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ABSTRACT 

While traumatic aortic injury (TAI) and rupture (TAR) continue to be a major cause 

of morbidity and mortality in motor vehicle accidents, its underlying mechanisms are still 

not well understood. Different mechanisms such as increase in intraluminal pressure, 

relative movement of aorta with respect to mediastinal structures, direct impact to bony 

structures have been proposed as contributing factors to TAI/TAR. At the tissue level, TAI 

is assumed to be the result of a complex state of supra-physiological, high rate, and multi-

axial loading. A major step to gain insight into the mechanisms of TAI is a characterization 

of the aortic tissue mechanical and failure properties under loading conditions that 

resemble traumatic events. While the mechanical behavior of arteries in physiological 

conditions have been investigated by many researchers, this dissertation was motivated by 

the scarcity of reported data on supra-physiological and high rate loading conditions of 

aorta. 

Material properties of the porcine aortic tissue were characterized and a Fung-type 

constitutive model was developed based on ex-vivo inflation-extension of aortic segments 

with intraluminal pressures covering a range from physiological to supra-physiological (70 

kPa). The convexity of the material constitutive model was preserved to ensure numerical 

stability. The increase in 𝜆𝜃 from physiological pressure (13 kPa) to 70 kPa was 13% at 

the outer wall and 22% at the inner wall while in this pressure range, the longitudinal stretch 

ratio 𝜆𝑧 increased 20%.  A significant nonlinearity in the material behavior was observed 
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as in the same pressure range, the circumferential and longitudinal Cauchy stresses at the 

inner wall were increased 16 and 18 times respectively. The effect of strain-rate on the 

mechanical behavior and failure properties of the tissue was characterized using uniaxial 

extension experiments in circumferential and longitudinal directions at nominal strain rates 

of 0.3, 3, 30 and 400 s-1. Two distinct states of failure initiation (FI) and ultimate tensile 

strength (UTS) were identified at both directions. Explicit direct relationships were derived 

between FI and UTS stresses and strain rate. On the other hand, FI and UTS strains were 

rate independent and therefore strain was proposed as the main mechanism of failure. On 

average, engineering strain at FI was 0.85±0.03 for circumferential direction and 0.58±0.02 

for longitudinal direction. The engineering strain at UTS was not different between the two 

directions and reached 0.89±0.03 on average. Tissue pre-failure linear moduli showed an 

average of 60% increase over the range of strain rates. Using the developed material model, 

mechanical stability of aorta was studied by varying the loading parameters for two 

boundary conditions, namely pinned-pinned boundary condition (PPBC) and clamped-

clamped boundary condition (CCBC). The critical pressure for CCBC was three times 

higher than PPBC. It was shown that the relatively free segment of aorta at the isthmus 

region may become unstable before reaching the peak intraluminal pressures that occur 

during a trauma. The mechanical instability mechanism was proposed as a contributing 

factor to TAI, where elevations in tissue stresses and strains due to buckling may increase 

the risk of injury.   
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CHAPTER 1 

INTRODUCTION 

 

 

Traumatic Aortic Rupture (TAR) is one of the leading causes of fatality in motor 

vehicle accidents. The most recent study on car crash accidents shows that although TAR 

takes place in a fairly small percentage of the automotive accidents (1.2%), it accounts for 

more than 20% of the total fatalities. Fatality rate in passengers who experience aortic 

injury in an accident ranges from 91% to 100% depending on relative side of the impact 

with more than 85% of the fatalities occurring at the scene. Many of the patient who do not 

have a full rupture and arrive at a care center, die within the first 24 hours due to injuries 

and complications in aorta that here are referred to as Traumatic Aortic Injury (TAI) (Lee 

et al., 2011).  

While TAI and TAR continue to be major causes of morbidity and mortality in 

motor vehicle accidents, their underlying mechanisms are still not well understood. It has 

been nevertheless agreed upon that a single factor cannot lead to TAI or TAR and a 

combination of different factors generates stresses and strains in the tissue that exceed the 

injury and failure levels. These factors include direct impact to the chest, relative 

movement of aorta with respect to mediastinal structures, and blood pressure increase in 

aorta during an accident among others (Neschis, Scalea, Flinn, & Griffith, 2008). 

A major step to gain an insight into the mechanisms of TAI and TAR is to 

understand the mechanical behavior of aortic tissue under loading conditions that lead to 
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the injury and failure. Although the mechanical properties of blood vessels under 

physiological conditions have been investigated and modeled by many researchers, due to 

material nonlinearity and rate dependence, these models cannot be applied to supra-

physiological pressures and high rate deformations that occur in automotive crashes.  

It has been shown recently that a pressure increase in aorta would not only increase 

the strains and stresses in the tissue due to inflation, but also will cause the artery to deviate 

from its original configuration into a buckled form at the arch and proximal descending 

aorta (Han, 2009b; Rachev, 2009). This type of mechanical instability would ultimately 

increase the level of strains and stresses in the tissue and can be a contributing factor in the 

mechanisms of TAI and TAR, and one that has not been investigated before.  

The objective of this dissertation was to advance our understanding of the 

mechanisms of TAI/TAR. This was accomplished by characterizing the mechanical 

behavior and failure properties of the aortic tissue under the supra-physiological 

intraluminal pressures and multirate deformations that may cause TAI/TAR. Additionally, 

the mechanical instability of aorta as a contributing factor in increasing tissue strains and 

stresses was investigated. The content of the manuscript is structured as follows: 

 

Chapter 2: Mechanical behavior of aorta in supra-physiological intraluminal 

pressures. This chapter reports the mechanical behavior of the porcine aortic tissue under 

intraluminal pressures up to 5 times higher than the physiological range. A custom-made 

inflation-extension test setup used in this study and the testing procedure is explained. 

Mechanical behavior of the tissue is reported through experimental stress-strain curves and 
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a Fung-type constitutive model. The material model was verified against previously 

published data on porcine aorta. 

 

Chapter 3: Multirate mechanical behavior and failure properties of aortic 

tissue. The results of multirate uniaxial tests on strips of porcine aorta are reported in this 

chapter. First, a multirate uniaxial test system that was designed and made specifically for 

this study is described. Small coupon samples were cut in both circumferential and 

longitudinal directions near the aortic arch. Failure initiation stresses, ultimate tensile 

strengths and their corresponding strains are identified and compared at different strain 

rates. Additionally, the rate dependence of the pre-failure linear moduli is explained. The 

range of strain rates in this study is significantly increased compared to previous studies.  

 

Chapter 4: Mechanical instability of aorta due to intraluminal pressure. In this 

chapter, the results of numerical studies on the mechanical instability of aorta are reported. 

The analytical procedure is explained and the effects of boundary conditions, as well as 

geometry and loading parameters, are investigated. The increase in tissue stresses and 

strains due to buckling are estimated and discussed as contributing factors in the 

mechanism of TAI/TAR.  

 

Chapter 5 summarizes the results and proposes some directions for future research 

projects 
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Appendix A presents the mathematical formulations of the inflation-extension 

experiments. The theory of deriving the uniaxial response from a three-dimensional 

hyperelastic constitutive model is presented in Appendix B. Appendix C includes all 

experimental data from uniaxial experiments. 

 

Chapters 2, 3, and 4 are written in the form of stand-alone journal papers.  Chapters 

2 and 4 have been already submitted and the other chapter will soon be submitted. The 

results discussed here have been presented at several national conferences in the past few 

years.    
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CHAPTER 2 

MECHANICAL BEHAVIOR OF AORTA IN SUPRA-PHYSIOLOGICAL 

INTRALUMINAL PRESSURES 

 

Introduction  

There is an increasing need for characterizing the mechanical behavior of arteries 

in supra-physiological pressures (Holzapfel & Gasser, 2007; Sommer, Regitnig, 

Költringer, & Holzapfel, 2010) due to its application in different scenarios such as chest 

trauma (Bass et al., 2001; Hardy et al., 2008), balloon angioplasty (Castaneda-zunlga et al., 

1980; Holzapfel, Stadler, & Schulze-Bauer, 2002), and endovascular stenting (Holzapfel, 

Stadler, & Gasser, 2005; Rogers, Tseng, Squire, & Edelman, 1999). Accurate description 

of arteries’ mechanical behavior is a crucial step in developing computational models that 

are used to predict their deformation in complex loading conditions.  Conducting multi-

axial experiments on arteries is not trivial. An example where experimental models are not 

conclusive is traumatic injury of aorta, which is a leading cause of accidental fatalities 

(Bass et al., 2001; Hardy et al., 2008; Pearson et al., 2008). In this case, more accurate 

constitutive models of aorta are necessary for determining the mechanisms of tissue 

deformations and injury.  

Several experimental methods have been reported in the literature for 

characterizing the mechanical behavior of aorta. Indentation tests were used to describe the 

local tissue behavior and quantify its heterogeneity (Hemmasizadeh, Darvish, & Autieri, 
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2012b; Matsumoto, Goto, Furukawa, & Sato, 2004). However, these studies were limited 

to small deformations and their results, due to material nonlinearity, are not suitable for 

modeling tissue response under large deformations. Uniaxial tension and planar biaxial 

tests on excised tissue have been used extensively to characterize the mechanical properties 

of aortic wall in large deformations (Bass et al., 2001; Gundiah et al., 2008; Mohan & 

Melvin, 1982; Prendergast et al., 2003; Sokolis, 2007; Stemper, Yoganandan, & Pintar, 

2007). Mechanical properties of human aorta from uniaxial experiments showed a 

significant anisotropy and dependence on loading rate and age (Mohan & Melvin, 1982). 

Similar tests were carried out on porcine aorta in which the failure initiation in the 

longitudinal direction, i.e., the first visible tear, and the corresponding stresses and strains 

were determined  (Stemper et al., 2007).  In experiments on excised tissue, the cylindrical 

microstructure of the aortic wall is altered, and the stress in the radial direction is assumed 

to be zero (two-dimensional models). Similarly, in membrane inflation experiments, tissue 

is considered as a thin layer and the distribution of stress within the thickness is ignored 

(Marra, Kennedy, Kinkaid, & Fillinger, 2006; Mohan & Melvin, 1983; Pearson et al., 

2008). Therefore, such results cannot be used to investigate the stress distribution within 

the aortic wall which is essential for predicting the location of initiation of failure and its 

propagation across the wall thickness (Azizzadeh et al., 2011; Stemper et al., 2007).       

In inflation-extension tests, the anatomical microstructure (e.g. elastic lamellae) 

and residual stresses of aorta are preserved and intraluminal pressure causes tissue 

deformation similar to in vivo conditions (Humphrey, Kang, Sakarda, & Anjanappa, 1993). 

Previously published studies on inflation-extension experiments on human and porcine 



7 

 

aorta were focused on the tissue behavior in the physiological range (Kim & Baek, 2011; 

Labrosse, Beller, Mesana, & Veinot, 2009; Labrosse, Gerson, Veinot, & Beller, 2013; M 

A Lillie, Armstrong, Gérard, Shadwick, & Gosline, 2012; M.A. Lillie, Shadwick, & 

Gosline, 2010). Both fixed-fixed (Kim & Baek, 2011; M A Lillie et al., 2012; M.A. Lillie 

et al., 2010) and fixed-free (Labrosse et al., 2009, 2013) boundary conditions at the two 

ends of the specimen have been utilized previously. In this study, the fixed-free boundary 

condition was implemented in order to avoid buckling of the segment (Han, 2007; M 

Rastgar Agah, Laksari, Darvish, & Rachev, 2012) in supra-physiological pressures.  This 

boundary condition was verified previously by Labrosse et al. (Labrosse et al., 2009, 2013) 

in the physiological range. They validated the experimental method against simulated data 

from previously published material models based on the fixed-fixed boundary condition 

and concluded that the identified material parameters from the two methods were the same. 

Several investigators have reported constitutive modeling of arteries from inflation-

extension experiments (Y. C. Fung, Fronek, & Patitucci, 1979; García et al., 2011; 

Labrosse et al., 2009, 2013; Schulze-Bauer, Mörth, & Holzapfel, 2003; Vorp, Rajagopal, 

Smolinski, & Borovetz, 1995). However, to the best of our knowledge, this study is the 

first to characterize the mechanical behavior of aorta in physiological and supra-

physiological loading conditions using inflation-extension tests.   
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Materials and Methods 

Experimental Setup 

Six porcine descending thoracic aortas were acquired from a local slaughterhouse 

and transported in ice-cold Phosphate Buffered Saline (PBS) to the laboratory and stored 

at 4oC before experiments. Porcine aorta has been widely studied in the literature and it has 

been shown that it is similar to young and healthy human aorta in terms of mechanical 

behavior and geometry (Bass et al., 2001; García et al., 2011; Pearson et al., 2008). All 

tests were conducted within 16 hours post-mortem. Adipose and connective tissues were 

removed, and approximately 200 mm length straight samples were excised between the 

arch and the 6th intercostal arteries. Two 3-mm-thick rings from the two ends of the samples 

were cut with a scalpel for measuring the stress-free geometry and the opening angle.  Two 

miniature fiber optic pressure sensors (FOP-MIV-R1, FISO, Quebec, Canada) were 

inserted into two intercostal arteries close to the middle of the sample, and all branches 

were ligated at the base using surgical sutures. A 6×6 array of black beads, as photo targets, 

with the resolution of approximately 12 mm × 50o in longitudinal and circumferential 

directions was attached to the external surface using a minimal amount of cyanoacrylate 

glue. The distal end was blocked by a slider that could move freely in a low-friction self-

aligning linear bearing and allowed free axial movement. The proximal end was attached 

to a fixed brass pipe fitting through which the sample was pressurized with PBS at room 

temperature. The gauge pressure of the fluid, just before entering the sample, was measured 

by an analog pressure sensor (PX303, Omega Engineering, Stamford, CT), and inside the 

sample, with the fiber optic sensors. The absence of leakage in the specimen was verified 
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by assuring that the three pressure measurements were equal. The sample with the attached 

supports and transducers was encased in a clear container that was filled with PBS (Figure 

1). Fluid pressurization was accomplished using a diaphragm accumulator (30573, Jabsco, 

Basingtoke, UK) which was controlled by a proportional pressure regulator (550X, Control 

Air, Amherst, NH) connected to a 6 bar air supply. Samples were preconditioned by 

applying five pressurization cycles at 1 Hz in the physiological range (0-20 kPa). The 

intraluminal pressure was then increased from 0 to 70 kPa (525 mmHg) at a rate of 1 kPa/s, 

and the data were recorded. Sample deformation was measured by tracking the three-

dimensional motion of the photo targets captured by two cameras (FASTCAM SA3, 

Photron, San Diego, CA) that acquired two direct images and two reflection images from 

a front-facing mirror at 60 frames per second.  

Figure 1- Schematic of inflation-extension test setup. 
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Stress-Free Configuration 

The two rings obtained from proximal and distal ends of each sample were cut in 

the axial direction while floated in PBS and allowed to reach the stress-free geometry in 

about 20 minutes (Rachev & Greenwald, 2003). The closed and open rings were 

photographed, and the outer and inner perimeters in stress-free and load-free configurations 

were measured using MATLAB image processing toolbox.  The stress-free parameters 

(outer radius 𝑅𝑜, thickness 𝐷, and opening angle Θ0), and load-free parameters (outer 

radius 𝑟𝑜 and thickness 𝑑), as shown in Figure 2, were calculated following the method 

explained in (Chuong & Fung, 1986).  

Deformed Configuration 

The three-dimensional motion of the photo targets was calculated using an open-

source MATLAB code (Hedrick, 2008). Approximately 35 mm segments in the middle of 

the samples were used for further analysis (Figure 3-a). It was assumed that this segment 

length was small enough that would undergo a homogenous deformation. Segments 

consisted of three transverse sections of photo targets, namely proximal, middle, and distal 

sections. A cylinder was fit to the photo targets of the three sections (Figure 3-b). It was 

assumed that the principal axes of the cylinder were aligned with the material principal 

axes (Holzapfel & Ogden, 2010, 2008).  This assumption was verified by observing no 

twist about the longitudinal axis during inflation.  
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Figure 2– Load-free and stress-free configurations: Schematic (top) and images 

of load-free and stress-free cross sections at the two ends of the samples (bottom) 
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 The principal stretch ratios in the circumferential and longitudinal directions (𝜆𝜃, 

𝜆𝑧) were determined by mapping the stress-free configuration (𝑅, Θ, and 𝑍) to the current 

configuration (𝑟, 𝜃, and 𝑧) (Holzapfel, Gasser, & Ogden, 2000) : 

 

 𝜆𝜃 =
𝜋

(𝜋 − Θ0)

𝑟

𝑅
, 𝜆𝑧 =

𝑧

𝑍
   (2.1-a) 

in which 𝑧(𝑝 = 0)  =  𝑍 was considered as the stress-free length. The radial stretch ratio 

(𝜆𝑟) was determined based on the incompressibility assumption:  

Figure 3–Measurement of aortic segment deformation a) two snapshots of a sample at 

intraluminal pressures of 0 (top) and 70 kPa (bottom).  b) Corresponding virtual cylinders 

obtained from image processing. The positions of the front and back photo targets 

relative to the fitted cylinder are shown by blue dots and black stars respectively. 
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 𝜆𝑟 =
𝜕𝑟

𝜕𝑅
= 

1

𝜆𝜃𝜆𝑧
 (2.1-b) 

Based on the measured outer radius 𝑟𝑜 and length z, the radial coordinate 𝑟 for a reference 

radius 𝑅 was obtained by integrating Equation (2.1-b):  

 𝑟 = √𝑟𝑜2 −
1

𝜆𝑧

(𝜋 − Θ0)

𝜋
(𝑅𝑜

2 − 𝑅2) (2.2) 

The nonzero components of the Lagrangian strain tensor in 𝑟, 𝜃, and 𝑧 directions were 

calculated as  𝐸𝑟 =
1

2
(𝜆𝑟

2 − 1), 𝐸𝜃 =
1

2
(𝜆𝜃

2 − 1) and 𝐸𝑧 =
1

2
(𝜆𝑧

2 − 1). 

Homogeneity of deformation 

Homogeneity of the deformation of segments in  𝜃 and 𝑧 directions was verified by 

comparing the positions of the photo targets at 0 and 70 kPa pressures (Figure 4) in the 

following three steps:  a) At each section, the angles of 5 circular sectors at the two 

pressures (𝛼0
𝑖  and 𝛼70

𝑖 ) were compared using linear regression analysis to determine 

whether they were equal, i.e., 𝜆𝜃 stayed uniform in the 𝜃 direction, b) 𝜆𝜃 at the proximal, 

middle, and distal sections were compared using ANOVA to determine whether 𝜆𝜃 was 

uniform in the 𝑧 direction, and  c) 𝜆𝑧 at the proximal and distal halves were compared using 

student’s t-test to verify its uniformity in the 𝑧 direction. 
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Calculation of Wall Stresses 

In order to calculate the stress tensor, an incompressible Fung-type strain energy 

density function (SEDF) (Y. C. Fung et al., 1979) was considered in the following form: 

 

 𝑊 =
1

2
𝑐[exp(𝑬𝑇𝑪𝑬) − 1] − 𝐻(𝐽 − 1) (2.3-a) 

in which 

 𝑬 = [
𝐸𝑟

𝐸𝜃

𝐸𝑧

],  𝑪 = [

𝑐1 𝑐4 𝑐5

𝑐4 𝑐2 𝑐6

𝑐5 𝑐6 𝑐3

] (2.3-b) 

Here, 𝑬 is the vector of normal Lagrangian strain components, 𝑪 is the matrix of material 

parameters 𝑐1 to 𝑐6 which together with the scaling factor 𝑐 should be determined based on 

experimental data. 𝐽 is the change in volume and 𝐻 is a Lagrange multiplier that is 

determined from the boundary conditions.  

Figure 4– Verification of homogeneity of deformation: Changes in the radial and 

circumferential positions of the photo targets at three sections (distal, middle, and 

proximal) of a representative aorta segment from 0 (dashed line) to 70 kPa (solid line) 

intraluminal pressure. Representative angles of circular sectors at 0 and 70 kPa are 

denoted by 𝛼0
𝑖  and 𝛼70

𝑖  
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The nonzero (principal) components of the Cauchy stress tensor were determined 

from equilibrium equations (Chuong & Fung, 1983):  

 𝑇𝑟 = ∫ (𝜆𝜃
2 𝜕𝑊

𝜕𝐸𝜃
− 𝜆𝑟

2 𝜕𝑊

𝜕𝐸𝑟
)
𝑑𝑟

𝑟

𝑟

𝑟𝑖

− 𝑝  (2.4-a) 

  𝑇𝜃 = 𝑇𝑟 + 𝜆𝜃
2 𝜕𝑊

𝜕𝜃
− 𝜆𝑟

2 𝜕𝑊

𝜕𝑟
 (2.4-b) 

 𝑇𝑧 = 𝑇𝑟 + 𝜆𝑧
2 𝜕𝑊

𝜕𝑧
− 𝜆𝑟

2 𝜕𝑊

𝜕𝑟
 (2.4-c) 

Two independent equations were used for material parameter identification.  The first 

equation was derived from applying the boundary condition in the 𝑟 direction (𝑇𝑟(𝑟 =

𝑟𝑜) = 0) to Equation (2.4-a): 

 𝑝 = ∫ (𝜆𝜃
2 𝜕𝑊

𝜕𝐸𝜃
− 𝜆𝑟

2 𝜕𝑊

𝜕𝐸𝑟
)
𝑑𝑟

𝑟

𝑟𝑜

𝑟𝑖

  (2.5-a) 

The second equation was the equilibrium in the 𝑧 direction:  

  𝐹𝑧 = 𝑝 𝐴𝑙𝑢𝑚 = 2𝜋 ∫ 𝑇𝑧 𝑟 𝑑𝑟
𝑟𝑜

𝑟𝑖

 (2.5-b) 

in which 𝐹𝑧 is the axial force and Alum is the current lumen cross-sectional area. Details of 

the derivations of the equations given in this section are provided in Appendix A.  

Optimization of Material Properties 

Based on the experimentally measured pressure 𝑝 and stretch ratios at the outer 

wall 𝜆𝜃(𝑟𝑜) and 𝜆𝑧, the material parameters given in Equations (2.3-a) and (2.3-b) were 

determined by optimizing equations (2.5-a) and (2.5-b) using MATLAB lsqcurvefit 

function. To ensure the convexity of 𝑊, matrix 𝑪 should be positive definite (Federico, 
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Grillo, Giaquinta, & Herzog, 2007). To obtain a positive definite 𝑪 without additional 

constraints in the optimization, the Cholesky factorization was used to replace the 6 

components of 𝑪 with 6 components of the corresponding lower triangular matrix 𝑳 as 

given below (Trefethen & David B, 1997)  

 𝑪 = [

𝑐1 𝑐4 𝑐5

𝑐4 𝑐2 𝑐6

𝑐5 𝑐6 𝑐3

] = 𝑳 𝑳𝑇 = [

𝑙1
2 𝑙1𝑙4 𝑙1𝑙5

𝑙1𝑙4 𝑙2
2 + 𝑙4

2 𝑙2𝑙6 + 𝑙4𝑙5
𝑙1𝑙5 𝑙2𝑙6 + 𝑙4𝑙5 𝑙3

2 + 𝑙5
2 + 𝑙6

2

] (2.6) 

After determining the material parameters for each sample, the material parameters of an 

overall SEDF were obtained by fitting a surface for 𝑊 in 𝜆𝑧 − 𝜆𝜃 domain (𝜆𝑧 ≥  1, 𝜆𝜃 ≥

1) to 6 surfaces obtained for the samples using MATLAB surface fitting sftool.  

Results 

Stress-free and load-free geometries of the samples are listed in Table 1. These 

values were used in equations (2.1-a) and (2.1-b) to calculate the stretch ratios. Variation 

of 𝜆𝜃(𝑟𝑜) and 𝜆𝑧 versus pressure are given in Figure 5-a and Figure 5-b. After about 20 kPa 

the slope of the stretch ratio versus pressure curves dramatically changed. Stretch ratios at 

the outer radius reached 𝜆𝜃(𝑟𝑜) = 1.43 ± 0.02 and 𝜆𝑧 = 1.46 ± 0.06 (mean ± 95% margin 

of error) at 70 kPa which were 13% and 20% higher than their values at physiological 

pressure of 13 kPa.  (𝜆𝜃(𝑟𝑜) =  1.26 ± 0.05 and 𝜆𝑧 = 1.22 ± 0.03). 
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Table 1 - Stress-free and load-free parameters of porcine aorta samples 

 

S
am

p
le 1

 

S
am

p
le 2

 

S
am

p
le 3

 

S
am

p
le 4

 

S
am

p
le 5

 

S
am

p
le 6

 

average ± 95% 

margin of error 

𝑹𝒐(𝒎𝒎) 9.71 12.77 11.60 12.47 11.81 8.68 11.17 ± 1.70 

𝑫(𝒎𝒎) 2.46 2.22 2.48 2.44 2.70 2.34 2.44 ± 0.17 

𝚯𝟎(𝒅𝒆𝒈) 28.8 62.4 42.2 60.2 39.8 11.5 40.8 ± 20.2 

𝒓𝒐(𝒎𝒎) 8.64 8.84 9.79 10.09 10.09 8.28 9.29 ± 0.84 

𝒅(𝒎𝒎) 2.34 2.18 2.26 2.01 2.48 2.31 2.26 ± 0.17 

   

Figure 5-c shows that 𝜆𝜃(𝑟𝑜) was slightly smaller than 𝜆𝑧 with fixed-free boundary 

condition (𝜆𝜃(𝑟𝑜) = 0.76𝜆𝑧 + 0.32,𝑅2 = 0.86). For an isotropic thin wall pressure vessel, 

the slope of the 𝜆𝜃 vs 𝜆𝑧 curve is 2. The observed difference in the slope is an indication 

of orthotropic material behavior and that the tissue was stiffer in the 𝜃 direction.  
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Figure 5– Summary of experimental stretch ratios at the outer surface: a) 

Circumferential and b) Longitud inal stretch ratios vs internal pressure, and c) 

Circumferential vs longitudinal stretch ratio. The mean values and 95% confidence 

interval is shown for three levels of pressure, namely 13, 40 and 70 kPa. 
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Three levels of applied pressure, namely the physiological (13 kPa), the maximum 

(70 kPa), and a mid-range pressure (40 kPa) were chosen to compare the distributions of 

calculated 𝜆𝜃 and 𝜆𝑟 across the aortic wall as shown in Figure 6-a and 2.6-b. The wall 

thickness was normalized with 0 and 1 corresponding to 𝑟𝑖 and 𝑟𝑜 respectively. The spatial 

variability (gradient) of 𝜆𝜃increased significantly at higher pressures. The difference of 

10% between the values at 𝑟𝑖 and 𝑟0 at 13 kPa was raised to 19% and 21% at 40 and 70 kPa 

respectively. The maximum 𝜆𝜃(𝑟𝑖) reached 1.71 ± 0.15 that was 23% higher than the 

corresponding value at 13 kPa. Since 𝜆𝑧 was assumed to be constant at each pressure level, 

the increase in 𝜆𝜃 was accompanied by a decrease in 𝜆𝑟. 

The three steps used to verify the homogeneity of the deformation of segments 

confirmed this assumption. Linear regression between the angles of circular sectors at 0 

and 70 kPa showed that they were almost equal (𝛼70 
𝑖 = 0.99𝛼0

𝑖 , 𝑅2  =  0.984, 𝑝 <

 0.001). Change of 𝜆𝜃(𝑟𝑜) from 0 to 70 kPa at the proximal, middle, and distal sections 

were 1.39 ± 0.05, 1.36 ± 0.05 and 1.34 ± 0.06 respectively and were not statistically 

different (𝑝 = 0.12). 𝜆𝑧 at the proximal and distal halves were 1.46 ± 0.10 and 1.45 ±

0.08 respectively and their difference was not statistically significant (𝑝 = 0.81). 

A representative result of material characterization is given in Figure 7. Measured  

𝜆𝜃(𝑟𝑜) and 𝜆𝑧 at about 30 pressure levels between 0 and 70 kPa were used to 

simultaneously fit the corresponding values of 𝑝 and 𝐹𝑧 based on Equations (2.5-a) and 

(2.5-b). The goodness of fit for each sample, measured by R2 for both 𝑝 and 𝐹𝑧, was higher 

than 0.98. The material parameters of the overall SEDF with 95% confidence interval are 

given in Table 2. It should be noted that the parameters of the model were statistically 
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significant (nonzero) and showed statistically significant anisotropy (𝑐2 > 𝑐3 > 𝑐1 and 

𝑐6 > 𝑐4 > 𝑐5).  

  

Calculated Cauchy stresses at the outer wall 𝑇𝜃(𝑟𝑜) and 𝑇𝑧(𝑟𝑜) versus 

corresponding stretch ratios 𝜆𝜃(𝑟𝑜) and 𝜆𝑧 are shown in Figure 8-a and b which 

demonstrate the extent of inter-specimen variability. This figure also shows that the 

response of the overall model is approximately the same as the average response of all 

samples.  

Figure 6– Changes of a) radial and b) circumferential stretch ratios across the thickness of 

aortic wall at three different internal pressures. Longitudinal stretch ratio across the 

thickness is assumed to be constant. Solid lines and dashed lines represent mean and 

standard error of the mean respectively 
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Table 2- Parameters of the overall model for porcine aorta, R2 of surface fit is 0.88 and 

the condition number of the matrix of material parameters is 3. 

Model parameters Overall 95% confidence interval 

c (kPa) 61.35 56.08-66.63 

c1 0.6218 0.4243-0.8193 

c2 1.5557 1.5277-1.5836 

c3 1.0222 0.9812-1.0631 

c4 0.2103 0.0467-0.3740 

c5 0.1207 0.0202-0.2213 

c6 0.2971 0.2413-0.3529 
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Figure 7– Curve fit results for material characterization of a representative sample. 

Experimental data were simultaneously fitted to Equations 2.5-a (a) and 2.5-b (b). 

For both curves R2 = 0.999. 
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Figure 8– Results of inflation-extension simulations based on obtained material 

properties for P ranging from 0 to 70 kPa. The response of the overall model 

(solid line) passes through the 95% confidence interval corridor (error bars) 

and near the average of indi individual samples responses. 
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Discussion 

The material properties of aorta in supra-physiological loading have been 

characterized previously using excised tissues in uniaxial (Mohan & Melvin, 1982; 

Prendergast et al., 2003; Sokolis, 2007; Stemper et al., 2007) and biaxial (Bass et al., 2001; 

Gundiah et al., 2008; Prendergast et al., 2003) test protocols.  This study, to the best of our 

knowledge, is the first that these properties were characterized using cylindrical segments 

in inflation-extension tests.  This method maintained the tissue natural microstructural 

arrangement and the loading was applied superimposed on the circumferential residual 

stress. As a result, it was believed that this test protocol was a better representation of in 

vivo loadings that result in large tissue deformations.  To the contrary of most inflation-

extension tests that were reported in the literature (Y. C. Fung et al., 1979; Humphrey et 

al., 1993; Kim & Baek, 2011; M A Lillie et al., 2012; M.A. Lillie et al., 2010; Schulze-

Bauer et al., 2003), one end of the specimen was kept free to extend to avoid buckling 

under high pressures (Han, 2007; M Rastgar Agah et al., 2012).  While this boundary 

condition limited the 𝜆𝑧 − 𝜆𝜃 space in which the material parameters were characterized, 

it was verified that the obtained SEDF could predict the behavior of porcine aorta in other 

loading paths that were available in the literature (M A Lillie et al., 2012; Prendergast et 

al., 2003; Sokolis, 2007). These loading paths are referred to as the “verification paths”. 

Figure 9 shows the characterization space (shaded) that was used in this study together 

with the four verification paths. 

The 𝜆𝜃 versus pressure data, reported in (M A Lillie et al., 2012) for inflation-

extension of intact specimens, was used as one of the verification paths. This data is limited 

to 20 kPa as the focus of the study was the tissue behavior under physiological pressures. 
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𝜆𝑧 was kept constant and the results for 𝜆𝑧 = 1.24 at the proximal region and 𝜆𝑧 = 1.37 at 

the distal region were reported. The segments analyzed in the present study were between 

50 to 60 mm below the 1st intercostal arteries and were therefore closer to the distal 

segments in (M A Lillie et al., 2012). Comparison between 𝜆𝜃, calculated based on the 

material properties reported in Table 2, and the experimental results of (M A Lillie et al., 

2012) (Figure 10-a) showed good agreement particularly for the distal data (R2 = 0.70 and 

0.94 for proximal and distal data respectively).  

Figure 9– Characterization region and verification paths: The 𝜆𝑧 − 𝜆𝜃 space for samples 

used in this study to characterize the constitutive model (shaded gray area). Verification 

paths based on reported uniaxial extension tests in circumferential and longitudinal 

directions as well as inflation-extension tests in the physiological range are shown. 
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Figure 10– Prediction of the overall model compared to previously published 

data on porcine aorta. a) Circumferential stretch vs intraluminal pressure at two 

different longitudinal stretch ratios for inflation tests in the range of 

physiological pressures, b) Longitudinal Cauchy stress vs longitudinal stretch 

ratio for uniaxial extension in the longitudinal direction, and c) Tangent elastic 

modulus vs stress in uniaxial extension in the circumferential direction. 
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Two additional verification paths were previously reported uniaxial stretch data in 

𝑧 and 𝜃 directions. In the 𝑧 direction, the calculated Cauchy stress vs. stretch ratio passes 

through the corridor of the experimental data given by (Prendergast et al., 2003) (Figure 

10-b).  In the 𝜃 direction, the prediction of the current model was in close agreement with 

the results of (Sokolis, 2007) in terms of the elastic modulus vs. first Piola-Kirchhoff stress 

(Figure 10-c). The elastic modulus was defined as the instantaneous slope 𝑑𝑃/𝑑𝜀, in which 

𝑃 is the first Piola-Kirchhoff stress and 𝜀 is the infinitesimal strain. Details of the 

formulations used to derive the uniaxial response are given in Appendix B. Based on the 

verifications explained above, it was concluded that the form of the SEDF given in 

Equation (2.3-a) together with the convexity condition imposed in Equation (6), and two 

characterization Equations (2.5-a) and (2.5-b), resulted in a sufficiently smooth and unique 

function that could satisfactorily describe other experimental results.  

The maximum stretch ratios in this study (𝜆𝜃(𝑟𝑖) = 1.71 ± 0.15, 𝜆𝑧 = 1.46 ±

0.06) were below the failure stretch ratios for young human aortas based on uniaxial 

extension tests in (Mohan & Melvin, 1982) (λθ = 1.89 and 𝜆𝑧 = 1.78). The inflation-

extension test is not a suitable method to study tissue failure because the sutures used to 

ligate the branches are typically the weak points in the experimental model. The maximum 

applied pressure (70 kPa) was close to the average peak pressures reported in chest impacts 

tests (68 kPa) (Hardy et al., 2008) and maximum peak pressures in sled tests (72 kPa) (Bass 

et al., 2001) using human cadavers. In situ measurement of the longitudinal deformation in 

chest impact tests (Hardy et al., 2008) revealed that on average, aorta experienced peak 

Lagrangian strain of 0.21 in addition to the in vivo longitudinal pre-stretch (approximately 
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1.2 (Holzapfel, Sommer, Auer, Regitnig, & Ogden, 2007)). Consequently, an approximate 

estimate for the peak 𝜆𝑧 in chest impact tests is 1.44 which is statistically equal to the peak 

𝜆𝑧 achieved in this study (1.46 ± 0.06, 𝑝 = 0.39).  The stress distribution along the wall 

thickness, calculated from the overall model is shown in Figure 11. The predicted 

maximum wall longitudinal stress at the inner wall 𝑇𝑧(𝑟𝑖) (0.65 MPa) was below the failure 

initiation level reported in (Stemper et al., 2007) for porcine aorta (1.6 MPa). It was 

therefore concluded that the loading applied in this study represented large deformations 

that occur in automotive accidents and other chest trauma that involve significant chest 

compression but kept the samples well below the failure initiation level.  

The stretch ratios measured at the physiological pressure were consistent with data 

reported for the human aorta. At 13 kPa, 𝜆𝑧 = 1.22 ± 0.03 was similar to the in-situ 

measured values of  1.2 ± 0.06 (Holzapfel et al., 2007) (𝑝 = 0.51) and close to the ex-vivo 

values of 1.14 ± 0.05 for young samples in (Labrosse et al., 2013) (𝑝 =  0.004). At the 

same pressure, the ex-vivo 𝜆𝜃(𝑟𝑖) for young human aorta (1.37 ± 0.05) is comparable to 

what was found in this study (1.39 ± 0.07, 𝑝 = 0.60). It was concluded that the response 

of porcine and human aortas to intraluminal pressure are close to each other. An 

approximately 5-fold increase in pressure (from 13 to 70 kPa), resulted in 22% and 20% 

increase in of 𝜆𝜃(𝑟𝑖) and 𝜆𝑧 respectively. This effect was more pronounced in the 𝜃 and 𝑧 

stresses at the inner wall.  The same 5-fold increase in pressure resulted in approximately 

16 and 18 folds increases in 𝑇𝜃(𝑟𝑖) and 𝑇𝑧(𝑟𝑖) respectively.  This high sensitivity in stress 

can be explained by the nonlinear (stiffening) nature of the tissue.  
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Figure 11– Distribution of a) radial, b) circumferential and c) longitudinal Cauchy 

stresses across the aorta wall from overall model at physiological (13 kPa) 

midrange (40 kPa) and maximum (70 kPa) pressures. 
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The average opening angle measured in this study (40.9 ± 20.2) was lower than 

previously reported data by Stergiopulos (50±30.7) (Stergiopulos, Vulliémoz, Rachev, 

Meister, & Greenwald, 2001), Guo  (53±28.6) (Guo & Kassab, 2004), and Han (57.2 ± 

22.5) (Han & Fung, 1996), for younger pigs (4 year old pigs in this study compared to 3 

year old pigs in (Stergiopulos et al., 2001) and young piglets in (Guo & Kassab, 2004) and 

(Han & Fung, 1996)). This difference may be explained by the effect of aging as the same 

trend has been reported for mice at early stages of life before puberty (Rachev & 

Greenwald, 2003). While the importance of opening angle in the arterial wall stress 

distribution at physiological pressures had been previously shown (Chuong & Fung, 1986), 

it was verified in this study that the opening angle had a significant effect in supra-

physiological pressures as well. To this end, inflation-extension of the overall model was 

performed by ignoring the residual stress in the artery. The results showed that at 70 kPa, 

𝑇𝜃 and 𝑇𝑧 increased at 𝑟𝑖 by 38% and 29% and decreased at 𝑟𝑜  by 53% and 23%, 

respectively i.e. the opening angle made the stress distribution more uniform along the wall 

thickness. 

Limitations of this study include ignoring the effects of age, loading rate and 

inhomogeneity in the constitutive model. It has been reported that arteries become stiffer 

with age (Greenwald, 2007; Labrosse et al., 2013; Mohan & Melvin, 1982), which can be 

attributed to a higher collagen content (Ferruzzi, Vorp, & Humphrey, 2011). Porcine aorta, 

on the other hand, has been considered in the literature as a surrogate for young and healthy 

human aorta (Bass et al., 2001; Pearson et al., 2008).  
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While aorta material is rate dependent (Mohan & Melvin, 1982, 1983; Stemper et 

al., 2007),  the longest time constant for a viscoelastic model reported for porcine aorta is 

10 s (Hemmasizadeh et al., 2012b). It was therefore assumed that the experiments used in 

this study with ramp time of 70 s yielded the steady-state elastic response of the tissue. 

Following the quasilinear viscoelastic (QLV) theory for soft tissues (Y. C. Fung, 1993), 

the instantaneous elastic response can be obtained from the steady-state response by 

replacing parameter 𝑐 in Equation 2.3-a with 𝑐/𝐺∞, where 𝐺∞ is the steady-state 

normalized relaxation ratio (Laksari, Shafieian, & Darvish, 2012; W. Zhang, Liu, & 

Kassab, 2007). A recent study on rate dependence of porcine aorta showed 1.5 fold increase 

in the stiffness from 0.03 to 30 s-1 strain rate (Stemper et al., 2007). Therefore, for modeling 

high-rate applications, the elastic response characterized in the present study should be 

scaled according to the applied strain rate. 

In deriving the material properties, the tissue was assumed to be homogeneous. This 

assumption was verified earlier for  𝜃, and 𝑧 directions of the small segments used in this 

study. In longer segments, for example, it has been shown that for approximately 200 mm 

distance from upper to lower thoracic regions, the circumferential elastic modulus 

increases by about 40% (Sokolis, 2007). In the 𝑟 direction, it has been shown that the outer 

half is approximately 20% stiffer than the inner half (Hemmasizadeh et al., 2012b).  

Therefore, under intraluminal pressure loading, it is expected the wall stresses to be higher 

in the outer half and lower in the inner half of the wall compared to what an average 

homogenous model would predict. As a result, the stress distribution across the wall 

thickness is expected to be more uniform. While the material parameters obtained in this 
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study, may not be valid for other regions, it is anticipated that the trends observed in this 

study to be the same as long as the microstructural architecture is the same.  
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CHAPTER 3 

MULTIRATE MECHANICAL BEHAVIOR AND FAILURE PROPERTIES OF 

AORTIC TISSUE  

 

Introduction 

Although the use of restraint systems has increased in recent years, the overall 

incidence of blunt aortic injury in car accidents has remained the same (Neschis et al., 

2008). By investigating 7,076 car accidents from 1992 to 1999 (Richens & Kotidis, 2003) 

concluded that airbag and seat belts did not eliminate the risk of injury. This emphasizes 

the necessity of more comprehensive studies on the underlying mechanisms of traumatic 

aortic injuries (TAI) and rupture (TAR) in order to improve the effectiveness of automobile 

passenger safety measures. TAI/TAR in car accidents is caused by a complex state of 

deformation occurring at high rates. Almost all traumatic ruptures of aorta occur in the 

longitudinal direction with a transverse tear that usually initiates from intima (Bertrand et 

al., 2008; Stemper et al., 2007). Although the mechanical behavior of aorta in physiological 

conditions has been studied before by several research groups, very few studies have 

investigated the mechanical and failure behavior of aorta in high rate deformations. The 

goal of this work was to describe the mechanical behavior of aortic tissue near the failure 

point in a wide range of loading rates. 

Collins & Hu (1972) investigated the rate dependence of cylindrical segments of 

free-end porcine aorta segments by pressurizing the vessel at two different rates 

corresponding to nominal logarithmic strain rates of 0.005 s-1 and 1-3.5 s-1. They observed 
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an increase in the longitudinal failure stress with nominal values from 300 kPa to 450 kPa 

with increasing strain rate although no statistical analysis was presented. They also 

mentioned that failure strain decreases and stiffness increases with an increase in strain rate 

but no specific values were reported for these measures.  

The failure properties of human aortic tissue were reported by Mohan & Melvin 

(1982). Uniaxial extensions in both circumferential and longitudinal directions at nominal 

strain rates of 0.01-0.07 s-1 and 80-100 s-1 were carried out on samples from descending 

aorta. They reported an increase in longitudinal and circumferential failure stresses from 

1.47 and 1.72 MPa to 3.59 and 5.07 MPa. In contrast to what was reported by (R. Collins 

& Hu, 1972), no significant difference in failure stretch ratios were observed. (1.47 and 

1.53 in longitudinal and circumferential directions in quasi-static loading respectively vs. 

1.64 and 1.60 in dynamic loading).  

In another article, (Mohan & Melvin, 1983) investigated the failure properties of 

aortic samples by biaxial bubble inflation experiments at nominal strain rates of 0.01-1 and 

20 s-1. They reported a consistent rupture of the sample in longitudinal direction, in 

conformance with data from real car crashes, and reported a significant increase in failure 

stress from average values of 1.14 MPa in quasi-static to 1.96 MPa in dynamic loading. 

The corresponding stretch ratios were 1.44 and 1.28 which showed a decreasing trend but 

it was not statistically significant. These results confirmed their uniaxial extension tests 

results.  

The studies mentioned above did not develop any constitutive model for aortic 

tissue. Bass and colleagues (Bass et al., 2001) characterized a two-dimensional Fung-type 
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strain energy density function from data obtained by cyclic planar biaxial extension tests 

on porcine aortic arch samples at two nominal frequencies of 20 and 60 Hz. Their study 

had the advantage of using the samples from aortic arch which is the most frequent site of 

TAR; however their model is limited by the number of samples (4 samples), nominal strain 

rates that have been covered (2 nominal strain rates) and the fact that the strain and stress 

levels were in the physiological range. They also investigated the rupture properties of 

aortic tissue by a sudden increase in intraluminal pressure of whole human aortas in situ 

and ex vivo. They observed no preferred rupture direction for aorta which is in contrast to 

experimental data reported before (Mohan & Melvin, 1983) and autopsy observations after 

car accidents (Bertrand et al., 2008).  The reported average failure circumferential stretch 

ratios at distal and proximal aorta were 1.16 and 1.19 while the longitudinal stretch ratio 

was 1.13. Failure stress values (0.794 and 0.828 MPa for circumferential and 0.397 and 

0.414 MPa for longitudinal direction respectively at distal and proximal aorta) are 

consistent with the numbers reported by Collins & Hu (1972).  

Shah and colleagues (Shah et al., 2006) used planar biaxial experiment to test 

failure properties of cadaveric samples from ascending aorta, peri-isthmus region and 

descending aorta at two nominal extension rates of 1 m/s and 5 m/s. The strain rates resulted 

in the tissue show a wide overlap between the two groups (Lagrangian strain rates of 23-

206 s-1 for slow speed and 52-230 s-1 for high speed) and although the average strain rates 

found to be significantly different (77.86±43.27 s-1 vs. 135.90 ±55.34 s-1) no significant 

difference in mechanical measures were detected. All tissue failures occurred in 

longitudinal directions similar to real world TAR.  Pooling the data from all samples and 
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both extension rates, the average longitudinal and circumferential moduli were found to be 

8.87, and 10.57 MPa and failure longitudinal stress and strain were 1.96 MPa and 0.254. 

Longitudinal stretch tests on whole aorta samples were also carried out with an average 

strain rate of 11.8 s-1 and resulted in average failure engineering stress and Lagrangian 

strain of 0.75 MPa and 0.221.  

In a recent study on failure properties of porcine aorta, Stemper and colleagues 

(Stemper et al., 2007) used uniaxial extension test to quantify rate dependence and failure 

properties of the aortic tissue in the longitudinal direction. The samples were tested at four 

nominal strain rates of 0.06, 0.6, 6 and 30 s-1. Statistical analysis showed a significantly 

lower failure strain at the highest strain rate compared to the 1st and 2nd strain rates groups. 

On the other hand, failure stress, in general, was observed to increase significantly by strain 

rate. Similar differences were observed for modulus of elasticity. These results confirm the 

results of (Collins & Hu, 1972). Specific values of these failure mechanics were not 

presented, and no constitutive model was characterized based on these data. 

The goal of this study was to characterize the rate dependent failure properties and 

mechanical behavior of porcine aortic tissue for TAI/TAR applications in a wide range of 

strain rates. The strain rates achieved in this study are an order of magnitude higher than 

previously published data. 
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Materials and Methods 

Test Setup 

A multirate uniaxial test setup was designed and built for the purpose of this study 

(Figure 12). The setup consisted of two support fixtures secured next to a linear impact 

system (Darvish, 2009). One of the support fixtures was used to support a load cell with 

high frequency response (25lb, Model 11, Honeywell, Golden Valley, MN) and the other 

fixture held a pair of shafts which guided the horizontal movement of a crosshead. The two 

support fixtures were separated to reduce the impact vibration noise in the load cell.  

The dynamic crosshead consisted of a plate with two PTFE bearings to allow the 

free movement over the two guide shafts, and a grip to hold one end of the sample. The 

other end of the sample was connected the load cell by another grip. The movement was 

generated by the impact system which consisted of two carriages that could move with 

nominal speeds of 0.01 to 10 m/s and hit the crosshead (plastic impact using wax) and push 

the dynamic crosshead forward and cause uniaxial deformation in the sample. 
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Figure 12– The custom-made multirate uniaxial test system. The sample 

extension is caused by pushing the dynamic crosshead by the passive carriage. 

More explanation is given in the text. 
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The time history of strain rate in the sample depended on the speed of the dynamic 

cross head. One of the design goals was to decrease the time duration of the acceleration 

phase of the dynamic crosshead in order to achieve a constant strain rate for most of the 

extension period. This period was negligible in the low rate tests. However, in high rate 

tests and in particular at the impact speed of 10 m/s, it was a considerable portion of the 

loading. Figure 13 shows several frames from the high speed video (Phantom v4.2, Vision 

Research, Wayne, NJ), pointing to the setup from the side, showing the active carriage and 

dynamic crosshead at the time of impact. The speed of the dynamic crosshead becomes 

constant before 2 ms which was before any tear was detected in the samples. In was 

therefore concluded that the failure of the samples occurred at constant extensive strain 

rate. For lower rates, a constant strain rate was achieved much earlier than failure. 

Movement of the dynamic crosshead in the vertical direction was less than 1 mm and the 

corresponding error in the in-plane strain measurement was determined to be less than 1%.  
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Sample Preparation 

The experimental results of 52 samples from 20 porcine aorta specimens are 

reported here. Fresh porcine aortas were obtained from a local slaughterhouse and 

transported in ice-cold Phosphate Buffered Saline (PBS) to the laboratory. Adipose and 

connective tissues were removed from the specimens. Dumbbell shaped samples (with 13 

Figure 13– Verification of constant extension speed at the time of failure: 

The Figure shows the side view videos and the measured horizontal speed 

of the dynamic crosshead from the time of impact until the end of the 

course. For 10 m/s constant speed was reached before 2 ms. 
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mm length in 5 mm width gage length) were cut out, using a custom-made punch, at the 

isthmus region in longitudinal (L) (n=26) and circumferential (C) (n=26) directions (Figure 

14). The samples location and orientation were chosen such to minimize the effect of 

inhomogeneity in the longitudinal direction. The location of the proximal circumferential 

samples was just below the left subclavian artery. The thickness of the samples was 

measured in the unloaded state by a customized dial gauge indicator. Samples were kept in 

4oC PBS until 10 minutes before the test. The experiments were conducted at room 

temperature. The samples were tested within 12 hours post-mortem. 

 

An array of 11 dots was marked on the intimal side of the samples using a Sharpie 

pen. Samples were preconditioned manually with five cycles to approximately 20% strain 

(average physiological strain) and then the sample was set manually to its initial (no-load) 

length by a stopper behind the dynamic crosshead. This no-load length was verified by the 

Figure 14- Sample Preparation a) Samples were cutout from aortic istmuth. The arrow 

shows the longitudinal direction and pointing to the proximal side. b) The sample 

deformation was analyzed by tracking ink dots as photo targets. The scale grid is 5 mm. 
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fact that the load cell showed a negligible force (less 0.1 N). The experiments were carried 

out with nominal impact speeds of 0.01 (n=8), 0.1 (n=19), 1 (n=15), and 10 m/s (n=10) 

that will be referred to Rates 1 to 4 respectively.  

The deformation of the sample was recorded by the high-speed camera at 0.5, 1, 5 

and 13 kfps for the Rates 1 to 4 respectively. The load cell data was recorded at five times 

higher rates. An inertia compensation accelerometer (Endevco, Meggitt Sensing Systems, 

Irvine, CA) was mounted to the load cell support fixture to verify that the load cell body 

vibrations due to the impact were negligible.  

Calculation of Strain and Stress 

The deformation of the sample in the horizontal plane, with axes 𝑥1 and 𝑥2 

(subscripts 1 and 2) corresponding to the direction of extension and perpendicular to that 

respectively, was calculated by an in-house MATLAB code for a linear triangular element. 

A set of 12 triangular meshes was constructed with 1x3 resolution (Figure 15). The 

displacement field in each element, using a Lagrangian approach, was assumed to be a 

linear function of the initial position as 

 [
𝑢1

𝑢2
] = [

𝑎10 𝑎11 𝑎12

𝑎20 𝑎21 𝑎22
] [

1
𝑋1

𝑋2

] (3.1) 

where vector 𝒖 is the displacement vector and 𝑿 is the initial positions vector of a marker 

in the initial frame. Constants 𝑎𝑖𝑗, for each element and at each time step, were calculated 

by solving Equation 3.1 from known vectors 𝒖 and 𝑿 for the three nodes of the element.  

The two-dimensional deformation gradient 𝑭 can be written as 
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 𝑭 = 𝑰 + ∇𝒖 = [
𝜆1 𝑎12

𝑎21 𝜆2
] (3.2) 

in which 𝜆1 = 1 + 𝑎11 and 𝜆2 = 𝑎22 + 1 are the stretch ratios. The smallness of 𝑎12 and 

𝑎21, compared to 𝑎11 and 𝑎22 was verified (less than 5%) and therefore, the deformation 

was assumed to be uniaxial (𝑎12 = 𝑎21 = 0). A sample result of the strain analysis is 

shown in Figure 15. The linear (engineering) strain measure 𝜀 was defined as 𝜀 = 𝜆1  − 1 

and strain rate as 𝜀̇. 

The first Piola-Kirchoff (1st PK) stress (engineering stress) in the extension 

direction was calculated by 

 𝑃1 =
𝐹1

𝑤ℎ
 (3.3) 

in which 𝐹1 is the recorded force, ℎ is the initial thickness and 𝑤 is the initial width of the 

sample. The corresponding Cauchy stress 𝑇1 was calculated by 

 

 𝑇1 = 𝜆1𝑃1 (3.4) 

For simplicity, subscript 1 is omitted in the subsequent formulas. 
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Measures of Material Behavior 

Figure 16 shows a typical stress strain-curve. Failure initiation (FI) was defined as 

the state in which the first intimal tear was observed in the videos. Three distinct regions 

were identified in 𝑃 − 𝜀 curves before FI: a linear toe region, a nonlinear transition region, 

Figure 15– Representative results of image analysis and strain calculations. The color bar 

shows the stretch ratio in the direction of extension (𝜆1). The failure initiation (tear in the 

intimal side) was determined by examining the images. 
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and a linear pre-failure region. To identify these regions a piecewise linear-cubic-linear 

function in the following form was fitted to the curves by a least square method: 

 𝑃 = {

𝑎1𝜀, 𝜀 ≤ 𝜀𝑡1

𝑎2𝜀
3 + 𝑏2𝜀

2 + 𝑐2𝜀 + 𝑑2, 𝜀𝑡1 < 𝜀 <  𝜀𝑡2

𝑎3𝜀 + 𝑏2, 𝜀 ≥ 𝜀𝑡2

  (3.5) 

In which 𝜀𝑡1 and 𝜀𝑡2 are the strain corresponding to the first and second transition points 

and the other constants define the shape of the curves. The coordinates of the transition 

points in the 𝑃 − 𝜀 graph together with 𝑎1 and 𝑎2 were optimized and the other parameters 

were calculated based on considering a second order continuity (P and its 1st derivative) at 

the transition points. The pre-failure modulus 𝑀 = 𝑎3 was used for rate dependence 

analysis.  

The strain rate corresponding to the linear pre-failure region, i.e., the slope of a line 

fitted to the  𝜀 − 𝑡 curves in this region, was used as the measure of failure strain rate. In 

summary, the following material parameters were chosen for investigating the effect of the 

strain rate: 

 𝜀𝐹𝐼 and 𝑇𝐹𝐼: Strains and Cauchy stresses at FI (where the first tear was 

observed in videos) in the circumferential and longitudinal directions 

(referred to as C and L directions). 

 𝜀𝑈𝑇𝑆 and 𝑇𝑈𝑇𝑆: Strains and Cauchy stresses at ultimate tensile strength 

(UTS) in C and L directions. 

 𝑀: Pre-failure linear moduli at the linear pre-failure region in C and L 

directions. 
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Statistical Analysis 

Based on the preliminary results and previously published data, and assuming the measured 

parameters to be normal, the following statistical hypotheses were tested: 

Figure 16– A typical stress-strain curve: Three regions and two transition points 

were observed before failure: a linear toe region, a nonlinear transition region, and 

a linear pre-failure region. The failure initiation state (FI), based on the first 

intimal tear in video images, and the ultimate tensile strength (UTS) were defined 

based on the peak stress, 
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 It was hypothesized that 𝜀𝐹𝐼 and 𝜀𝑈𝑇𝑆 were not rate dependent but were dependent 

on the test direction. This hypothesis was tested by two-way analysis of variance 

(ANOVA) with rate and test direction as the factors. 

 Dependence of 𝑇𝐹𝐼 and 𝑇𝑈𝑇𝑆 on the test direction has been shown before. It was 

hypothesized that  𝑇𝐹𝐼 and 𝑇𝑈𝑇𝑆 were directly related to the strain rate. This 

hypothesis was tested by a linear regression between T and log𝜀̇. 

 It is known that the aortic tissue is stiffer in the circumferential direction. It was 

hypothesized that the tissue is viscoelastic and therefore M was rate dependent. This 

hypothesis was tested by one-way ANOVA for each direction, with rate as the 

factor. 

Statistical significance was assumed when p < 0.05.  

Results 

The values reported in this section are the means and standard errors of the means 

(mean ± SEM). Error bars in the graphs show the SEM. The strain rates corresponding to 

loading Rates 1 to 4 were found to be 0.32 ± 0.03, 3.33 ± 0.19, 31.2 ± 4.5, and 451 ± 27 

s-1. Therefore, four orders of magnitude of strain rates were represented which is 

significantly wider than previous studies. 

Failure Strains 

Figure 17-a shows 𝜀𝐹𝐼 and 𝜀𝑈𝑇𝑆 in C and L directions. Two-way ANOVA showed 

that rate had no effect on 𝜀𝐹𝐼 (𝐹(3,44) = 1.24, 𝑝 = 0.31) while test direction had a 

significant effect (𝐹(1,44) = 48.6, 𝑝 < 0.001). On the contrary, ANOVA for 𝜀𝑈𝑇𝑆 
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showed a significant effect of rate (𝐹(3,44) = 4.53, 𝑝 = 0.007) and no effect of direction 

(𝐹(1,44) = .04, 𝑝 = 0.85). To further investigate the effect of rate on 𝜀𝑈𝑇𝑆, one-way 

ANOVA was performed for each direction separately. The post-hoc Tukey-Kramer test 

revealed that only a significant difference existed between Rates 2 and 4 in L direction. 

Figure 17-b shows the pooled 𝜀 from all rates for C and L directions at FI and UTS states. 

While 𝜀𝐹𝐼 was higher for C direction, both C and L directions had statistically equal 𝜀𝑈𝑇𝑆. 

The difference between 𝜀𝐹𝐼 and 𝜀𝑈𝑇𝑆 was not significant for C direction. 
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Failure mechanisms in the two directions, i.e., strains between FI and UTS states, 

were found to be different based on high-speed video images. Snapshots from the initial 

stretch to rupture of representative C and L samples are shown in Figure 18. Samples in L 

direction ruptured from multiple points and the time duration between FI and UTS was 

longer compared to C samples in which the rupture occurred at one location and propagated 

Figure 17– Strain at FI and UTS in C and L directions a) for fours loading rates and b) on 

average for all rates. The only significant rate dependence was observed in 𝜀𝑈𝑇𝑆 in the 

longitudinal direction between Rate 2 and Rate 4 (p=0.007). It was concluded that failure 

strains are not in general rate dependent. The FI state was significantly different in C and 

L directions and it took more strain in L direction to reach UTS after FI.  
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quickly to failure. On average, 𝜀𝐹𝐼  was 0.85±0.03 and 0.58±0.02 for C and L samples 

respectively. The pooled value for 𝜀𝑈𝑇𝑆 for both directions was 0.89±0.03.  

 

 

 

Failure Stresses 

Figure 18– Typical failure process observed in L (left) and C (right) directions. Failure in 

L direction occurred gradually over a wide range of strains. The failure in C direction was 

abrupt. 
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A direct relationship with strain rate was observed for both failure stress measures, 𝑇𝐹𝐼 

and 𝑇𝑈𝑇𝑆. For each direction, a linear regression in the form of 𝑎 + 𝑏 log 𝜀̇ was used to 

characterize the rate dependence. Figure 19 and  

Table 3 summarize the regression results. While the regressions were statistically 

significant, R2 values were relatively low, which can be attributed to specimen-to-specimen 

variability. Samples from each pig specimen were tested in only one or two rates. 

Therefore, the effect of variability due to specimen could not be separated.  

Figure 19– Change of failure stresses with strain rate. Cauchy stress at a) FI in C, b) FI 

in L, c) UTS in C, and d) UTS in L direction versus strain rate. The increasing trend of 

failure stresses with strain rates were found to be significant. Relatively low R2 values 

showed that the overall variation in stresses could not be explained only by strain rate 
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Table 3–Regression results for failure stress measures versus strain rate in both C and L 

directions in the form of 𝑇 = 𝑎 + 𝑏 log𝜀̇ 

S
tress m

easu
re 

d
irectio

n
 

a ± SE b ± SE F statistics 𝑹𝟐 

𝑇𝐹𝐼 C 4.11 ± 0.33 0.37 ± 0.10 𝐹(1,24) = 10.8, 𝑝 = 0.003 0.31 

𝑇𝑈𝑇𝑆 C 4.49 ± 0.25 0.52 ± 0.08 𝐹(1,24) = 47.9, 𝑝 < 0.001 0.67 

𝑇𝐹𝐼 L 0.85 ± 0.09 0.06 ± 0.03 𝐹(1,24) = 4.29, 𝑝 = 0.049 0.16 

𝑇𝑈𝑇𝑆 L 1.46 ± 0.13 0.10 ± 0.04 𝐹(1,24) = 7.09, 𝑝 = 0.014 0.24 

Pre-Failure Linear Modulus 

The aortic tissue, as expected, showed a significant anisotropy when values of M 

were compared between C and L directions (𝑀 = 12.4 ± 0.8 and 𝑀 = 3.2 ± 0.3 for C and 

L directions respectively). For C direction, 𝑀 was found to be rate dependent (𝐹(3,22) =

4.93, 𝑝 = 0.009) while in L direction this dependence, although it showed a similar 

increasing trend with rate, was not statistically significant (𝐹(3,22) = 0.8, 𝑝 = 0.51, 𝛽 =

0.8). Figure 20 summarizes the rate dependence of M. Based on the post-hoc Tukey-

Kramer test in C direction, it was found that a significant increase (approximately 60%) 

occurred between Rates 2 and 3. It was therefore, concluded that viscoelasticity was more 

prominent in the C direction. The change in M can be attributed to relaxation time constants 
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that cause a transition in the time scales that correspond to Rates 2 and 3. These time 

constants are therefore approximately between 1/30≈0.03 and 1/3≈0.3 s.  

 

  

Figure 20- Rate dependence of modulus M in a) C, and b) L directions, Both 

directions showed an increasing trend with strain rate. The differences were found to 

be significant when comparing Rate 1 and Rate 2 with Rate 3 and Rate 4 in C 

direction (p=0.009). The results in L direction were comparable (p=0.4) with Stemper 

et al. (2007) results. 
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Discussion 

The multirate uniaxial test setup was utilized to cover a wide range of strain rates 

and increase the maximum strain rate ten folds compared to the previous results for porcine 

aorta (Stemper et al., 2007). Despite some drawbacks of uniaxial extension experiment for 

biological tissues, e.g. alteration of physiological geometry (Humphrey, 2002) and the 

assumption of uniform stress through the thickness of tissue (Labrosse et al., 2013), it was 

chosen for this study since applying the high strain rates beyond 300 s-1 was currently not 

feasible in other test modes including inflation/extension tests and planar biaxial tests. The 

high strain rates applied in this study made the results better applicable to TAI/TAR 

applications. 

Two states related to aorta failure were distinguished in this study. In addition to 

the UTS state, which is commonly considered in previous studies, the FI state was also 

considered. The FI state is important in mechanical modeling of the tissue since a 

viscoelastic hyperelastic model will no longer work after this state, and a model of partial 

failure needs to be considered.  

The aortic tissue in the isthmus region is considered an elastic artery and primarily 

consists of elastic lamellae (concentric layers of elastin) and collagen fibers that run 

primarily in the circumferential direction (Holzapfel, 2006). Based on the results of this 

study, the failure mechanism of aorta can be partly explained. Collagen fibers are naturally 

undulated and become straighter as the load is increased. Therefore, in the elastic part of 

the stress-strain curve, this change in undulation results in a low-stiffness toe region 

followed by a nonlinear region in which the stiffness dramatically increases. The stretch 

ratios at FI and UTS were found to be rate independent. This is in agreement with 
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previously published data on the human aorta (Mohan & Melvin, 1982). We also found the 

stretch ratios at UTS to be statistically equal in C and L directions. This has also been 

reported previously by (Mohan & Melvin, 1982). These observations suggest that the 

primary failure mechanism involves a strain-based and rate independent element that is 

equally contributing to both directions.  

Stemper and colleagues (Stemper et al., 2007) experiments are the closest available 

data in the literature to this study in terms of covering four order of magnitudes of strain 

rate and testing porcine aortas in uniaxial extension. It should be noted that they tested the 

samples in the longitudinal direction only. In comparison, their highest three rates are in 

the same order of magnitude as Rates 1 to 3 of this study. Their lower rate is one order of 

magnitude lower than Rate 1. They observed that the failure strain was lower at Rate 3. 

This discrepancy between their results and the results of this study may be attributed to the 

tissue sample cutout region. They extracted their samples from a longer segment of the 

descending thoracic aorta (DTA). This may result in a relatively larger variability in their 

results due to material inhomogeneity. It has been noted that toward the distal end of DTA, 

the material becomes stiffer (Hemmasizadeh et al. 2014).  

The increase of 𝑇𝐹𝐼 and 𝑇𝑈𝑇𝑆 with strain rate, as was observed in this study,  was in 

agreement with the results of previous studies (Mohan & Melvin, 1982; Stemper et al., 

2007). The increase in M with rate, also in agreement with previous studies, can be a 

manifest of the viscoelastic behavior of the tissue. In this study, however, the change in M 

was only significant in the C direction. This implies that the tissue viscoelasticity may be 
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anisotropic, which has not been reported before. Predicting a time constant between 0.03 

and 0.3 s is in agreement with previous studies (e.g. Hemmasizadeh et al. 2014)  

 The aortic tissue is anisotropic as this was demonstrated in the significant 

difference observed between longitudinal and circumferential maximum stresses (Figure 

19). The degree of this anisotropy and the orientation of any preferred directions are 

debatable. The results of this study showed that the 𝑎12 and 𝑎21 terms in Equation (3.2) 

were less than 5% of 𝑎11.  This means that, with 5% error, directions 1 and 2 used in this 

study can be considered as the principal axes of an orthotropic material. This finding is 

consistent with the results of other researchers (Holzapfel & Ogden, 2009; Sacks, 2000).  

One of the limitations of this work is that we were looking at the intimal side of the 

tissue to detect the initiation of failure. Stemper et al. (2007) used two cameras and 

recorded failure experiments from both sides of the sample. They reported that the 

initiation of failure always occurred at the intimal side which supports our choice of placing 

the camera on the intimal side. However, since aortic tissue has multiple layers, any partial 

failure that may have started from within the layers, e.g., slippage of the layers with respect 

to each other, could not be detected with our method. 
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CHAPTER 4 

MECHANICAL INSTABILITY OF AORTA DUE TO INTRALUMINAL 

PRESSURE 

 

Introduction 

While traumatic aortic injury (TAI) and rupture (TAR) continue to be a major cause 

of morbidity and mortality in motor vehicle accidents, their underlying mechanisms are not 

well identified yet. It has been nevertheless agreed upon that a single factor cannot lead to 

TAR and it is believed the rupture is the result of a complex state of loadings and 

deformations.  The mechanisms proposed for injury include intraluminal pressure increase, 

relative movement of aorta with respect to mediastinal structures, direct impact to bony 

structures, local osseous pinching and water hammer effect (Neschis et al., 2008). As a 

contributing factor to TAI, we propose the mechanical instability mechanism in which the 

elevation in stress due to bending of the vessel contributes to the overall state of stress to 

the injury threshold and increases the risk of injury.  

The results of this study might have some clinical implication too, as the deviation 

of blood vessels from the original configuration into a bent shape has been reported in all 

regions of the vascular system including cerebral (Moody et al., 1997), retinal (Sasongko 

et al., 2011), carotid (Togay-Isikay & Kim, 2005), coronary (Li et al., 2011), ulnar (Ferris 

et al., 2000), radial (Lo et al., 2009),  femoral (Wood et al., 2006) and iliac (Carpenter et 

al., 2001) arteries. Such deviations have also been noted in aorta including abdominal 
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(Fillinger et al., 2004) and thoracic (Criado et al., 2002) aorta.  A bent configuration alters 

the blood flow in arteries and develops regions of low and high wall shear stress. These 

regions are susceptible to atherosclerosis and thrombosis in the long term (Chesnutt & Han, 

2011; Friedman et al., 1983; Malvè et al., 2014). In addition, this alteration reduces the 

blood pressure downstream of the bent section and causes a deficiency in blood supply and 

may cause ischemia (Zegers et al., 2007). Bent arteries can add to the complexity of 

cardiovascular surgeries such as endovascular repair of abdominal aortic aneurysm, carotid 

stenting and transradial coronary procedures (Carpenter et al., 2001; Derubertis et al., 2011; 

Lo et al., 2009; Wolf et al., 2001; Yoo et al., 2005).  

Figure 21 gives a schematic diagram of aorta before and after mechanical 

instability. Part of the arch (after the Isthmus region) and the beginning of descending aorta 

are relatively free to move compared to other regions that are constrained by the heart, 

branches, and surrounding connective tissues. The underlying mechanism can be modeled 

as mechanical instabilities similar to a column under axial loading (Han, 2007, 2008, 

2009c; Rachev, 2009). To this end, blood vessel and the fluid inside is considered as a 

composite beam under compressive force from blood pressure and tensile force from the 

surrounding tissue at both ends. Several clinical observations are in agreement with this 

model. For example, hypertension is associated with the prevalence of arterial kinking and 

tortuosity (Hiroki et al., 2002; Pancera et al., 2000). On the other hand, it has been reported 

that decreasing the axial tension of an artery by implanting an arterial graft will induce 

tortuosity in vivo (Jackson et al., 2005; J. Zhang, Liu, & Han, 2014).  
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There have been several studies on the mechanical instability of blood vessels. 

Misra and colleagues studied the stability of blood vessels using the bifurcation theory and 

the theory of small deformations superimposed on large deformations. As a numerical 

example, they used a model of thoracic aorta and plotted the stability regions of a 30 mm 

segment of the artery for a domain of axial and circumferential stretch ratios (J. C. Misra 

& Singh, 1985; J. Misra & Choudhury, 1982). They did not relate the stability of the blood 

vessel to its internal pressure which was reported in another study by Han. He used the 

classic theory of static buckling of columns and calculated the critical internal pressure that 

initiates the buckling in the artery  and validated the model against ex vivo experimental 

Figure 21– Schematic diagram of aorta before (left) and after (right) mechanical 

instability. Approximately 100 mm of descending aorta (shaded) is shown with 

10 mm deflection at the midsection. 
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results (Han, 2007, 2008). In another study, the effect of perivascular tissue on buckling of 

arteries was modeled as linear springs. It was shown that the instability is possible even 

when the artery is supported by surrounding tissue although it occurs at higher pressures, 

and the artery may buckle in higher modes (Han, 2009a).  

Because blood pressure pulsation creates time-varying load on the blood vessels in 

vivo, the system is dynamic and inherently static buckling theory is not an appropriate 

model. Rachev implemented the theory of dynamic instabilities to describe the stability 

behavior of the arteries under pulsatile pressure (Rachev, 2009). In mathematical sense, a 

dynamic system is (Lyapunov) stable if for all initial conditions close to an equilibrium 

point, the response of the system remains bounded at any time (Jordan & Smith, 2007). 

Using parametric resonance for dynamic systems with periodic coefficients (Bolotin, 

1964), Rachev showed that arteries may become unstable under pressures lower than the 

critical pressure for static buckling. For numerical examples, the Fung model for rabbit 

carotid artery was used (Fung et al., 1979). In order to solve the equation of motion, Rachev 

assumed that the artery behaves as a beam with pinned-pinned boundary condition (PPBC). 

The dynamic stability characteristics of an artery for the case of clamped-clamped 

boundary condition (CCBC) has been reported in only one study by (Liu & Han, 2012) in 

which there was a discrepancy between the experimental and theoretical results.  

In the current study, the theory of dynamic instability is implemented for the case 

of aorta with PPBC and CCBC. The material properties of porcine thoracic aorta (Chapter 

2) were used as a surrogate for young and healthy human aorta.  Using an analytical model, 
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the level of stress in the tissue is compared between straight and bent inflated aorta 

segments and the increase in the risk of injury due to trauma is discussed. 

Methods 

Following (Rachev, 2009), we consider a segment of aorta along the longitudinal 𝑧 

axis at a finite deformed state defined by the mean intraluminal pressure 𝑃̅ and the axial 

stretch ratio of 𝜆𝑧 (Figure 22-a). The dynamic equation of motion of aorta and the 

intraluminal fluid, as a composite Euler-Bernoulli beam, can be written as: 

 𝐸𝐽
𝜕4𝑢

𝜕𝑧4
+ [(𝑃̅ + 𝑃𝑎 cos𝜔𝑡)𝐴𝑙𝑢𝑚 − 𝐹𝑧]

𝜕2𝑢

𝜕𝑧2
+ (𝜌𝑤𝐴𝑤 + 𝜌𝑓𝐴𝑙𝑢𝑚)

𝜕2𝑢

𝜕𝑡2
= 0 (4.1) 

in which 𝑢 is the transverse displacement of the central axis, 𝐸 is the wall incremental axial 

elastic Modulus, 𝐽 and 𝐴𝑤 are the second moment of inertia and cross sectional area of the 

wall, 𝑃𝑎 is the intraluminal pressure amplitude with angular frequency of 𝜔, 𝐴𝑙𝑢𝑚 is the 

luminal area and 𝜌𝑤 and 𝜌𝑓 are the wall and fluid density. 𝐹𝑧 is the wall resultant axial 

force that is obtained by integrating the axial Cauchy stress 𝑇𝑧 over 𝐴𝑤.  

Taking advantage of the theory of small deformations superimposed on large 

deformations (Baek et al., 2007), we assume that the wall geometry does not change due 

to blood pressure pulsation and all parameters are functions of 𝑃̅ and 𝜆𝑧 only. In order to 

find a solution for Equation 4.1, the method of weighted residuals (Ritz-Galerkin) was 

used. We assume a solution in the form of eigenfunction expansion: 
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 𝑦(𝑧, 𝜏) =  ∑ 𝑓𝑛(𝜏)𝜙𝑛(𝑧)

𝑁

𝑛=1

 (4.2) 

where 𝜙𝑛(𝑧) is a set of orthogonal eigenfunctions corresponding to eigenvalues 𝛾𝑛 and 

satisfy the boundary conditions of the problem. By substituting Equation 4.2 in Equation 

4.1, multiplying by 𝜙𝑚 and integrating from 0 to 𝑙, the stretched length of the aorta, we 

arrive at a set of ordinary differential equations for 𝑓𝑛(𝑡) which can be written in the matrix 

form as (Paidoussis & Issid, 1974) 

 

𝑑2𝒇

𝑑𝑡2
+

1

𝜌𝑤𝐴𝑤 + 𝜌𝑓𝐴𝑙𝑢𝑚
  {𝐸𝐽𝚲 + [(𝑃̅ + 𝑃𝑎 cos𝜔𝑡)𝐴𝑙𝑢𝑚 − 𝐹𝑧]𝑪}𝒇

= 0 

(4.3) 

in which 𝒇 = [𝑓1 𝑓2 …]𝑇,  𝚲 is a diagonal matrix with Λ𝑛𝑛 = 𝛾𝑛
4, and 𝑪 is a matrix with 

elements 𝐶𝑚𝑛 = ∫ (𝜙𝑚𝜕2𝜙𝑛/𝜕𝑧2)𝑑𝑧
𝑙

0
.  

Case of pinned-pinned boundary condition (PPBC) 

For the case of PPBC  

 

𝑢(0) = 0, 𝑢(𝑙) = 0,
𝜕2𝑢

𝜕𝑧2
|
𝑧=0

= 0,

𝜕2𝑢

𝜕𝑧2
|
𝑧=𝑙

= 0 

(4.4) 

 

we used 

 𝜙𝑛(𝑧) = sin(𝛾𝑛𝑧) , 𝛾𝑛 =
𝑛𝜋

𝑙
,         𝑛 = 1, 2, 3… (4.5) 
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where n is the mode number (Figure 22-b).  For this condition, matrix 𝑪 becomes a diagonal 

matrix with 𝐶𝑛𝑛 = −𝛾𝑛
2 and the set of differential Equations 4.3 become decoupled. With 

some simplifications and introducing the dimensionless time 𝜏 = 𝜔𝑡, the Mathieu equation 

as presented in (Rachev, 2009) is obtained 

 

𝑑2𝑓𝑛(𝜏)

𝑑𝑡̃2
+ [𝛿𝑛  −  𝜀𝑛  cos 𝜏] 𝑓𝑛(𝑡̃)  = 0, 𝑛 = 1, 2, … 

𝜔𝑛0
2 = 

𝐸 𝐽

𝜌𝑤 𝐴𝑤 + 𝜌𝑓 𝐴𝑙𝑢𝑚
 
𝑛4𝜋4

𝑙4
 

𝛿𝑛 = 
𝜔𝑛0

2

𝜔2
[1 − 

𝑙2

𝑛2𝜋2
 
𝑃̅ 𝐴𝑙𝑢𝑚 − 𝐹𝑧

𝐸 𝐽
] 

𝜀𝑛 = 
𝜔𝑛0

2

𝜔2
[ 

𝑙2

𝑛2𝜋2
 
𝑃𝑎  𝐴𝑙𝑢𝑚

𝐸 𝐽
] 

((4.6) 

where 𝜔𝑛0 is the natural frequency of the aorta with the fluid inside and 𝛿𝑛 and 𝜀𝑛 are 

dimensionless parameters that define the stability behavior of the Mathieu equation and are 

mainly representative of the mean pressure and pressure amplitude respectively.   

Case of clamped-clamped boundary condition (CCBC) 

For this case, the boundary conditions are: 

 𝑢(0) = 0, 𝑢(𝑙) = 0,
𝜕𝑢

𝜕𝑧
|
𝑧=0

= 0,
𝜕𝑢

𝜕𝑧
|
𝑧=𝑙

= 0 (4.7) 
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Figure 22– a) free body diagram of aortic segment. The aortic wall and intraluminal 

fluid is considered a composite beam. b) Configuration before and the first mode 

after loss of stability for pinned-pinned boundary condition. c) Three first mode 

shapes of clamped-clamped boundary condition used in this study. 
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To satisfy this boundary condition, the following eigenfunctions were chosen 

(Scott, 2001)  

 

𝜙𝑛(𝑧) = 𝜎𝑛[sin(𝛾𝑛𝑧) − sinh(𝛾𝑛𝑧)] + cos(𝛾𝑛𝑧) − cosh(𝛾𝑛𝑧) 

 𝜎𝑛 =
−cos(𝛾𝑛𝑙) + cosh(𝛾𝑛𝑙)

sin(𝛾𝑛𝑙) − sinh(𝛾𝑛𝑙)
, 𝛾𝑛 =

𝑁𝑛

𝑙
,       𝑛 = 1, 2, 3, … 

(4.8) 

in which 𝑁𝑛 are the roots of cos 𝑥 cosh 𝑥 = 1 (Figure 22-c). For these eigenfunctions, 𝑪 is 

not diagonal and we have (Paidoussis & Issid, 1974) 

 𝐶𝑚𝑛 = {

𝛾𝑚𝜎𝑚(2 − 𝛾𝑚𝜎𝑚), 𝑚 = 𝑛

4𝛾𝑚
2𝛾𝑛

2

𝛾𝑚
4 − 𝛾𝑛

4
(𝛾𝑚𝜎𝑚 − 𝛾𝑛𝜎𝑛)((−1)𝑚+𝑛 + 1), 𝑛 ≠ 𝑚

 (4.9) 

In analogy to Equation 4.6, we at a set of coupled Mathieu equations with 

parameters 𝛿 and 𝜀 in the form of dimensionless matrices 

 

𝑑2𝒇

𝑑𝜏2
+ (𝜹 + 𝜺 cos 𝜏)𝒇 = 0 

𝜹 =
1

𝜔2

1

𝜌𝑤𝐴𝑤 + 𝜌𝑓𝐴𝑙𝑢𝑚

[𝐸𝐽𝚲 + (𝑃̅𝐴𝑙𝑢𝑚 − 𝐹𝑧)𝑪 ] 

𝜺 =
1

𝜔2

1

𝜌𝑤𝐴𝑤 + 𝜌𝑓𝐴𝑙𝑢𝑚
𝑃𝑎𝐴𝑙𝑢𝑚𝑪 

(4.10) 

Stability Analysis 

In order to find the stability regions of Mathieu equation, we used Bolotin’s method 

of parametric resonance which states that the boundaries of stable and unstable region 

occur at solutions with periods of  2𝜋 and 4𝜋 (Bolotin, 1964; Jordan & Smith, 2007). These 

boundaries were found by assuming solutions in the form of  
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 𝒇2𝜋 = ∑𝒂𝑘 exp(𝑖𝑘𝜏)

∞

−∞

,      𝒇4𝜋 = ∑𝒃𝑘 exp (
1

2
𝑖𝑘𝜏)

∞

−∞

 (4.11) 

in which 𝒂𝑘 and 𝒃𝑘 are vectors of the coefficients for solutions with periods of  2𝜋 and 4𝜋 

respectively. The Mathieu equations were simplified to a system of homogenous linear 

equations for 𝒂𝑘 and 𝒃𝑘 with the coefficient matrix being dependent on the geometry and 

loading parameters. The borders between the stable and unstable regions were determined 

numerically by setting the determinant of the coefficient matrix to zero. The upper and 

lower limits of the summations in Equations 4.11 were considered to be −20 and 20 and 

it was verified that after about 𝑘 =  ±15 no significant change in the solution occurred.  

For evaluation of the coefficient matrix, for a given mean intraluminal pressure and 

axial stretch ratio in the range of 𝑃̅ = 0. .70 𝑘𝑃𝑎 (based on the estimated blood pressure 

during car accidents (Bass et al., 2001)) and 𝜆𝑧 = 1.21. .1.23 (𝜆𝑧 = 1.22 for equilibrium at 

physiological pressure), the geometric parameters (𝐴𝑤, 𝐴𝑙𝑢𝑚, 𝐽) and 𝐹𝑧 were evaluated by 

considering the hyperelastic solution of the inflation-extension problem. Additionally, the 

incremental axial elastic Modulus 𝐸, as in  (Rachev, 2009), was calculated by applying 1% 

axial strain superimposed on 𝜆𝑧.  Material densities were assumed to be 𝜌𝑤 =

1000𝑘𝑔/𝑚3  and 𝜌𝑓 = 1000 𝑘𝑔/𝑚3 . The pressure amplitude and frequency were varied 

in the range of  𝑃𝑎 = 0. .5 𝑘𝑃𝑎 and 𝑓 = 𝜔/2𝜋  = 0. .5 Hz.  

Regarding the number of modes (𝑛) for Equations 6, since the modes are decoupled, 

the first mode (𝑛 = 1)  was the only physically relevant one to be considered (Rachev, 

2009).  The stability regions for this case were represented by a Strutt diagram with 𝛿𝑛 and 

𝜀𝑛 as the horizontal and vertical axes respectively. Using this diagram, any configuration 
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of the aortic segment for a given 𝜆𝑍 and 𝑃̅, can be represented by a point on the diagram 

and its stability be verified. The stability of aorta about a physiological reference point 

(PRP), given in Table 1, was investigated by changing 𝑃̅, 𝑃𝑎 , 𝑓, 𝐿,  and 𝜆𝑧, independently. 

For Equation 10, by increasing the mode numbers from 1, it was observed that after 

the third mode, the changes in the stability behavior were negligible and 𝑛 = 3 was chosen 

for further stability analysis. In this case, stability was studied by comparing four diagrams 

including 𝑃𝑎, 𝑓, 𝐿, and  𝜆𝑧 versus 𝑃̅.  For comparison, the same plots were also generated 

for the PPBC case.  

 

Table 4– Average geometry, material parameters and physiological reference point used 

in this study for stability analysis. The physiological reference point is based on average 

in vivo values in the human aorta. . The initial length represents a segment of descending 

aorta between the arch and the first intercostal artery. 

Average Geometry 

Inner Radius (mm) Wall thickness (mm) Opening angle (deg) 

11.17 2.44 40.8 

Material Parameters 

C (kPa) c1 c2 c3 c4 c5 c6 

61.35 0.6218 1.5277 1.0222 0.2103 0.1207 0.2971 

Physiological Reference Point 

Mean 

pressure (kPa) 

Pressure 

Amplitude 

(kPa)  

Frequency (Hz) Initial 

Length 

(mm) 

Axial Stretch 

ratio 13.3 2.7 1.3 100 1.22 
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Results  

The Strutt diagram for PPBC is shown in Figure 23 with gray areas representing 

the stable region. It can be seen that as a point moves in the (𝛿, 𝜀) space to the left and top 

of the diagram, the probability of being in an unstable region is higher. The effects of 

variations in each parameter 𝑃̅, 𝑃𝑎, 𝑓, 𝐿,  and 𝜆𝑧, by keeping the others constant, are shown 

with two points that were above and below the PRP. It was noted that the PRP was in the 

stable region but close to its boundary. This made the segment prone to instability with 

relatively small changes in geometry and loading parameters. Increasing 𝑃̅ and decreasing 

𝜆𝑧, moved the system toward the unstable region almost parallel to the 𝛿 axis. In contrast, 

increase in 𝑃𝑎, moved the system to the unstable region parallel to the 𝜀 axis. Increase in 𝐿 

and 𝑓 moved the system along oblique paths toward lower 𝛿 and 𝜀 passing through multiple 

narrow stable/unstable regions. While longer 𝐿 eventually makes the system unstable, with 

higher 𝑓, the system could still be stable.  

Since the equations for CCBC are coupled, unique dimensionless parameters 

cannot be defined to study the stability of the segment using a Strutt diagram. In order to 

demonstrate the stability regions, several graphs were generated (Figure 24) in which two 

parameters were varied while the others were kept constant at the PRP values. For the 

purpose of comparison, the corresponding graphs for PPBC are also shown. The left and 

right columns correspond to PPBC and CCBC respectively while rows correspond to 

𝑃𝑎 , 𝑓, 𝐿 or 𝜆𝑧 in the vertical axis and 𝑃̅ in the horizontal axis. As expected, the PRP, marked 

with a red cross, is farther away from the border with CCBC compared to PPBC, i.e., the 

aortic segment is more stable. Based on these graphs, the segment with PPBC could 
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become unstable due to a small increase in 𝑃̅ to 14 kPa. In contrast, the instability for the 

case of CCBC occurred at 𝑃̅ ≅ 40 kPa and variations of the other parameters (𝑃𝑎 , 𝑓, 𝐿 or 

𝜆𝑧) about the PRP would not make the system unstable. For segments shorter than 90 mm, 

an increase in 𝑃̅ up to 70 kPa did not induce instability (Figure 24-f). The critical mean 

static pressure, when 𝑃𝑎 = 0 (Figure 24-a and Figure 24-b), was 18 and 47 kPa for PPBC 

and CCBC respectively. 

To demonstrate how dynamic loading would result in a lower critical pressure, the 

stability of PRP (𝑃𝑎 = 2.7 kPa) and static loading (𝑃𝑎 = 0) as a result of increasing 𝑃̅ were 

considered.  The critical mean pressure decreased from 18 and 47 kPa to 14 and 40 kPa for 

PPBC and CCBC respectively.  It should be noted that in the case of dynamic loading,  𝑃̅ +

𝑃𝑎 is still less than static critical pressure.  This result showed the arteries under dynamic 

loading may lose their stability at pressures lower than static critical pressure.   

Figure 23 – Strutt diagram: Change of 𝛿 and 𝜀 with mean blood pressure 𝑃̅, pressure 

amplitude𝑃𝑎, pulsation frequency 𝑓, initial length 𝐿 and axial stretch ratio 𝜆. 
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Discussion 

In order to demonstrate the stability behavior of the PPBC by use of the Strutt 

diagram,  𝐿, 𝜆, 𝑃̅, 𝑃𝑎 and 𝑓 were changed in the vicinity of PRP. The selected ranges were 

based on the clinical data as explained below.  The American Heart Association 

recommends a blood pressure range of 120/80 mmHg as the optimal blood pressure 

(Chobanian et al., 2003). These values correspond to 100 mmHg (13.3 kPa) mean pressure 

and 20 mmHg (2.7 kPa) pressure amplitude (PRP state).  𝑃̅ was varied between 80 and 120 

mmHg (10.7 and 16 kPa) that correspond approximately to the beginning of hypotensive 

and hypertensive blood pressures respectively. Similarly, 𝑃𝑎 was changed between 1.3 and 

4.0 kPa to reach the hypotensive and hypertensive limits. Healthy heart beat for adults at 

rest is considered to be between 60 and 100 beats per minute (bpm) and values below or 

beyond that are considered bradycardia and tachycardia (American Heart Association 

Guidelines, 2005). These limit values and the mean value of 80 bpm were chosen to 

determine the range of  𝑓 (1.3 ± 0.3 Hz).  The assumed segment lengths (𝐿 = 100 ±

20 mm) correspond to an estimation of the length of aorta, which is relatively free to move; 

between the arch and the tethered part of the descending aorta (Richens et al., 2002; 

Shimizu et al., 2005; Symbas, 1977). The PRP value reported in the diagram for 𝜆𝑧 is 1.22 

which is obtained from our inflation experiments at 𝑃̅ = 13.3 𝑘𝑃𝑎. The range of 𝜆𝑧 was 

determined by the difference between this value and the in-situ axial stretch ratio of 1.2 

reported for human aorta (Holzapfel et al., 2007).  

TAR in experimental studies on cadavers occur at a lower rate compared to real 

world accidents (Hardy et al., 2008; Viano, 2011) which might be due to the altered 
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configuration of the aorta in the chest cavity such as increase in axial stretch ratio as a result 

of dropping of the diaphragm. Aortic pressure inside the aorta during car accidents can 

reach to an average of  70 kPa (Bass et al., 2001; Hardy et al., 2008) which, as shown in 

this study, can induce mechanical instabilities. We have also shown that the state of 

instability is very sensitive to the axial stretch ratio and the vessel becomes more stable 

with an increased tension. This suggests that one of the reasons for unsuccessful replication 

of TAR in cadaver tests might be that the aorta is more mechanically stable.  

Although the critical pressures for CCBC are in supra-physiological range, we 

should note that these pressures are possible in traumatic scenarios such as car accidents as 

mentioned above. The mechanical instabilities of aorta during an accident, accompany an 

increase in tissue stress and strain, which as stated earlier, can be a contributing factor to 

injury and rupture. To illustrate this point, changes in stress and strain in the tissue due to 

bending were evaluated for the two cases of PPBC and CCBC (Figure 25). For this purpose, 

the critical pressures were determined to be 18 and 47 𝑘𝑃𝑎 respectively for PPBC and 

CCBC (corresponding to 𝑃𝑎 = 0). In calculating the stretch ratios in the bent configuration, 

we used the kinematic equations of bending and superimposed the calculated strains on the 

axial stretch ratio of PRP (1.22). The tissue incremental axial elastic Modulus was also 

calculated for the case of the axial extension of a cylindrical segment under constant 

pressure and was used to find the level of stress. A 20 mm deflection at the midpoint of the 

aortic segment showed approximately a 4 fold increase in stress. Although the maximum 

stress levels are lower than the failure initiation level of 800 kPa (Stemper et al., 2007), 
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this increase shows that mechanical instabilities can be a significant contributing factor in 

increasing the stress to the injury and failure levels. 

It was shown that the type of boundary condition played an important role in the 

vessel stability behavior. With PPBC the PRP is prone to instability while with CCBC the 

vessel is more stable and instabilities are possible only in supra-physiological pressures. 

While the mechanical nature of perivascular tissue and how aorta is supported in the body 

is not completely known (Rachev, 2009; Taylor & Humphrey, 2009), it is believed that one 

simple boundary condition may not be sufficient and that the boundary at one end may 

change from a pinned condition at small deformations to a clamped conditions at larger 

deformations. Therefore, we expect the stability region in real aorta to be between the 

regions obtained for PPBC and CCBC, i.e. the vessel is more stable than PPBC and more 

prone to instabilities compared to CCBC.  

To demonstrate how dynamic loading would result in a lower critical pressure, the 

stability of PRP (𝑃𝑎 = 2.7 kPa) and static loading (𝑃𝑎 = 0) as a result of increasing 𝑃̅ were 

considered.  The critical mean pressure decreased from 18 and 47 kPa to 14 and 40 kPa for 

PPBC and CCBC respectively.  It should be noted that in the case of dynamic loading,  𝑃̅ +

𝑃𝑎 is still less than static critical pressure.  This result showed the arteries under dynamic 

loading may lose their stability at pressures lower than static critical pressure. 
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The material model used for the simulations in this study, is derived from quasi-

static inflation-extension experiments and therefore may be inaccurate for high rate 

applications such as car accidents. Assuming that the rate dependence of aorta can be 

modeled by a quasi-linear viscoelastic model, for higher rate the material will behave as a 

stiffer material. In order to obtain a more accurate estimate of the instantaneous elastic 

response,  parameter 𝑐 in the current model can be scaled up by the amount of relaxation 

of the tissue (Fung, 1993).  Based another study by our group on porcine aorta, it was 

assumed that 𝑐 = 170.42 kPa  (Hemmasizadeh at al., 2012a).  In the first 100 ms of 

loading, that corresponds to the time range of car accidents, this value reduces by about 

30% to 119.29 kPa. It was found that this range of 𝑐 predominantly changed δ and the 

change in ε was negligible. Higher values of 𝑐 resulted in higher values of δ and critical 

Figure 25 – Change in axial stretch ratio and average axial stress in a 100 mm segment of 

aorta after deflection. Pinned-pinned and clamped-clamped cases were studied at their 

corresponding static buckling pressure of 18 and 47 kPa respectively. 
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pressures.  The instantaneous critical pressure was found to be 44.6 and 123.4 kPa for 

PPBC and CCBC respectively which were reduced to 21.7 and 61.8 kPa within the first 

100 ms.  Therefore, under the average peak pressure of 70 kPa that occurs in car accidents, 

our model predicts that aorta would become mechanically unstable.  

As a limitation of this study, the material behavior of the aortic tissue was simulated 

by a phenomenological constitutive model. Recent advancements in multi-scale models for 

arteries such as fiber-reinforced models (Gasser, Ogden, & Holzapfel, 2006) and mixture 

models (Humphrey & Rajagopal, 2003) can be incorporated to study the role of arterial 

tissue fibers in the stability of blood vessels. Moreover, in the radial direction, the aortic 

wall consisted of three layers and in the axial direction its stiffness changes for about 20% 

in a 100 mm segment (Sokolis, 2007).  Understanding the effect of inhomogeneity on the 

stability of aorta was beyond the scope of this study and would require further 

investigation.  
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CHAPTER 5 

CONCLUDING REMARKS 

 

While the use of restraint systems has increased in recent years, the overall 

incidence of TAI/TAR in car accidents has remained the same and airbags and seatbelts 

did not eliminate the risk of injury. This emphasizes the necessity of more comprehensive 

studies on the underlying mechanisms of aortic injuries in order to improve the 

effectiveness of the safety systems. The results presented in this dissertation provide a step 

forward in our understanding of the mechanical and failure behavior of aorta and the 

mechanisms that lead to TAI/TAR. 

In this study, the inflation-extension test method was extended to supra-

physiological intraluminal pressures (70 kPa) that occur in aorta during car accidents. 

Using a fixed-free boundary condition, sample buckling was avoided.  With this boundary 

condition, it was found that 𝜆𝜃(𝑟𝑜) was slightly smaller than 𝜆𝑧 which indicated an 

orthotropic material behavior and that the tissue was stiffer in the 𝜃 direction. The nonlinear 

rising trend of 𝜆𝜃 from outer toward inner wall was significantly increased at higher 

pressures. The increase in 𝜆𝜃 in the pressure range of 13 kPa to 70 kPa was 13% at the 

outer wall and 22% at the inner wall while in this pressure range, 𝜆𝑧 increased 20%. 

It was shown that an orthotropic Fung-type SEDF that was previously used in the 

physiological inflation-extension tests, could satisfactorily describe the material behavior 

of the segments from 0 to 70 kPa.  A significant nonlinearity in the material behavior was 

observed as in this pressure range, stresses 𝑇𝜃(𝑟𝑖) and 𝑇𝑧(𝑟𝑖) were increased 16 and 18 times 
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respectively for less 3 fold increase in strains.  A novel and computationally efficient 

method was implemented to ensure the convexity of the SEDF. The applicability of the 

overall constitutive model in multi-axial loading conditions was verified in several loading 

paths in the 𝜆𝑧 − 𝜆𝜃 space. 

The deformation of aorta in car accidents occur at high rates and therefore, it was 

necessary to characterize the rate dependence of the mechanical and failure properties of 

the tissue. Obtaining failure properties of the tissue from inflation-extension experiments 

was not practical due to the failure of sutures at branches during pressurization. With a 

multirate uniaxial test setup that was developed for this study, aorta samples were tested in 

circumferential and longitudinal directions at strain rates up to 400 s-1 which is an order of 

magnitude higher than previously published data. Two distinct states of failure initiation 

(FI) and ultimate tensile strength (UTS) were identified in both directions. Explicit direct 

relationships were derived between FI and UTS stresses and strain rate. On the other hand, 

FI and UTS strains were rate independent and therefore strain was proposed as the main 

mechanism of failure. The average strain at the ultimate tensile strength from both direction 

and at all rates was 0.89±0.03. Tissue pre-failure linear moduli showed an average of 60% 

increase over the range of strain rates. 

Using the constitutive model that has been developed in this study, the mechanical 

instability of aorta was studied. Since arteries are under dynamic loading, their mechanical 

instabilities need to be analyzed by dynamic methods. It was shown that aorta may become 

unstable in pressures lower than what is predicted by the static buckling theory. It was 

shown that the type of boundary condition had a significant effect on the stability behavior. 
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For example, the critical pressure for CCBC was approximately three times higher than 

PPBC. The values of critical pressures remained below the average peak intraluminal 

pressures in car accidents, and based on that, mechanical instability was proposed as a 

contributing factor to TAI/TAR.  

Both inflation-extension and uniaxial experiments results showed a prominent 

anisotropy in which the circumferential direction was about four times stiffer than the 

longitudinal direction. This anisotropy can be attributed to the direction of collagen fibers 

which are dominantly aligned in the circumferential direction (Holzapfel, 2000). The aortic 

tissue also showed a higher failure stress and failure strain in the circumferential direction 

which explains why most of the aortic ruptures in car accidents occur in the longitudinal 

direction (Richens & Kotidis, 2003).  

Injuries of aorta initiate from the intimal layer and propagate toward the media and 

the adventitia (Neschis et al., 2008). This mechanism could be explained partly by the 

results of this study. Based on the failures observed in the uniaxial experiments, it was 

concluded that the failure initiation occurred on the intimal side. A similar observation has 

been reported by others (Stemper et al., 2007) who  recorded videos of tissue loading from 

both the intimal and the adventitial sides. Therefore, it could be concluded that the intimal 

layer had lower failure strains/stresses compared to the other two layers. Moreover, based 

on the inflation extension experiments, strains and stresses in the aortic wall were higher 

in the inner wall region, which could contribute to the initiation of failure from intima. 
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Suggestions for future research projects 

 The multirate uniaxial experimental data can be utilized for characterization 

of a viscoelastic model of aorta.  The constitutive model that has been 

developed in this study can be considered the steady state response of the 

tissue. A viscoelastic model can be characterized to describe all the results 

of uniaxial extension experiments. Initial work toward this end showed that 

viscoelasticity is also anisotropic, which makes the model characterization 

a challenge. 

 Determination of the tissue mechanical and failure properties can be 

extended to the properties of its constituents, i.e., collagen fibers and elastin, 

to gain more insight into the mechanisms of tissue deformation and failure. 

This can be achieved by dissolving elastin or collagen in the specimens. 

While some preliminary work has been done in this regard, this area of 

research is still in its infancy (M. J. Collins, Eberth, Wilson, & Humphrey, 

2012). 

 Utilizing advanced tissue imaging techniques in conjunction with 

mechanical testing can shed light on the failure mechanisms at micro-

structural level. For example, a confocal microscope can be utilized for 

visualization of collagen fibers using fluorescent markers such as CNA35-

OG488 (Rezakhaniha et al., 2012). 

 The current study on the mechanical instability of aorta shows that buckling 

can be a contributing factor in TAI. Further studies on the effect of 
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surrounding tissue are necessary to model the stability behavior of aorta in 

vivo. Transient loading, as it occurs in car accidents, may be implemented 

in the buckling formulations to obtain better estimates of the critical 

pressures. 
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APPENDIX A. DERIVATION OF INFLATION-EXTENSION EQUATIONS 

 

Aortic tissue is assumed to behave as an orthotropic hyperelastic material that can 

be modeled by a Fung-type strain energy density function(Fung et al, 1979) as shown 

below: 

 
𝑊 =

1

2
𝑐(𝑒𝑄 − 1) 

𝑄 = 𝑬𝑇𝑪𝑬 

(A.1) 

in which 

 𝑬 = [
𝐸𝑟

𝐸𝜃

𝐸𝑧

],  𝑪 = [

𝑐1 𝑐4 𝑐5

𝑐4 𝑐2 𝑐6

𝑐5 𝑐6 𝑐3

] (A.2) 

In this equation 𝑐1 to 𝑐6 and 𝑐 are material parameters to be found by optimization. 

Assuming aortic segments to be incompressible thick wall cylinders, the principal strains 

are 𝐸𝑟, 𝐸𝜃 and 𝐸𝑧, representing the radial, circumferential and axial components of the 

Lagrangian strain tensor respectively. These components are related to stretch ratios by  

 𝐸𝑖 =
1

2
(𝜆𝑖

2 − 1), 𝑖 = 𝑟, 𝜃, 𝑧 (A.3) 

Deformation of artery from an stress-free configuration (𝑅, Θ, 𝑍) to inflated 

configuration (𝑟, 𝜃, 𝑧) can be explained by stretch ratios in principal directions as 
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 𝜆𝑟 =
𝜕𝑟

𝜕𝑅
, 𝜆𝜃 =

𝑟

𝑅

𝜕𝜃

𝜕Θ
, 𝜆𝑧 =

𝑧

𝑍
 (A.4) 

As a consequence of the incompressibility assumption stretch ratios are related by 

𝜆𝑟𝜆𝜃𝜆𝑧 = 1 and radial stretch ratio can be calculated from two circumferential and 

longitudinal stretch ratios. Non-zero Components of Cauchy stress tensor then can be 

derived from strain energy density function as 

 𝑇𝑟 = 𝜆𝑟
2 𝜕𝑊

𝜕𝑟
+ 𝐻, 𝑇𝜃 = 𝜆𝜃

2 𝜕𝑊

𝜕𝑟
+ 𝐻, 𝑇𝑧 = 𝜆𝑧

2 𝜕𝑊

𝜕𝑧
+ 𝐻 (A.5) 

in which 𝐻 is the Lagrange multiplier that is necessary because of incompressibility 

assumption. For statically pressurized vessel and ignoring the effect of body forces the 

equation of equilibrium is derived: 

 𝑑𝑖𝑣 𝑻 = 0 (A.6) 

where 𝑻 is Cauchy stress tensor and div denotes the Eulerian (spatial) divergence operator. 

In the absence of shear components of stress in radial direction we have    

 
𝑑𝑇𝑟

𝑑𝑟
+

𝑇𝑟 − 𝑇𝜃

𝑟
= 0 (A.7) 

By plugging in the components of Cauchy stress from Equation A.5 in Equation 

A.7 and integrating from internal radius 𝑟𝑖 to an arbitrary radius between inner and outer 

radii (𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑜) and applying the boundary condition at internal radius (𝑇𝑟(𝑟𝑖) = −𝑝) 

we have   
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 𝑇𝑟 = ∫ (𝜆𝜃
2 𝜕𝑊

𝜕𝐸𝜃
− 𝜆𝑟

2 𝜕𝑊

𝜕𝐸𝑟
)
𝑑𝑟

𝑟

𝑟

𝑟𝑖

− 𝑝  (A.8) 

where 𝑝 is the internal pressure of aorta. Assuming the outer surface of the aorta to be 

traction-free (𝑇𝑟(𝑟𝑜) = 0), we arrive at the following equation that explains the relation 

between internal pressure and deformation of aorta. 

 𝑝 = ∫ (𝜆𝜃
2 𝜕𝑊

𝜕𝐸𝜃
− 𝜆𝑟

2 𝜕𝑊

𝜕𝐸𝑟
)
𝑑𝑟

𝑟

𝑟𝑜

𝑟𝑖

  (A.9) 

This equation allows calculation of the Lagrange multiplier as 𝐻 = 𝑇𝑟 − 𝜆𝑟
2 𝜕𝑊

𝜕𝑟
, 

which can be used to find the longitudinal component of Cauchy stress from Equation A.5  

 𝑇𝑧 = 𝑇𝑟 + 𝜆𝑧
2 𝜕𝑊

𝜕𝐸𝑧
− 𝜆𝑟

2 𝜕𝑊

𝜕𝐸𝑟
  (A.10) 

Static equilibrium in the longitudinal direction requires that the tensile force in the 

aortic wall at an arbitrary cross section of aorta be equal to the compressive force exerted 

by the fluid in the lumen: 

 𝐹𝑍 = 2𝜋 ∫ 𝑇𝑧 𝑟 𝑑𝑟
𝑟𝑜

𝑟𝑖

= 𝑝 𝐴𝑙𝑢𝑚 (A.12) 

in which 𝐴𝑙𝑢𝑚 is the lumen area. The material parameters can be calculated by 

simultaneous optimization of Equations A.9 and A.12 to the experimental measurements. 
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APPENDIX B. DERIVATION OF UNIAXIAL EXTENSION EQUATIONS 

 

Assuming an orthotropic material (with 3 axes of isotropy 𝒆1, 𝒆2, 𝒆3) under 

extension along one of its principal directions, the deformation gradient can be written as 

 𝑭 =  [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] (B.1) 

in which 𝜆𝑖’s are the principal stretch ratios. Taking the material to be incompressible, the 

determinant of deformation gradient should be one, i.e. 𝐽 = det (𝐹) = 1. Lagrangian strain 

can be calculated by 

 𝐸 =
1

2
(𝑭𝑇𝑭 − 𝑰) → 𝐸𝑖 =

1

2
(𝜆𝑖

2 − 1),        𝑖 = 𝑟, 𝜃, 𝑧 (B.2) 

Knowing the strain energy density function of the tissue in the form of 𝑊(𝐸) and enforcing 

the incompressibity condition through a Lagrange multiplier 𝐻 we have  

 𝑊∗ = 𝑊(𝑬) − 𝐻(𝐽 − 1) (B.3) 

The second Piola-Kirchhoff stress can be calculated as 𝑺 =
𝜕𝑊

𝜕𝑬
 with nonzero 

components of  

 𝑆𝑖 =
𝜕𝑊

𝜕𝐸𝑖
− 𝐻

𝜕𝐽

𝜕𝐸𝑖
, 𝑖 = 1,2,3 (B.4) 

The derivative of 𝐽 can be calculated by chain rule and we have  
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 𝑺 =

[
 
 
 
 
 
 
𝜕𝑊

𝜕𝐸1
− 𝐻

𝜆2𝜆3

𝜆1
0 0

0
𝜕𝑊

𝜕𝐸2
− 𝐻

𝜆1𝜆3

𝜆2
0

0 0
𝜕𝑊

𝜕𝐸3
− 𝐻

𝜆1𝜆2

𝜆3 ]
 
 
 
 
 
 

 (B.5) 

The Cauchy stress can be derived from second Piola-Kirchhoff stress through 𝑻 =

1

𝐽
𝑭𝑺𝑭𝑇 with the following nonzero components 

 𝑇𝑖 = 𝜆𝑖
2 𝜕𝑊

𝜕𝐸𝑖
− 𝐻, 𝑖 = 1,2,3 (B.6) 

Since the state of strain in the problem is not a function of position, equation of equilibrium 

in the absence of body forces reveals that 𝐻 is also not a function of position and depends 

only on the state of strain. Consequently, the state of stress is also independent of position. 

Without loss of generality the extension can be assumed to be along the 𝒆3 

direction. Since the surface of the sample in 𝑒1 and 𝑒2 directions are traction free it can be 

concluded that the components of Cauchy stress in these directions are zero everywhere 

and  

  𝑇1 = 𝑇2 = 0 →  𝐻 = 𝜆1
2 𝜕𝑊

𝜕𝐸1
= 𝜆2

2 𝜕𝑊

𝜕𝐸2
 (B.7) 

The above equation gives a relation between the three components of strain and together 

with the incompressibility equation forms a system of two equations with  two unknowns 

(𝜆1, 𝜆2) that can be solved numerically for a known 𝜆3, i.e. the state of deformation is 

determined. Moreover by plugging the Lagrange multiplier form Equation B.7 into the 

third component of Equation B.6, stress in the 𝒆3 direction can be calculated. 
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APPENDIX C. UNIAXIAL EXPERIMENTAL DATA 

Table C.1 – Sample specifications and test parameters 

Sample ID Test Dir. Test 

Speed (m/s) 

Specimen # Sample 

Thickness 

(mm) 

Gauge 

length 

Width 

(mm) 

Data 

Acquisition 

Rate 

Camera fps 

001mps_S41C2 C 0.001 41 2.4 5.2 500 100 

001mps_S41L2 L 0.001 41 3.1 5.7 500 100 

001mps_S42C1 C 0.001 42 2.5 5.7 500 100 

001mps_S42L1 L 0.001 42 2.6 5.7 500 100 

001mps_S44C3 C 0.001 44 2.1 5.6 500 100 

001mps_S44L3 L 0.001 44 2.3 5.7 500 100 

001mps_S45C1 C 0.001 45 2.6 5.4 500 100 

001mps_S45L3 L 0.001 45 2.2 5.9 500 100 

01mps_S16L3 L 0.01 16 2.6 5.3 2000 1000 

01mps_S17L1 L 0.01 17 2.8 5.2 2000 1000 

01mps_S24C2 C 0.01 24 1.9 5.1 10000 1000 

01mps_S24L2 L 0.01 24 2.4 5.2 10000 1000 

01mps_S28L3 L 0.01 28 1.8 5.6 10000 1000 

01mps_S29C3 C 0.01 29 2.0 5.3 10000 1000 

01mps_S29L3 L 0.01 29 1.9 5.7 10000 1000 

01mps_S30C1 C 0.01 30 2.3 5.8 10000 1000 

01mps_S30L1 L 0.01 30 2.5 5.6 10000 1000 

01mps_S41C1 C 0.01 41 2.3 5.1 5000 1000 

01mps_S41L1 L 0.01 41 2.8 5.4 5000 1000 

01mps_S42C2 C 0.01 42 2.8 5.4 5000 1000 

01mps_S42L3 L 0.01 42 2.5 5.7 5000 1000 

01mps_S43C3 C 0.01 43 2.3 5.3 5000 1000 

01mps_S43L3 L  0.01 43 2.3 5.6 5000 1000 

01mps_S44C1 C 0.01 44 2.1 5.6 5000 1000 

01mps_S44L1 L 0.01 44 2.3 5.9 5000 1000 

01mps_S45C2 C 0.01 45 2.2 5.3 5000 1000 

01mps_S45L2 L 0.01 45 2.7 6.1 5000 1000 

1mps_S14C2 C 1 14 2.3 5.2 20000 10000 

1mps_S14L1 L 1 14 3.0 5.1 20000 10000 

1mps_S22C2 C 1 22 1.9 5.3 20000 13029 
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1mps_S22L2 L 1 22 2.1 5.7 20000 13029 

1mps_S26C2 C 1 26 2.2 5.3 130290 13029 

1mps_S28C1 C 1 28 2.0 5.6 130290 13029 

1mps_S28L1 L 1 28 2.0 5.5 130290 13029 

1mps_S36C2 C 1 36 2.1 5.4 25000 5000 

1mps_S37C1 C 1 37 2.4 5.2 25000 5000 

1mps_S37L2 L 1 37 2.6 6.0 25000 5000 

1mps_S38C1 C 1 38 2.6 5.6 25000 5000 

1mps_S38L1 L 1 38 2.4 5.8 25000 5000 

1mps_S39C2 C 1 39 2.7 5.4 25000 5000 

1mps_S39L2 L 1 39 3.3 6.1 25000 5000 

1mps_S40C1 C 1 40 2.8 4.9 25000 5000 

10mps_S36C4 C 10 36 2.1 5.4 65145 13029 

10mps_S36L1 L 10 36 2.4 5.6 65145 13029 

10mps_S37C2 C 10 37 2.1 5.4 65145 13029 

10mps_S37L3 L 10 37 2.4 5.4 65145 13029 

10mps_S38C3 C 10 38 2.3 5.3 65145 13029 

10mps_S38L3 L 10 38 2.6 6.0 65145 13029 

10mps_S39C1 C 10 39 2.8 5.8 65145 13029 

10mps_S39L1 L 10 39 2.8 5.9 65145 13029 

10mps_S40C2 C 10 40 2.8 5.7 65145 13029 

10mps_S40L3 L 10 40 2.6 6.1 65145 13029 
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Cauchy stress versus stretch ratio curves obtained for all samples. 

 

 
Figure 26 - Cauchy stress vs stretch ratio in C direction at Rate 1 

 

 
Figure 27 - Cauchy stress vs stretch ratio in L direction at Rate 1 
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Figure 28 - Cauchy stress vs stretch ratio in C direction at Rate 2 

 

 
Figure 29 - Cauchy stress vs stretch ratio in L direction at Rate 2 
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Figure 30 - Cauchy stress vs stretch ratio in C direction at Rate 3 

 

 
Figure 31 - Cauchy stress vs stretch ratio in L direction at Rate 3 
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Figure 33 - Cauchy stress vs stretch ratio in L direction at Rate 4 
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Figure 32 - Cauchy stress vs stretch ratio in C direction at Rate 4 


