaling relation
for the phase diagram is found, which indicates that the
occurrence of the oscillation depends critically on some

structural matching relations of the system. Based on
these results, a minimal two-phase model is proposed.
Linear stability analysis and numerical solutions of the
model qualitatively explain the triggering mechanism and
the global dynamics of the oscillation.

Using an event-driven molecular dynamics method
[14, 15], we simulate vertically vibrated two-dimensional
columns of monodisperse spherical beads under gravity
(in y-direction), as shown in Fig. 1. In our simulation,
the mass m and the diameter d of the beads are both
set to 1, and the time unit is

√

d/g with g being the
gravitational acceleration. The width of each column is
W = 10 [16], and the height of the side-walls is consid-
ered to be infinite. By assuming a saw-tooth vibration
with infinitely small amplitude A and infinitely large fre-
quency f , the bottom plate is assigned an constant up-
ward velocity vb = Af but effectively kept stationary
[17]. The coefficient of restitution between the beads is
e = 0.9, and the dissipation in a particle-wall collision is
neglected. Typically a two-column system is simulated,
and the columns are coupled through a bottom window
with tunable height hw in the separation wall [Fig. 1(c)].
The particles are permitted to pass through the window
if hw is large enough.

Initially, each column is filled with equal number of
beads, namely N1(0) = N2(0) = N/2 (subscript from 1
to 2 denotes the column index from left to right) with
N = N1 + N2 being the total number. Each simula-
tion runs with the window closed (hw = 0) at the be-
ginning. For proper N and vb, each column may exhibit
a Leidenfrost phenomenon [18, 19], i.e. the formation
of a density-inverted structure with a high-density clus-
tering phase (CP) supported from below by a gas-like
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FIG. 1. Simulation results for N = 500 and vb = 24: (a)
uncoupled granular columns with hw = 0; (b) the height of
the center of mass (y1com) and the number of beads (N1) for
the left column in (a); (c) two coupled granular columns with
hw = 32; (d) y1com and N1 for the left column in (c).

low-density phase (GP) [Fig. 1(a)]. The floating cluster
in an uncoupled column may fluctuate as a piston [20]
or show noisy resonances [21]. A similar irregular mo-
tion has also been observed in our simulation, as shown
in Fig. 1(b). However, the irregular motion is relatively
very small, and the system can still be thought to stay in
a steady state. In this equally-partitioned steady state
(EPSS), the two columns are statistically identical, and
share the same vertical number-density profile n0(y) with
the same characteristic height hinv of the floating clus-
ter. Here, n0(y) is measured by counting the number of
beads (averaged over time) per unit length in y-direction,
and hinv is evaluated as the height corresponding to the
maximum vertical gradient of n0(y) [19]. After the EPSS
is reached, the window is opened to the preset height of
hw. For two coupled columns with a proper hw [Fig. 1(c)-
1(d)], we find that the system oscillates fiercely with an
amplitude several times larger than that of the irregular
motion in the uncoupled case.
For given N and vb, regular oscillations are observed

only for an intermediate range of hw. As illustrated in
Fig. 2(a)-2(c), a good oscillation is observed at hw =
58 for N = 500 and vb = 30, but only a fluctuation-
like behavior is observed at smaller hw = 12 or larger
hw = 90. Generally, a larger hw indicates a stronger
coupling between the columns, and the oscillation occurs
only in the intermediate coupling regime. To investigate
the coupling effect in triggering the oscillation, we have
performed simulation runs with different hw for different
N and vb. Each run results in a curve like that shown in
either of Fig. 2(a)-2(c). We distinguish the quality of the
oscillation by calculating the auto-correlation function of
si(t) ≡ Ni(t)−N/2 for each curve:

C(τ) = 〈si(t)si(t+ τ)〉/σ2, (1)

where σ is the standard deviation of si(t), τ is the time
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FIG. 2. Coupled dynamics for N = 500, vb = 30: N1(t) for
weak coupling at hw = 12 (a), moderate coupling at hw = 58
(b), and strong coupling at hw = 90 (c); (d) the first positive
peak value C1 of the auto-correlation function of s1(t); the
averaged period (e) and amplitude (f) of s1(t) for different h,
respectively with relative error bars in arbitrary units.

lag, and 〈·〉 denotes a time average. C(τ) oscillates for
perfect oscillations but quickly vanishes for pure fluctua-
tions. We use the first positive peak value C1 of C(τ > 0)
to define the quality of an oscillation. For N = 500 and
vb = 30, C1 as a function of hw is shown in Fig. 2(d).
C1 first increase and then decrease, with increasing hw.
At about hw = 60, C1 reaches its maximum of almost 1
for a nearly perfect oscillation. Empirically, we define an
acceptable oscillation with C1 ≥ 0.75 (above the dotted
horizontal line). This gives a lower boundary hLO = 32
and a upper boundary hHI = 82 (dotted vertical lines)
of the range of hw for acceptable oscillations.
Meanwhile, we perform Hilbert spectral analysis [1] on

each oscillatory curve, which unambiguously gives the
instantaneous phase φ(t) ∈ [0, 2π) and amplitude A(t) of
the curve regardless of the oscillation quality:

si(t) + iH[si(t)] ≡ Ai(t) exp[iφi(t)], (2)

where H[·] denotes a Hilbert transform and i is the imag-
inary unit. Then, the apparent oscillation period can be
measured from φi(t). For N = 500 and vb = 30, the
averaged period and amplitude are respectively shown in
Fig. 2(e) and 2(f). In the regime C1 < 0.75 (hw < hLO

or hw > hHI), which is assumed to be non-oscillatory,
the relative errors for both the period and the amplitude
are quite large. Actually, neither the period nor the am-
plitude is well-defined in this regime. In the oscillatory
regime C1 ≥ 0.75 (hLO ≤ hw ≤ hHI), the period de-
creases with increasing hw, while the amplitude behaves
similarly to C1 and reaches a high plateau, which indi-
cates giant oscillations.

With the empirical criterion C1 ≥ 0.75, an oscillation
phase diagram can be obtained for different N and vb,
as shown in Fig. 3(a). Obviously, both hLO and hHI

increase with increasing vb but decrease with increasing
N , just as hinv of the EPSS behaves. Then a simple
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FIG. 3. Oscillation phase diagram: (a) oscillatory regimes
with lower boundaries shown in empty circles and upper
boundaries in empty squares, different N is distinguished by
colors, and no oscillation is observed for N = 700, vb < 12
and N = 300, vb > 26 (marked by vertical dotted lines); (b)
Collapsed phase diagram in the hw-hinv plane.

idea is to replot the phase diagram for different N and
vb with a single parameter, hinv(N, vb). Indeed, we ob-
tain a collapsed phase diagram with hinv for different N
and vb, as shown in Fig. 3(b). Thus, systems of different
N and vb but with the same hinv would share the same
oscillatory regime hLO < hw < hHI . The fact that hLO

and hHI are only functions of hinv, suggests that a struc-
tural matching between the window (hw) and the initial
density-inverted structure (hinv) may play an important
role in the oscillatory phenomenon. Two deductions on
this structural matching concept can be made. First,
when hw ≥ hinv, the two columns share the same gaseous
part, and actually merge into a wider non-oscillatory
single-column. This explains the collapsed linear relation
that hHI ≈ hinv in Fig. 3(b). Second, only if hw corre-
sponds to the height of a large enough vertical gradient of
n0(y), the triggering of the oscillation becomes possible
(explained in Fig. 4 and its context). As n0(y) can be
roughly determined by hinv [22], the collapse of hLO in
the hw-hinv plane can be understood. Further side sup-
port for the above concept is that no oscillation has been
observed for N = 700, vb < 12 or N = 300, vb > 26. For
large N = 700 and small vb < 12, n0(y) is highly com-
pressed due to the strong dissipation. Thus the range
from hLO to hHI would be too small to be observed in
our simulation. For small N = 300 and large vb > 26, the
whole system including the floating clusters tends to be
gasified. The vertical gradient of n0(y) would be rather
small, even if a density inversion is still present. As we
have mentioned above, a small density gradient will not
help in triggering an oscillation.

To verify the triggering mechanism of the oscillation,
we inspect in detail the oscillatory process. Four time-
sequential snapshots of one complete oscillation under
N = 500, vb = 24 and hw = 32 are shown in Fig. 4.
At time t = 290, a larger floating cluster is formed in
column 1 than that in column 2 because of the excessive
population (N1 > N2). The cluster in column 1 sinks

(a) t = 290(a) t = 290(a) t = 290 (b) t = 300(a) t = 290 (b) t = 300(a) t = 290 (b) t = 300 (c) t = 320(a) t = 290 (b) t = 300 (c) t = 320(a) t = 290 (b) t = 300 (c) t = 320 (d) t = 330(a) t = 290 (b) t = 300 (c) t = 320 (d) t = 330

1 2 1 2 1 2 1 2

FIG. 4. Time-sequential snapshots with density analysis for
one oscillation under N = 500, vb = 24, and hw = 32: (a)
t = 290; (b) t = 300; (c) t = 320; (d) t = 330, instantaneous
density profiles are shown in horizontal bars on the left (col-
umn 1) or right (column 2) side of each granular column, the
grey dashed line indicates the height of the window.

into the window region due to the lack of enough sup-
port at t = 300, and there the distinct density difference
between the two columns drives a massive flow of beads
from column 1 to 2. The beads that have entered col-
umn 2 are heated up by the bottom plate, and push the
smaller cluster on top to a higher place. As dissipation
increase dramatically with the increased population, the
beads in column 2 start to condensate and form an even
larger cluster at t = 320. Meanwhile, a much smaller but
higher cluster is formed in column 1 through an evap-
oration process due to the decreased population. The
relaxation time needed by both the evaporation and con-
densation processes, as well as the large horizontal den-
sity difference, allows enough beads to transfer, which
maintains a non-damping oscillation. After the evapora-
tion and condensation, the situation becomes similar to
that of Fig. 4(a), except that the two columns have been
playing reversed roles. Then following the same process,
column 2 drives beads back into 1, as shown in Fig. 4(d).
The above oscillation picture is valid even in the trigger-
ing moment, when the two columns are almost identical.
Large vertical gradient in n0(y) around hw may cause
large horizontal density difference in the window region
under perturbations. Thus any small population differ-
ence between the columns may be amplified through the
above process and the oscillation can be triggered.
To confirm the theoretical feasibility of the structural

matching concept and to clarify the critical role played
by the density gradient, we propose a minimal model for
the oscillation. We simplify the density profile ni(y) of
any column i by assuming that both GP and CP, respec-
tively with a population of Nig and Nic = Ni −Nig, are
homogeneous [Fig. 5(a)]. Both the inter-column and the
intra-column (between GP and CP) flows of beads need
to be considered. First, the outflow flux from column i

can be measured as Fi = λ
∫ hw

0
ni(y)dy [17, 23], where λ

is a vb dependent parameter. The net flux between the
columns, F12 = −F21 = F1 − F2, should mainly describe
the transfer of beads from CP in one column to GP in
the other column, as shown in Fig. 4. To emphasize
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FIG. 5. Theoretical model and numerical solutions for
N = 500 and vb = 24: (a) the simplified density profile (red
line) for a granular column; (b) the net flows between phases
considered in our model; (c) N1(t) for the steady state at
hw = 20 and the oscillatory state at hw = 30; (d) oscillation
amplitude and period of N1(t) for different hw.

this point, we further assume constant number densities,
ng and nc, respectively for GP and CP. Thus between
the columns, only CP-to-GP flows are allowed due to the
density difference, as illustrated in Fig. 5(b). Employing
the constant-density assumption, Fi can be easily calcu-
lated [24]. Second, we simply describe the flow between
GP and CP in column i with a rate Ei = −β(Nig−Ns

ig),
where superscript s represents the steady state of the col-
umn in the uncoupled case, and β is another vb dependent
parameter. As shown in Fig. 5(b), Ei > 0 indicates evap-
oration and Ei < 0 describes condensation. We assume
that Ns

ig(Ni) = Nie
−αNi [25], with a fitting parameter

α. Finally, the dynamics of the system can be described
by the following equations:

Ṅig = Ei + FjiH(Fji), Ṅi = Ṅic + Ṅig = Fji, (3)

where the overdot denotes the derivative with respect to
time, H(·) is the Heaviside step function, i runs from 1
to 2, and j = 3− i.
When hw = 0, the coupling term Fij = 0. For an

initial state with N1 = N2 = N/2, the system repre-
sented by Eqs. (3) will obviously stay in an EPSS with
fixed Nig = Ns

ig(N/2) ≡ nghinv. Around the EPSS,
∂F12/∂Nig ∝ S ≡ λ(nc/ng − 1)H(hw − hinv). Linear
stability analysis [24] shows that a Hopf bifurcation with
respect to β exists for S > 0 but not for S = 0. Though
β cannot be varied in our case, the system is possibly
already in the oscillatory regime (β < S) once the Hopf
bifurcation is switched on by S. Thus the triggering dy-
namics of the oscillation can be understood as a switch-
able two-parameter Hopf bifurcation, and the switch S
gives a structural matching boundary hLO = hinv for the
oscillation. Moreover, S ∝ (nc−ng), which also indicates
the density gradient around the height of hinv, should be
large enough (S > β) to trigger the oscillation. Since
neither hw nor S is the Hopf bifurcation parameter, it is

also explained why no obvious Hopf-like behaviors in the
amplitude and period [Fig. 2(e)-(f)] are found near the
triggering point in the simulation results.

To numerically solve the model, a close packing den-
sity nc = 2/

√
3W for CP and ng = 0.2W for GP are

adopted according to the simulation results. We keep N
and vb fixed, say N = 500, vb = 24. Then, α ≈ 0.006 can
be obtained by fitting the data from the simulation of
isolated columns, and this gives hinv ≈ 27.9. We choose
β = 0.05, λ = 0.20 to recover similar dynamics to the
simulation results. Then Eqs. (3) can be solved with
the Runge-Kutta method. A stable fixed-point solution
corresponding to the EPSS exists for S = 0 (hw < hinv),
and loses its stability to give way to an oscillation when
S becomes positive (hw > hinv), as shown in Fig. 5(c).
Our model also sets an upper boundary hHI ≈ 45 for the
oscillation. In the oscillatory regime hLO < hw < hHI ,
similar behaviors in the oscillation amplitude and period
to the simulation results [Fig. 2(e)-(f)] are found, as
shown in Fig. 5(d). Hence almost all the characteristics
of the oscillation are recovered with this simple model.
In conclusion, a coupling-induced giant oscillation is

discovered for the first time in a simple monodisperse
granular system, which indicates that high-energy spatial
patterns like granular Leidenfrost states may be sponta-
neously converted into temporal patterns in a nonequilib-
rium system. The triggering mechanism of the oscillation
is confirmed and a switchable Hopf bifurcation is identi-
fied by our minimal model. Controlled by the switch pa-
rameter, the dynamics of the system differs significantly
from a typical Hopf bifurcation.

Furthermore, the oscillation is robust in simulation for
different e or inelastic collision models, or for a reasonable
range of W [26]. Instead of the underlying mechanism of
the clustering behavior, the density structure proves to
be critical to the oscillation, as also evidenced by our
model. A previous study on a similar system [27] has
reported that, in the absence of external fields, cluster-
ing behaviors due to dissipation only lead to asymmetric
steady states. In such a circumstance, the density struc-
ture barely stores any potential energy and cannot pro-
vide an efficient feedback mechanism in the coupled dy-
namics. Thus no oscillation can be observed. Similar to
the phenomena of granular Maxwell demon [28] and the
bidisperse granular clock [9], our system can be extended
to the case of three or more coupled columns, in which
similar oscillations are observed [26]. Due to the sim-
plicity and extensibility of our system, the above results
may help in understanding some complex biological oscil-
lations. Our further study will focus on the experimental
observation of such a monodisperse granular clock.

We thank Dr. Yinchang Li for his preliminary work
on the simulation. R. L. thanks Prof. C. K. Chan and
P. Y. Lai for useful discussions. This work is supported
by National Natural Science Foundation of China (Grant
No. 11404378 and 11474326), the MOST 973 Program



5

(Grant No. 2015CB856800), and the Chinese Academy
of Sciences “Strategic Priority Research Program SJ-10”
(Grant No. XDA04020200).

∗ lr@iphy.ac.cn
† kechen@iphy.ac.cn
‡ mayhou@iphy.ac.cn
§ ericto@gate.sinica.edu.tw

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchroniza-
tion: A Universal Concept in Nonlinear Sciences (Cam-
bridge University Press, New York, 2001).

[2] R. Lambiotte, J. M. Salazar, and L. Brenig, Phys. Lett.
A 343, 224 (2005).

[3] G. Costantinia, D. Paolotti, C. Cattuto, and U. M. B.
Marconi, Physica (Amsterdam) 347A, 411 (2005).

[4] T. Miao, Y. Liu, F. Miao, and Q. Mu, Chin. Sci. Bull.
50, 740 (2005).

[5] S. Viridi, M. Schmick, and M. Markus, Phys. Rev. E 74,
041301 (2006).

[6] M. Hou, H. Tu, R. Liu, Y. Li, K. Lu, P.Y. Lai, and C.
K. Chan, Phys. Rev. Lett. 100, 068001 (2008).

[7] R. Liu, Y. Li, and M. Hou, Phys. Rev. E 79, 052301
(2009).

[8] Y. Li, R. Liu, and M. Hou, Phys. Rev. Lett. 109, 198001
(2012).

[9] S. Hussain, Y. Li, F. Cui, Q. Zhang, E. Pierre, and M.
Hou, Chin. Phys. Lett. 29, 034501 (2012).

[10] V. In, A. R. Bulsara, A. Palacios, P. Longhini, A. Kho,
and J. D. Neff, Phys. Rev. E 68, 045102(R) (2003).

[11] V. In, A. Palacios, A. R. Bulsara, P. Longhini, A. Kho,
J. D. Neff, S. Baglio, and B. Ando, Phys. Rev. E 73,
066121 (2006).

[12] A. R. Bulsara, V. In, A. Kho, P. Longhini, A. Palacios,
W. J. Rappel, J. Acebron, S. Baglio, and B. Ando, Phys.
Rev. E 70, 036103 (2004).

[13] M. Hernandez, V. In, P. Longhini, A. Palacios, A. Bul-
sara, and A. Kho, Phys. Lett. A 372, 4381 (2008).

[14] D. C. Rapaport, The art of molecular dynamics simula-
tion (Cambridge University Press, Cambridge, 1997).
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