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COMPARATIVE MODEL ACCURACY OF A DATA-FITTED
GENERALIZED AW-RASCLE-ZHANG MODEL

SHIMAO FAN, MICHAEL HERTY, AND BENJAMIN SEIBOLD

ABSTRACT. The Aw-Rascle-Zhang (ARZ) model can be interpreted as a generalization of
the Lighthill-Whitham-Richards (LWR) model, possessing a family of fundamental diagram
curves, each of which represents a class of drivers with a different empty road velocity. A
weakness of this approach is that different drivers possess vastly different densities at which
traffic flow stagnates. This drawback can be overcome by modifying the pressure relation in
the ARZ model, leading to the generalized Aw-Rascle-Zhang (GARZ) model. We present
an approach to determine the parameter functions of the GARZ model from fundamental
diagram measurement data. The predictive accuracy of the resulting data-fitted GARZ
model is compared to other traffic models by means of a three-detector test setup, employing
two types of data: vehicle trajectory data, and sensor data. This work also considers the
extension of the ARZ and the GARZ models to models with a relaxation term, and conducts
an investigation of the optimal relaxation time.

1. INTRODUCTION

The mathematical modeling of vehicular traffic flow knows a variety of types of descriptions
(see [38, 7] for review papers): microscopic (e.g., [61, 54, [4, [37]), which model the individual
vehicles and their interactions by ODE; cellular (e.g., [52, 29, 22 65 I]), which divide the
road into cells and prescribe stochastic rules how vehicles advance through cells; and contin-
uum. This latter class divides into mesoscopic/gas-kinetic (e.g., [39, [60L 406, [42] 411, [40]) and
macroscopic (e.g., [49] 63, 69], 58, 59, 47, (44, [45] 20, 3], 22], 30}, 31, 8, [@]), i.e., fluid-dynamical,
models. Among the (inviscid) macroscopic models one distinguishes between first-order mod-
els based on scalar hyperbolic equations and second-order models comprised of systems of
hyperbolic equations. Specific examples for the latter are the Payne-Whitham model [58] [72],
two-phase models [16], and the Aw-Rascle-Zhang model [3], 33, [74] [§].

All of these types of traffic models are of practical importance, however—due to their
different mathematical structure—for different purposes. For instance, microscopic models
are well-suited for traffic simulation, i.e., the “in silico” study of a specific scenario; cellular
models reproduce jamming behavior while being simple to implement and easy to parallelize;
mesoscopic models provide a high modeling flexibility; and macroscopic models provide a
suitable framework for the incorporation of on-line data. Moreover, there are mathematical
relations between these types of models. For example, microscopic models as well as cellular
models converge to mesoscopic or macroscopic models in the limit of vanishing cell size or
vehicle spacing, respectively [19, 22] [T, [12]. Similarly, macroscopic models arise as suitable
limits of mesoscopic models [53, [46].
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Microscopic and cellular models are nowadays widely used in traffic engineering, and their
combination with data is ubiquitous. In contrast, certain types of continuum models have
been studied mathematically, but very little work has been conducted on their validation
with traffic data. Examples of macroscopic first-order models used in traffic engineering
practice are the Mobile Century project [2] and the Mobile Millennium project [51], including
approaches based on the reformulation of the Lighthill-Whitham-Richards model in terms
of Hamilton-Jacobi equations [5, 6], or in terms of the velocity variable [73]. Further examples
are [9, [10] and the references therein. Those projects focus on the assimilation of data, the
reconstruction of traffic states (e.g., from cell phone data), and the combination of macroscopic
models with filtering techniques.

In contrast, here different types of traffic models are generated via historic data, and then
their predictive accuracy is investigated using time-dependent data. Moreover, the main focus
lies on second-order models; and first-order models are considered mainly for comparison
purposes. The contributions of this paper are: (i) the design of a generalized Aw-Rascle-
Zhang model and the analysis of its mathematical properties; (ii) a systematic methodology
to construct data-fitted first-order and second-order traffic models, using historic fundamental
diagram data; (iii) the validation of first- and second-order macroscopic traffic models via
time-dependent trajectory and sensor data, and the comparison of the predictive accuracy
of different models; and (iv) the investigation of the optimal relaxation time in second-order
models with a relaxation term.

This paper is organized as follows. In §2| an overview over existing macroscopic traffic
models is provided, including a discussion of some of the modeling shortcomings of the Aw-
Rascle-Zhang model. We then introduce the generalized Aw-Rascle-Zhang model as an ap-
proach that addresses the shortcomings, and discuss its mathematical properties. The fitting
of the model parameters and functions is then described in Given historic fundamen-
tal diagram data in the flow rate vs. density plane, we systematically construct data-fitted
first- and second-order macroscopic models. In {4 the numerical methods used to conduct
the model validation and comparison are presented. Unlike studies of cell-transmission mod-
els [19], in this paper all studies are carried out in a macroscopic sense; in particular the
governing PDE are numerically solved with high enough accuracy such that the numerical
approximation errors are negligibly small relative to the model errors. The comparison of
the models on a three-detector test setup [2I] is then carried out in In addition to the
macroscopic traffic models, we also consider a predictor that simply interpolates the traffic
state from the boundaries. For vehicle trajectory data, and for sensor data, the predictive
accuracies of the models are compared, and their reproduction of features in the traffic states
are studied. In §6] we then extend the studies to data-fitted second-order models with relax-
ation terms. In particular, we study the dependence of the model accuracy on the relaxation
time at which drivers adjust their driving behavior. Finally, in §7| we present the conclusions
from our studies.

2. EXISTING AND NEW MACROSCOPIC TRAFFIC MODELS

Common to all macroscopic traffic models is the continuity equation

pr+ (pu)e =0, (1)
which gives the conservation of vehicles. In , the vehicle density is p(z,t), and the vehicle
velocity field is u(z,t), where x is the position along the road, and ¢ is time. If the road
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has multiple lanes (in a given direction), we consider these aggregated into the scalar field
quantities p and wu.

2.1. The Lighthill-Whitham-Richards Model and Flow Rate Functions. The sim-
plest macroscopic traffic model, the Lighthill-Whitham-Richards (LWR) model [49, [63], is
obtained by assuming a functional relationship between p and w, i.e., u = U(p). This turns
equation into a scalar hyperbolic conservation law

pi+(Q(p))z =0, (2)

where the flux @ is given by the flow rate function Q(p) = pU(p). Because the LWR model
is a closed model consisting of a single equation, it is denoted a first order model. The
velocity function U(p) is commonly assumed to be decreasing in p with U(pmax) = 0 for some
maximal vehicle density pmax > 0.

Popular examples of flow rate functions are the Greenshields flux [35], in which Q(p) is a
quadratic function, and the Newell-Daganzo flux [55], [19], in which Q(p) is a piecewise linear
function. While these different choices of functions Q(p) lead to well-posed first-order models,
the second-order models derived below call for further properties that the function Q(p) must
satisfy. In particular, the velocity function U(p) = Q(p)/p must nowhere be constant, because
otherwise hyperbolicity would be lost (see the analysis in . This rules out the Newell-
Daganzo flux; and as a consequence, in this paper we consider flow rate functions that
resemble the shape of the Newell-Daganzo flux, but that are strictly concave.

2.2. The Aw-Rascle-Zhang Model. The strict functional relationship between p and u is
loosened in second order models, which augment by an evolution equation for the velocity
field. Payne and Whitham proposed a model [58| [72] in which the vehicle velocity relaxes
towards a velocity function, while also being affected by a “traffic pressure” that is analogous
to a pressure in fluid dynamics. Because this pressure can lead to unrealistic solutions (vehicles
going backwards on the road, shocks that overtake vehicles, etc., see [20]), Aw and Rascle
[3], and independently Zhang [74], proposed a different form of “pressure” that remedies
the shortcomings of the Payne-Whitham model. The homogeneous Aw-Rascle-Zhang (ARZ)

model reads as
pt+(pu)$:07 (3)
(u+h(p)) +u(u+h(p)) =0,

where we call h(p) the hesitation functionﬂ We assume that h'(p) > 0 and use the gauge
h(0) = 0. The addition of a relaxation term (analogous to the Payne-Whitham model) yields
the inhomogeneous ARZ model [33] [62]

pt+ (pu)x =0,
(u+h(p))e +u(u+h(p)z = + (Ueq(p) —u) -

We call Ueq(p) the desired velocity function or the equilibrium velocity function, and 7 the
relaxzation time scale.

(4)

As one can easily verify, the homogeneous ARZ model possesses no mechanism to
make drivers move when starting with all vehicles at rest, i.e., u(z,0) = 0. In turn, the
inhomogeneous ARZ model does. We therefore expect the homogeneous ARZ model
to yields reasonable results only when the traffic flow is close to its equilibrium state, i.e.,

IThe function h(p) is sometimes called “pressure”, and denoted p(p), even though it does not play the role
of a pressure in the equations.
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u & Ugq(p). Yet, in general the inhomogeneous ARZ model has the potential to yield more
realistic predictions.

Remark 1. The conservative form of is given by
pi+ (¢ — ph(p)), =0,

2 (5)
@+ (% = h(p)a) =L (Qealp)+phlp) —0) .

where the two conserved variables are p and g = p(u + h(p)), and Qeq(p) = pUecq(p) is called
the equilibrium curve that the momentum density pu relaxes to.

Remark 2. Various authors (e.g., [33] [67]) have proposed to choose the functions h(p) and
Ueq(p) dependent on each other, namely h(p) = Usq(0) — Ueq(p). In this case, the solution
relaxes towards an equilibrium state u = Ueq(p) (see §2.5.3). In this paper, we follow this
philosophy, since it generates both functions from the same data-fitting procedure. How-
ever, it should be noted that it is in principle perfectly reasonable to choose h(p) and Ueq(p)
independently of each other. As shown in [34] 28] [66], ?], such a choice can generate (when-
ever h'(p) + Ug,(p) < 0) instabilities and self-sustaining traveling wave solutions that model
phantom traffic jams and traffic waves, respectively.

2.3. Interpretation of ARZ as Generalization of LWR. As pointed out in [47, [3 8, 26],
the homogeneous ARZ model can be interpreted as a generalization of the LWR model,
by introducing the variable w = u 4 h(p). Thus, system takes the form

Pt + (Pu)x == O )
wy + uw, =0, (6)

where u = w — h(p) .

The interpretation of @ is that w is advected with the flow u, i.e., it moves with the vehicles.
One can therefore interpret w as a quantity that is associated with each vehicle, and that is
influencing the velocity. Since for p = 0, we have h(0) = 0 and thus w = u, we call w the
empty road velocity. The actual vehicle velocity is given by its empty road velocity, reduced
by the hesitation h(p).

Using this interpretation, the homogeneous ARZ model generalizes the LWR, model ,
as follows. Given a (decreasing) LWR velocity function U(p), we define h(p) = U(0) — U(p)
(clearly, h/(p) > 0 and h(0) = 0). Then, model () possesses a one-parameter family of velocity
curves, namely u,,(p) = w—h(p) = U(p)+(w—U(0)), and the LWR velocity curve u(p) = U(p)
is one of them, namely the one corresponding to w = U(0). The same behavior translates
to the flow rate curves that live in the fundamental diagram (@ vs. p). The ARZ model @
possesses a one-parameter family of flow rate curves, namely Q. (p) = Q(p) + p(w — U(0)),
and the LWR flow rate curve Q(p) is one of them, namely the one corresponding to w = U(0).
This has been observed by Lebacque [47].

The aforementioned relationship between the LWR and the ARZ model is shown in Fig.
The single velocity curve (left panel) and flow rate curve (right panel), shown in red, is one
representative of the family of curves, shown in black, that the ARZ model possesses. By
construction, each velocity curve in the ARZ model is merely a vertical translation of the
LWR velocity curve. Hence, the homogeneous ARZ model possesses the same number of
parameter functions (namely: a single one) as the LWR model.



COMPARATIVE ACCURACY OF A DATA-FITTED GENERALIZED AW-RASCLE-ZHANG MODEL 5

In line with Remark 2] i.e., by choosing Ueq(p) = U(p) = U(0) —h(p), we can extend model
@ to the inhomogeneous case, yielding

(U(0) —w) , (7)

where u = w — h(p) ,

which adds a temporal relaxation of each vehicle’s empty road velocity w towards a uniform
value U(0). In other words: the dynamics, that can be on any velocity curve wu,,(p), are driven
towards the LWR velocity function U(p), i.e., the red curves in Fig. unless the system is
driven away from equilibrium by another effect, such as boundary conditions (see .

2.4. Generalized ARZ Model. The interpretation of the ARZ model as possessing a
family of velocity curves (see @) reveals a fundamental shortcoming of the model: due to
the additive relationship between velocity, empty road velocity, and hesitation, there is not
a unique maximum density pmax, at which the flow stagnates. On the contrary, as the plots
in Fig. [2] indicate, variations in w can lead to significant variations in the density at which
uy(p) = 0. However, since in reality the maximum density is largely a property of the road,
it should not depend (at least not strongly) on the velocity that drivers assume when alone
on the road. In order to remedy this shortcoming, the relationship between u, w, and p must
be generalized.

To that end, we consider a generalized Aw-Rascle-Zhang (GARZ) model, which is a rep-
resentative of the class of generic second order models (GSOM), proposed by Lebacque,
Mammar, and Haj-Salem [48]. Specifically, the homogeneous ARZ model @ generalizes to

Pt + (,O’LL)x =0,
wy + uw, =0, (8)
where u = V(p,w) ,

where we impose the following requirements on the velocity function V(p,w), and the asso-
ciated generalized flow rate function Q(p,w) = pV (p, w):

e V(p,w) >0, i.e., vehicles never go backwards on the road.
e V(0,w) = w, i.e., we gauge the convected quantity w to play the role of the empty
road velocity, as in the ARZ model @
2
o %(p, w) < 0 for w > 0, i.e., each flow-rate curve Q. (p) = Q(p, w) is strictly concave.

This condition implies (see Lemma j in particular that %—‘;(p,w) < 0, i.e., each

velocity curve uy,(p) = V(p, w) is strictly decreasing w.r.t. the density.

° g—‘u/)(p,w) > 0, i.e., a faster empty road velocity results in a faster velocity for all
possible densities.

e V(p,0) = 0, i.e, for w = 0, the concavity of @ and the slope of V' hold with an
equality sign.

Lemma 1. Consider a C? function U(p), and let Q(p) = pU(p). If Q" (p) < 0 everywhere,
then U'(p) < 0 everywhere.

Proof. The function a(p) = Q(p) — Q' (p)p satisfies: (i) a(0) = 0, and (ii) a’(p) = —Q"(p)p > 0
everywhere. Hence, U'(p) = _ng ) <0 everywhere. O
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In order to define an inhomogeneous GARZ model, an equilibrium velocity curve must be
specified. We assume that it is a member of the family of velocity curves defined by V, i.e.

Ueq(p) = V(p, weq)

for some equilibrium empty road velocity weq. We choose to generalize to the GARZ case
as follows:

pt+(pu) :07
%(Ue() u) (9)
Vip,

where u =
Note that it would alternatively be conceivable to propose a relaxation in @D of the form
Wy + uwy = L (weq — w) . (10)

While for the ARZ model, the forms and are equivalent, for the GARZ model the
relaxations @ and are not. Specifically, if (p, Weq) > 0, then both forms relax to the
same limit, but at different rates. A simple Taylor expansion yields that for w nearby weq,

the relaxation in @ happens g—g(p, Weq) times as rapidly as the relaxation in .

Finally, in line with , the GARZ model @D is meant to be interpreted in the conservative
form

4+ (V(p, =0
pt+ (V(p,a/p)p), ! an

@+ (V(p,a/p)a), = = (Qeq(p) — Q(p,a/p))

where the two conserved variables are p and ¢ = pw. Moreover, Qeq(p) = pUeq(p) and

Q(p, w) = pV(p,w).

2.5. Properties of the GARZ Model. Most properties of the classical ARZ model transfer
over to its generalization, the GARZ model. Here we only collect relevant results, many of
which have been presented in [48], or that are relatively straightforward generalizations of the
results given in [3, B3, [62]. The theoretical results presented below are in particular important
for the data-fitting methodologies conducted in and for the interpretation of the results
obtained in

2.5.1. Regions of GARZ Variables and Inverse Velocity Functions. Because of their relations
and because of their physical meaning, the quantities p, w, and u cannot assume any arbitrary
values. In this paper, we assume that there is a unique stagnation density pmax, at which
vehicles come to a stop, independent of their empty road velocity, i.e., V(pmax, w) = 0 for
all w. We therefore have p € [0, pmax) and 0 < u < w, where the latter inequality follows
from 2V (p, w) < 0. Moreover, we assume that there is a minimum and maximum empty road
ve10c1ty, ie., 0 < wpin < w < wpax. Because %—‘; < 0 and g—g > 0, the function V(p,w) can
be “inverted” to define the functions (and their domains):

V : Dy — [0, wmax] where Dy = {(p,w) | 0 < p < pmax, Wmin < W < Wax} ,

R:Dr — [0, pmax) where Dp = {(u,w) | 0 < u < w, Wpin < W < Wmax}
W : Dy — [Win, Wmax] Where Dy = {(p,u) | 0 < p < pmax, V (0, Wmin) < u < V(p, Wimax)} -
Here the functions R and W are defined as the unique solutions to the problems:

a) given v and w, find p = R(u, w), s.t. V(p,w) = u;
b) given p and u, find w = W(p, u), s.t. V(p,w) = u.
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From the fact that the quantity w is transported with the flow (while possibly relaxing to some
Weq € (Wmin, Wmax)), and from the solution of the Riemann problems of the GARZ model
(see below), it follows that the dynamics of the model never generate values w ¢ [wmin, Winax]
or p ¢ [0, pmax). Hence, analogous to the ARZ model (cf. [3]), the domain Dy is an invariant
region.

2.5.2. Characteristics and Associated Fields. The homogeneous part of the GARZ model
is a conservation law of the form

U, +F(U), =0,

where
U= (Z) and F(U) = (Z’Z) , where u="V(p,q/p).
The Jacobian of the flux function F(U) is
4 pu Ou
VF(U) — u éap _’T_aq@ ;
a3, U 43,

and its eigenvalues and associated eigenvectors are

A = 4 p@ + q@ =u+ pa—v with W) = <p) and thus VAW . A1) 20
ap dq dp q
and
_Ou
A2 =y with ~®) = ( gg) and thus VA®) .42 =0
p

Hence, like the ARZ model , the GARZ model is strictly hyperbolic for p > 0.
One of its characteristic velocities, A(!), is slower than the vehicles (i.e., AL < u) and its
associated field is genuinely nonlinear (i.e., it corresponds to shocks and rarefaction waves,
see below). Its other characteristic velocity A2 equals the vehicle velocity and its associated
characteristic field is linearly degenerate (i.e., its associated waves are contact discontinuities
that are transported with the flow).

Lemma 2. Both characteristic velocities are strictly decreasing w.r.t. p, i.e., %;1) < 0 and

NG

Tp < 0.

Proof. We have that A1) = V + p%% = %—g. Since @ is assumed concave w.r.t. p, it follows
2

that 8’3\;1) = % < 0. Moreover, 63(:) = %—‘; < 0 by Lemma O

We continue with the discussion of the characteristic fields. The scalar function I() =
q/p = w satisfies vIiM -7(1) = 0, and it is a Riemann invariant to A(Y). Hence, across
waves of the first family, the empty road velocity w is constant. The field associated with the
second eigenvalue A2 is linearly degenerate. It is given by 1) = X2 = 4 and across waves
of the second family, the velocity u is constant. The solution to a Riemann problem, i.e., the
Cauchy problem to system on the real line with discontinuous piecewise constant initial
data U(z,0) = (1 — H(z))Uy, + H(x)URg, where H is the Heaviside function, generalizes
naturally from the ARZ model as well. In general, the solution is obtained by superposition
of simple waves connecting different constant states: from a given left state Uy, to a given
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right state Ug via an intermediate state Uy that is connected to Uy, by a 1-wave (i.e., a Lax-
shock or rarefaction associated to the first characteristic field), and to Ugr by a 2-wave (i.e., a
contact discontinuity). Since the GARZ system (11]) is—as the ARZ model—of Temple class
[68], shocks and rarefaction wave curves in phase space coincide. Moreover, due to Lemma
a simple wave of the first family is either a shock or a rarefaction wave.

In the phase space (p, w)-plane we discuss the shape of the characteristic fields. The second
fields are parallel to the p-axis, and the first fields are the contours V' (p, w) = const. Since by
assumption %—‘; < 0 and g—g > 0, the contours of V' (p, w) always have a finite and truly positive
slope in the (p, w)-plane. Thus, for any two states (pr,wr,) and (pr, wr) that satisfy wy, > ug,
where ug = V(pRr,wr), there is a unique intermediate state (py,wn) = (R(ugr,wr), wr),
defined via the inverse function given in Moreover, because AV is decreasing with

p (see Lemma , the Lax entropy conditions [23] imply that for p;, < pym the 1-wave is a

pmV (pvwm)—pLV (pr,wr)
o, . . . . pM_pL. o, .
conditions [23]), while for pr, > pyp it is a rarefaction wave. The condition wy, > ur means

that drivers on the left wish to drive at least as fast as the vehicles on the right are driving.
If this is not the case, i.e., if wy, < ug, then there is no non—negative density at which the
1-wave and the 2-wave intersect. Here, a vacuum state will be generated, analogously to the
construction for the ARZ model [3, [62]. The left state (pr,,wr,) is connected by a rarefaction
wave to a left vacuum state (0,wr,); this state is connected to a right vacuum state (0, ug)
via another rarefaction (which is feasible because wy, < ur); and this then connects to the
right state (pr,wr) via a 2-contact discontinuity.

shock wave (moving with speed s =

, given by the Rankine-Hugoniot

2.5.3. Relazxation of GARZ to LWR. Smooth solutions to the Cauchy problem of the inho-
mogeneous GARZ model @ relax in time towards solutions of the LWR, model , because
w tends to weq along characteristic curves. Note that for general relaxation systems, conver-
gence to a first-order equation is only warranted if a sub-characteristic condition is satisfied,
cf. [50}, 14, [66]. Here, we are in the characteristic case. Moreover, shocks of the 2 x 2 hyper-
bolic system are also shocks of the LWR model . Therefore, for the Cauchy problem,
GARZ solutions converge to LWR solutions as ¢ — oo, and/or as 7 — 0.

In contrast, for initial-boundary-value problems on a bounded domain x € [z, xR], this
last property is in general not true. To highlight this fact we consider a simplified setting
depicted in Fig. [I} Let constant boundary data p(zy), u(xy), p(zr), u(xr) be given. With
this data, we can solve the LWR model and the inhomogeneous GARZ model . Then,
in general solutions to the latter problem do not converge to solutions of the former, even
in the limit 7 — 0. Consider a constant state (pr,Qeq(pr)) inside the domain. At the
outflow boundary zg, let a state (pr, prur) be given where ug > Ueq(pr). The LWR model
only uses the density information, and thus the constant state is preserved. In contrast, the
GARZ model uses the full state in the Riemann problem. Its solution yields an intermediate
state (pm, Qeq(pM)), whose density is determined via the relation pyur = Qeq(pn). This
intermediate state connects to the boundary state via a contact discontinuity (a 2-wave)
moving with speed ugr, and to the interior state via a shock (a 1-wave) that moves with speed

_ Qeq(PR) — Qeq(pM)

S )
PR — PM

which in the situation depicted in Fig. [Ilmoves into the domain, since s < 0. Thus, after some
time in the GARZ model the intermediate state (pm, ppur) is observed within the domain.
Note that this argument holds independent of the value of the relaxation time 7 in the model

©.
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Riemann problem at right boundary

Q. (P)

® (PrPRUR)
&
o) 1
s !
1
1
2 PrPyUR) i
Q 1
o NS :

PR Qeq(PR)
0 density p Pmax

Figure 1. Riemann problem at right domain boundary. Consider a constant initial state
(Pr; Qoq(pr)) in the domain, and prescribed boundary data (pr, prur) with ug > Ueq(pr).
The LWR model preserves the constant state (the boundary data is projected onto the
equilibrium curve vertically along the dashed line). In contrast, the GARZ model generates
a new state (pm, Qeq(pm)) at the boundary (projected onto the equilibrium curve along a
ray through the origin), from which a shock moves into the domain, thus changing the initial
state to the new boundary state.

3. DATA-FITTED TRAFFIC MODELS

In this section we describe how the parameter functions of the traffic models presented in
can be fitted to historic fundamental diagram data. We assume that flow rate vs. density
pairs (p;,Q;), j = 1,...n are given from long-term measurements (commonly obtained via
stationary sensors). As visible in the right panel of Fig. [2| these data (gray dots) tend to
exhibit a relatively clear functional relationship between p and @ for low densities. In turn,
for medium densities, a significant spread is visible, i.e., a single p-value corresponds to many
different flow rates ). Finally, for large densities, very few data points are available at all.

3.1. Data-Fitting for the LWR and ARZ Models. The first-order LWR model ([2))
must represent these data via a single function Q(p). As the spread of the data cannot be
captured, it is reasonable to find a function that lies “in the middle” of the cloud of data
points. Specifically, we employ the approach presented in [26]. First, since the stagnation
density pmax is not represented well via data, we prescribe it as a fixed constant, given by a
typical vehicle length of 5 meters, plus 50% of additional safety distance,

number of lanes _ #lanes

Pmax =

typical vehicle length x safety distance factor  7.5m

Second, a three-parameter family of smooth and strictly concave flow rate curves is selected
as

Qann(p) = o (a+ (b= a)p/pmax = VI+32) | (12)

where

a=\/1+(0p)?, b=y/1+A1-p)", and y=A(p/pmax — D)
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Velocity curves of ARZ model Flow rate curves of ARZ model
90 2400
sensor data sensor data
80 — equilibrium velocity Ueq(p) — equilibrium curve Qeq(p) I
—family of velocity curves 2000f —family of flow rate curves||
70 b
— 60F 2 1600}
< 8
€ <
=< 50F %
; A % 1200f
i g
2 3
> 301 3 800f
20t
400}
10f
% density p Prmax % density p P rmax

Figure 2. Velocity vs. density (left panel) and flow rate vs. density (right panel) curves of the smooth
three-parameter model , fitted with historic fundamental diagram data (gray dots), for the ARZ
model.

Each flow rate function Qq xp(p) in this family vanishes for p = 0 and p = pmax. The
three free parameters allow for controlling three important features of Qq x p(p): the value of
maximum flow rate Qmax (mainly determined by «), the critical density p. (mainly controlled
by p), and the “roundness” of the curve, i.e., how rapidly the slope transitions from positive
to negative near p. (dominated by \).

Third, from this three-parameter family of flow rate curves, the one is selected that is the
closest to the data points (p;,@;), j =1,...n in a least-squares sense, i.e. we solve

n

min Y (Qaxp(pj) — Q)% . (13)

a,Ap =
In the right panel of Fig. 2| the resulting least-squares fit to the given gray data points, called
Qeq(p), is depicted by the red curve. The red curve in the left panel represents the resulting

velocity function Ueq(p) = Qeq(p)/p-

As described in the ARZ model @ generalizes the LWR model to a one-parameter
family of velocity curves wy(p) = Ueq(p) + (w — Ueq(0)) (black curves in the left panel of
Fig. [2) and flow rate curves Qu(p) = Qeq(p) + (w — Ueq(0))p (right panel of Fig. [2). Due to
this property, the ARZ model possesses the same amount data-fitted parameters as the LWR
model.

An interpretation of the ARZ family of velocity curves is that different w-values represent
different types of drivers; the larger w, the faster the corresponding drivers tend to drive. As
motivated in this captures the spread in the fundamental diagram (which is desirable),
but it also results in vastly varying stagnation densities for different types of drivers. This
last property is unrealistic, as the maximum density is a property of the road, rather than of
the behavior of drivers [26]. We therefore need to construct a family of curves that are not
simple shifts of each other, as done below.

3.2. Data-Fitting for the GARZ Model. The GARZ model is based on a generalized
velocity function V(p,w), where—as for the ARZ model—w represents different types of
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Figure 3. Family of velocity vs. density (left panel) and flow rate vs. density (right panel) curves
generated from the weighted least square (WLSQ) algorithm in constructing the velocity function
u=V(p,w) in the GARZ model.

drivers, and thus parameterizes a families of velocity and flow rate curves, respectively. We
construct these families of curves by generalizing the least-squares fit (13]) to a weighted
least-squares fit, as follows.

Given a weight parameter 0 < § < 1, we consider the minimization problem

n

min ¢ (1= 8) Y (Qapp(pi) = Qi)+ + 8D (Qapplp) —Q)-)"p . (14)

a,, ° -
P ]:1 j:l
where

(Qa)\,p(pj) - Qj)+ = maX{Qa,A,p(pj) - Qj,0}
(Qa)\,p(pj) - Qj), = max{_Qa,)\,p(p]’) + ij 0} .

For 8 = %, problem reduces to , i.e., the LWR equilibrium curve is recovered. For
8 < %, data below the curve is penalized more, and consequently the resulting curve moves
downwards. In turn, if g > %, curves above the equilibrium curve are obtained.

The weighted least-squares problem generates a one-parameter family of curves Qg(p) =
Qa(8)1(8).p(8)(P), parameterized by 3; and consequently it also generates a family of velocity
functions

Qs(p)/p ifp>0
Vs(p) =1 a . :
%) ifp=0
In this paper, we restrict to the case that the velocity curves in the family are non-intersecting,
ie.,
It B1 < B, then Vs, (p) < Viy(p) for p € [0, ) - (15)
Note that in general (i.e., for a general family of flow rate functions, and for general data
points), property is not necessarily satisfied; and furthermore, problem need not

have a unique solution. However, in all cases studied in this paper, the minimization problem
does have a unique solution; and property is in fact satisfied.
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While problem is defined for all 0 < 8 < 1, values of § that are extremely close to 0
or 1 tend to lead to unreasonable curves. The reason is that in the limit 8 " 1, the resulting
curve is the lowest curve that has no data points above it, and as a result it adjusts to outliers
in the data (similar arguments hold for 5\, 0). We therefore define a lower/upper flow rate
curve, such that 99.9% of all data points lie above/below it. Consequently, together with the
equilibrium curve, we have the following three special flow rate curves

Qmin(p) = Qﬁmin (p) ) Qeq (P) = Q%(P) , and Qmax(p) = Q,Bmax (p) )

where here we use Bmin = 1074 and fpax = 1 — 1074, In the right panel of Fig. [3| these three
curves are depicted by the lowest black curve, the red curve, and the uppermost black curve,
respectively.

Even though the parameter 5 defines a family of flow rate curves as desired, it has the
shortcoming that it does not have an immediate interpretation as a property of traffic flow.
We therefore re-parameterize the family in terms of the empty road velocity w, as follows.
For any 8 € [Bmin, Bmax], we define w as the resulting slope of the curve Qs at p =0, i.e.,

w=w(f) = Va(0) .
Due to property , the relationship w = w(f) is strictly increasing, and thus can be

inverted into 3 = (w), defined on the interval w € [Wmin, Wmax|, Where wyin = Q! . (0) and
Wmax = Qlax(0). Using this re-parameterization, we obtain a generalized flow rate function

Q(paw) - QB(w)(p) )

and a generalized velocity function

V(p,w) = Vs (p) ,
as used in the GARZ model . The properties of V(p,w) assumed in are satisfied by

construction.

3.3. Domain Extension for the GARZ Model. The systematical construction of a gen-
eralized velocity function V (p, w), presented in is in line with the regions of the GARZ
variables defined in In particular, the function W (p, u) is defined only for V(p, wmin) <
u < V(p,wmax). However, when applying the GARZ model in a forward computation, ve-
locity data may be provided through initial and boundary conditions that lie outside of the
domain of W (p,u). In order to make sense of the model for such data, we effectively extend
the domain of the function W (p, u) via a projection of such data, as follows.

Given a density—velocity pair (p, u), where 0 < p < pmax, We define a projected velocity as

U(p, u) = min{max{ua V(p, wmin)}7 V(ﬁa wmaX)} s

and thus obtain the extended function

W(p,u) = W(p,U(p,u))
that is defined for arbitrary velocity values. This simple projection (densities are left un-
changed, and velocities are moved onto the lowest or highest curve, respectively) provides
a constant extension of the function W beyond its domain Dy. Note that the range of W
remains unaffected as being [wWmin, Wmax], and consequently the function W is not invertible
outside of Dyy.



COMPARATIVE ACCURACY OF A DATA-FITTED GENERALIZED AW-RASCLE-ZHANG MODEL 13
4. NUMERICAL METHODS

All models are approximated numerically using a finite volume method on a regular grid
of cell size Az and time step At, chosen so that the CFL condition [18§]

SmaxAt < Az,

is satisfied, where spyax = maxy |\g| is the largest wave speed (see for the characteristic
velocities of the models). In all examples throughout this paper, the grid resolution is chosen
small enough (Az < 50cm) so that the numerical approximation errors are much smaller than
the model errors. Hence, the studies are conducted truly on the continuum level.

The first order model is solved using Godunov’s method [32]. For the second order
models, we have to account for the fact that the inhomogeneous GARZ model becomes
stiff if 7 is small. Hence, we employ a semi-implicit finite volume scheme that treats the
nonlinear hyperbolic terms explicitly and the relaxation terms implicitly (to prevent a time
step restriction At = O(7)). The update rule of a state (p},q}) in cell j from time ¢, to the

state (p}‘“, q?“) at time t,41 = t, + At reads as

n n At n n
ijrl =P; ?x((fp)j+% - (]:P)j_%) ) (16)

G = = (Fey = Fy) + (@l = QUL ) ()

Here (]—",,);LJF% = fp(p?, i, Py q;?_H) denotes the numerical flux for the quantity p through

the boundary between cells j and j + 1; the other fluxes are defined accordingly. Moreover,
Q(p,w) = pV(p,w) is the model’s two-parameter flow rate function, and Qeq(p) = pUeq(p) =
Q(p, Weq) is the equilibrium flow rate function.

As in the Godunov method [32] one could use the exact solution to the Riemann problem
(cf. B, 24]) to define the numerical fluxes. However, this would require the inversion of
the velocity function u = V(p,w), which is costly for the GARZ model. A less expensive
approach, employed here, is to define the numerical fluxes via the HLL approximate Riemann
solver [36], which approximates the true Riemann problem by a single constant intermediate
region. Note that due to the fine grid resolution, and due to the fact that initial and boundary
conditions are continuous, spurious overshoots that may occur in the velocity (cf. [13]) are
negligibly small.

Since the inhomogeneous model possesses a relaxation only in the momentum equation,
the time update of the density variable, given by , is fully explicit. Therefore, in the time
update of the generalized momentum, given by , the quantity p?“ is known. Specifically,

the numerical scheme is implemented in three steps:
1) Based on the data (7, q}) Vj at time ¢,, the fluxes ((fp);.zrl, (Fq)?Jr;)vj are computed.
2 2

2) The new density states pg‘H Vj are computed via .
3) The new generalized momenta ¢"1Vj are computed according to . On the cell j,

J
the new state ¢" 1! is obtained as the solution of the scalar nonlinear equation G (q) =0,

J
where

At n+1 n+1 n At
G(g) =q+ TQ(pj a/pi) —af + Ar

The root of is found up to machine accuracy within a few Newton steps, using an as
the starting guess.

(Fr— E) - Sewl™ . ()

.1
J—3
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In the special case of the ARZ model , the update is given by the explicit formula
At At n+l

@) = RL((F .y — Fy ) + 520w

At :
I+ =

It should further be remarked that the semi-implicit scheme and is equivalent to the

fractional step approach that first approximates the homogeneous part of via a forward

Euler step, and then approximates the relaxation part via a backward Euler step. Hence,

in the limit 7 — 0 (while At fixed), the scheme amounts to simply projecting ¢ onto the

equilibrium curve in the relaxation step, i.e., equation turns into qu+1 = Qeq(pnﬂ). In

J
turn, in the homogeneous case, i.e., 7 — 00, the relaxation terms are simply omitted.

n+1l
4; =

(19)

The boundary data are provided by introducing a ghost cell adjacent to the outermost
grid cell (on either side of the domain), in which the boundary state (p, q) is assumed. The
numerical fluxes in and then by construction pick up the information corresponding
to waves that enter the computational domain.

5. VALIDATION AND COMPARISON OF MODELS VIA REAL DATA

In the following, we validate the presented models by studying how well they reproduce
the evolution of real traffic data, and in that process we compare the predictive accuracy of
the models. A particular focus lies on the investigation of the extent to which the GARZ
model, that addresses various shortcoming of traditional models, improves the actual model
agreement with real traffic data. We conduct the validations using the NGSIM trajectory
data set [71] and the RTMC sensor data set [506].

The test framework considered here is based on the methodology presented in [26] and
further developed in [27]: on a segment of highway, a three-detector test problem [21] is
formulated. At each end of the segment, the traffic state is (at all times) provided to the
traffic model, which is advanced forward in time (using the numerical methods described
in inside the segment. The predictions that the traffic model produces in time are then
compared to real data inside the segment, and the deviation between predicted and real traffic
states is used to quantify the model error.

5.1. Treatment of Data. As described in [26], continuous field quantities p(z,t) and u(z,t)
are constructed from the NGSIM vehicle trajectory data [70], using kernel density estimation
[57, 64]. In this approach, given vehicle locations z;(t) (including “ghost vehicle” positions,
obtained via reflection at the boundaries, see [43]), density and flow rate functions are obtained
as superpositions of Gaussian profiles,

p(x,t) = ZK(J} —xzj(t)) and Q(z,t) = ZUJK(.Z‘ —xj(t)) , where K(z) = J;?he_;l% ,
j=1 Jj=1

and the velocity field is then given by u(z,t) = Q(x,t)/p(x,t). The kernel width is chosen
h = 25 meters. These field quantities then define initial conditions (¢ = 0) and boundary
conditions (when evaluated at the segment boundary positions) for the traffic models, and
reference states for the validation (inside the segment for ¢ > 0). Before the boundary data
can be provided to the traffic model, one additional processing step must be applied to address
spurious fast oscillations in the reconstructed boundary data (due to variations in the starting
and end position of each vehicle trajectory in the data set): the time domain is divided into
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intervals of length 15 seconds, and on each interval the boundary data is replaced by a cubic
polynomial that is a least-squares fit to the data, under the constraint that the resulting
evolution is globally C.

For the RTMC sensor data, vehicles densities and flow rates are given at three sensor
positions, aggregated in intervals of length 30 seconds. Temporally continuous quantities
p(xs,t) and u(xs,t) at a sensor position xg are generated via cubic spline interpolation (in
time) of the aggregated information. One shortcoming of the RTMC data is the absence of a
reliable initial state (because information is given only at the sensor positions). This problem
is circumvented by running the models forward through an initialization phase (5 minutes),
before the actual model comparison is started. During this phase, the boundary data has
time to move into the domain and create a reasonable initial state for the actual validation.

5.2. Quantification of Model Errors. The quantification of the deviation of the model
predictions from the actual data requires two aspects to be specified: first, which field quanti-
ties to consider and how to combine them into a single quantity; and second, if data is available
at multiple positions and/or times, how to combine these multiple pieces of information into
a single quantity?

Regarding the choice of field quantities, in this study we are interested in models that
predict traffic densities (as required for instance for ramp metering) and velocities (as required
for instance for travel time estimates) accurately. Since densities and velocities have different
physical units, suitable normalization constants must be found, so that the deviations in each
quantity contribute with equal influence to the total model error.

Given model predictions p™°%!(z, ¢) and u™°%! (2, t), and real data p3'a(x, t) and udat?(z, ¢),
we define a space-and-time-dependent error measure as

pmodel (g 1) — pdata(y 4] 1 [uml (z, 1) — ud™? (x, 1))
Ap Au ’

where the normalization constants Ap and Awu represent the ranges of the fundamental dia-
gram data, as defined below. Note that various choices of normalization constants have been
proposed in the literature. For instance, in [I1] the absolute errors in density and velocity
are scaled with ||p9%%(z, )| ;1 and ||ud®*?(z,t)| 1, respectively. A shortcoming of this choice
is that for traffic flow at low densities, errors in density get divided by a very small number
and thus significantly amplified. An alternative choice is employed in [26] by using pmax and
Umax a8 normalization constants. However, these tend to give too much influence to velocity
errors, because even in moving congested traffic flow, p/pmax tends to be significantly smaller
than u/umax-

B, 1) = | (20)

In line with [27], we argue that balanced weights are given when the error in each field quan-
tity is related to the maximum variation that the respective quantity exhibits in the historic
fundamental diagram. In order to exclude the influence of outliers in the data, we conduct
the following four-step approach. First, all data points (p;,u;) with p; < 5veh/km/lane are
neglected. The rationale is that these data do not contribute any meaningful information
about the spread in the traffic states, and moreover such low density values are not mean-
ingful in the context of a macroscopic description of traffic flow. In Fig. [4] this boundary is
depicted by the black line. Second, similar to the method presented in [9], the upper density
boundary p"P is defined such that 99.9% of the remaining data points lie below it (red line
in Fig. . Third, the lower (upper) velocity boundary u'°" (u"P) is defined such that 99.9%
of the remaining data points lie above (below) it (blue lines in Fig. [)). Fourth, we define the
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Figure 4. Construction of ranges in density and velocity in historic fundamental diagram
data, using an upper density (red line) and lower and upper velocity boundaries (blue
lines). Data points with densities below a threshold (black line), as well as outliers, are
systematically excluded.

data ranges

Ap=p"™ and Au=u" — V.

Regarding the norms and averages to measure the model errors, we use the following
expressions. On a segment z € [0, L] and time interval ¢ € [0, T, spatial and spatio-temporal
averages are considered

L
Bo(1) = i/o B(o,t)dz (21)

1 T L
EF=— FE . 22
TL/O /O (2,1) dz dt (22)

Moreover, for the RTTMC data set, the temporal error at a sensor position x inside the road
segment on a given day is considered, as well averages over multiple days

1 T
Eday = T/ E($87t) dt, (23)
0
1 #days
E = Z Eday - (24)
#days dagmt

5.3. List of Models. We compare the following four models in terms of their predictive
accuracy of the real data:

1) Interpolation: A predictor that, at any instance in time, constructs the traffic den-
sity and velocity via direct linear interpolation of the boundary conditions, i.e., on the
road segment x € [0, L], the predicted state is p(x,t) = p(0,t)(1 — x/L) + p(L,t)z/L
and u(x,t) = u(0,t)(1 —x/L) + u(L,t)z/L. Of course, this predictor is not an actual
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Figure 5. Flow rate vs. density curves for the models LWR (left column), ARZ (middle column),
and GARZ (right column), together with the traffic states observed in the test cases (gray dots). The
results show the NGSIM data (top row) and the RTMC data (bottom row).

traffic model. However, due to its simplistic nature, it represents an important means of
comparison.

2) LWR: The first-order model , in which only the density state p(z,t) is evolved, based
on the data-fitted equilibrium velocity curve V(p, weq), resulting from the least-squares
fit of the family to the fundamental diagram data.

3) ARZ: The second-order ARZ model (@ that generalizes the least-squares fitted flow rate
curve of the LWR model to a family of curves V(p, w) = V(p, Weq) + (W — Weq)-

4) GARZ: The second-order generalized ARZ model , whose generalized velocity func-
tion V(p,w) is obtained via a weighted least-squares fit of the family to the
fundamental diagram data.

The fundamental diagram curves Q. (p) = pV (p, w) of the three traffic models are shown in
Fig. |5l overlayed on top of the traffic state data that are actually observed in the test cases
(gray dots). The top row of figures corresponds to the NGSIM data, and the bottom row
represents the RTMC data. The LWR model is shown on the left, the ARZ model in the
middle, and the GARZ model on the right.

Regarding the reproduction of real traffic data, it should be stressed that the models/pre-
dictors differ in the way they use data. In the model generation step, the Interpolation
predictor uses no historic data; the LWR and ARZ model are based on the same least-
squares fit; and the GARZ model employs more information from the fundamental diagram
data due to the weighted least-squares fit. In turn, during the advance forward in time, the
Interpolation predictor uses two pieces of information (p and u) at each boundary. In contrast,
the LWR model uses only one piece of information (p) at one of the two boundaries (assuming
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Figure 6. Model comparison on the NGSIM 5:15pm—5:30pm data set. In each panel, the time-
evolutions of the model predictions (colored dashed curve) and measured data (solid gray curve) at
the middle position of the study area are shown (top box: p, bottom box: w). The four panels
correspond to: Interpolation (top left, green), LWR (top right, blue), ARZ (bottom left, red), GARZ
(bottom right, black).

the traffic states at the two boundaries are either both in free flow or both congested). Finally,
the ARZ and GARZ model use a total of two pieces of information through the boundary
conditions.

5.4. Model Validation with the NGSIM Trajectory Data. As in [20], we consider a
segment of 450 meters in length in the domain of the NSGIM vehicle trajectories. Data
for three time intervals is available: 4:00pm—4:15pm, 5:00pm—-5:15pm, and 5:15pm—5:30pm.
However, because our model validation requires a traffic state be defined on the complete study
segment, slightly shorter study time intervals must be chosen that guarantee that recorded
vehicles are present everywhere on the road. We choose: 4:00:30pm—4:14:00pm, 5:00:30pm-—
5:13:30pm, and 5:15:30pm—5:28:00pm. The parameters of the traffic models, obtained by
fitting to the fundamental diagram data provided with NSGIM, are given in the NGSIM row
of Table[ll In line with the temporal resolution of the data, we generate density and velocity
functions (real data and model predictions) in intervals of 0.1 seconds.

Figure @] displays the time-evolution (5:15pm-5:30pm) of the traffic density and velocity
that are predicted by the selected models, in comparison with the real evolution of these
quantities, at the mid-point of the study area. Both the LWR and the ARZ model do repro-
duce the general trends present in the true density evolution, albeit with a systematic delay
of 30-60 seconds (see [27] for a detailed discussion on this delay). One difference between
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Figure 7. Comparison of traffic models for the data sets NGSIM 4:00pm—4:15pm (at the top), NGSIM
5:00pm—5:15pm (in the middle), and NGSIM 5:15pm—5:30pm (at the bottom). In each panel, the time-
evolution of spatially averaged errors (left top box), measurement traffic density data (left bottom box),
and space-time average errors (right box) are shown in log-scale for Interpolation, LWR, ARZ, and
GARZ.
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| Data set | a (veh/h/lane) | A | p [ wmin (km/h) [ wmax (km/h) |
NGSIM 247.38 23.41 | 0.16 39.49 82.01
RTMC 316.46 23.91 | 0.16 75.81 102.82

Table 1. Model parameters for the data-fitted models for the two data sets. Here, o, A\, and p are
the free parameters of the equilibrium flow rate curve Qeq(p) in the family . Moreover, Wi, and
Wmax denote the boundaries of the empty road velocity for the GARZ model, as described in

Data set | Interp. | LWR | ARZ | GARZ |
NGSIM 4:00-4:15 [ 0.151  (+10%) | 0.181 (+31%) | 0.153 (+11%) | 0.138
NGSIM 5:00-5:15 || 0.160  (+25%) | 0.161 (+26%) | 0.174 (+35%) | 0.129
NGSIM  5:15-5:30 | 0.168  (+30%) | 0.162 (+25%) | 0.228 (+76%) | 0.129
(+14%) (+24%) (+13%)
( )

RTMC congested || 0.203  (+14%) | 0.228 (+24%) | 0.208 (+13%) | 0.184
RTMC non-cong. || 0.108  (+63%) | 0.081 (+26%) | 0.067  (+4%) | 0.064

Table 2. Spatio-temporal average errors of the traffic models and the Interpolation predictor for
the NGSIM data sets (rows 2-4) and the RTMC data (rows 5-6), separated into congested and non-
congested days. In each row, the parentheses denote the excess error relative to the best model (GARZ
in all cases).

LWR and ARZ is that the latter reproduces, modulo the delay, the velocity evolution better
than the former. This is particularly visible in the predicted velocity in the plateau between
5:19:00pm and 5:22:30pm. In turn, the GARZ model captures the evolution of density and
velocity significantly better than the other two traffic models. There is still a systematic delay
in the model predictions, but this delay is very small. Finally, the Interpolation predictor
captures the large—scale features of the real data as well. However, it also exhibits an oscil-
latory behavior of a larger frequency. This is due to the fact that the linear interpolations
transmit temporal oscillations from both boundaries immediately to the observation site. In
contrast, the traffic models pick up fewer boundary data and furthermore oscillations can
turn into N-waves and thus reduce in magnitude as they move into the domain.

To quantify the predictive accuracy of the different models, we turn to the error metric
. Figure [7| shows the model errors for the NGSIM data sets: 4:00pm-4:15pm (top),
5:00pm-5:15pm (middle), and 5:15pm-5:30pm (bottom). In each panel, the time-evolution
of the spatially averaged error is shown (top-left box), as well as the spatio-temporal
average error (22) (top-right box). The models are: Interpolation (thick solid yellow), LWR
(solid red), ARZ (dashed blue), and GARZ (thin solid black). In each bottom-left box, the
time-evolution of the average traffic density is shown. The numerical values of the model
errors ([22)) are given in rows 2—4 of Table

The time-evolution of the errors confirm several of the above observations, such as
the highly oscillatory nature of the Interpolation predictor, and the good accuracy of the
GARZ model. Another particularly visible effect is the bad performance of the ARZ model
for large densities: for 4:00—4:15, the ARZ model yields smaller errors than LWR; in contrast,
for 5:15-5:30, the ARZ leads to larger errors than LWR. Moreover, the peaks in the ARZ
errors coincide with local maxima in the traffic density. These observations confirm that: a)
the ARZ model has the potential to improve upon the LWR model, and b) the non-uniform
stagnation density of the ARZ model significantly affects its predictive accuracy. In contrast,
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Figure 8. Model comparison on March 26, 2003 in the RTMC data set. In each panel, the time-
evolutions (4:05pm—5:00pm) of the model predictions (colored dashed curve) and measured data (solid
gray curve) at the middle sensor are shown (top box: p, bottom box: u). The four panels correspond
to: Interpolation (top left, green), LWR (top right, blue), ARZ (bottom left, red), GARZ (bottom
right, black).

the GARZ model inherits the advantages of the ARZ model for low densities, and furthermore
remedies its shortcoming for high densities.

Regarding the performance of the Interpolation predictor; its accuracy is, except for the
large oscillations, surprisingly good. Specifically, its average errors are similar to those
of the LWR and ARZ models. The following explanations can be provided to address this
observation:

a) The considered road segment is very short. Hence, the coherence between the boundaries
and the inside of the domain is high, and the actual delays due to finite-speed information
propagation are small. One can expect that on longer road segments, the finite-speed
transport of information becomes more relevant, and therefore interpolation significantly
loses in accuracy.

b) As described in the Interpolation predictor picks up twice (four times) as much data
from the boundaries as the second (first) order models. One could therefore argue that
the traffic models are as accurate as the interpolation, while utilizing less input data.

¢) The Interpolation predictor is on par with an “incomplete” model (LWR does not evolve
velocities) and a “defective” model (ARZ is flawed for large densities). In turn, it does
not achieve the accuracy of the GARZ model.
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Figure 9. Comparison of models for the RTMC sensor data on 45 week days with congested traffic
(top) and 29 days with non-congested traffic (bottom). The left boxes show the time-averaged error for
each day , and the right boxes show the fully averaged errors of congested and non-congested
days. The errors for Interpolation, LWR, ARZ, and GARZ are depicted in log-scale.

5.5. Model Validation with the RTMC Sensor Data. In line with the test described in
[26], we consider a 1.214 km long segment of highway on the I-35W, Minneapolis. Two traffic
sensors are at the ends of the study segment, and one sensor is inside of the segment (roughly
in the middle). The parameters of the data-fitted models, obtained from one-year data at the
middle sensor, are given in the RTMC row of Table On each weekday (Monday—Friday)
between 01/01/2003 and 04/14,/2003, we consider the onset of afternoon rush hour between
4pm and 5pm, and we divide the 74 days into 45 days with congested traffic (the space-time
averaged traffic density exceeds 20 veh/km/lane) and 29 days with non-congested traffic (the
remaining ones). As described in the traffic models are run through an initialization
phase 4:00pm—4:05pm, in which boundary data create a realistic state inside the segment.
The actual validation is then conducted in 4:05pm—5:00pm.

Analogously as for the NGSIM data, we first consider the temporal evolution of the traffic
states that the models predict and study the qualitative behavior of the models. We look at a
day (03/26,/2003) on which congestion builds up rapidly (between 4:35pm and 4:40pm) at the
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sensor position, so that any delays in the model behavior become visible. The results, shown
in Fig. |8, confirm the observations made for the NGSIM data: a) LWR and ARZ predict
similar densities, but ARZ does a better job at also capturing velocities correctly; b) both
LWR and ARZ propagate information too slowly, resulting in the onset of congestion to be
predicted 5 minutes too late; ¢) the GARZ model is not perfect (it still predicts the onset
of congestion 2 minutes too late), but it captures the general trends in both variables quite
nicely. This last point is particularly visible in the velocity profile in the congested state in
4:42pm—5:00pm.

One aspect that is different from the NGSIM test is that the Interpolation predictor per-
forms visibly worse than the traffic models during the low density and high velocity period
4:05pm-4:35pm. This demonstrates the assertion made in that simple interpolation
performs much worse on longer road segments.

The average model errors obtained with the RTMC data are shown in Fig.[9} The top panel
collects the 45 congested days, and the bottom panel contains the 29 non-congested days. In
the left boxes the time-averaged errors in 4:05pm—5:00pm are shown for each day. The
right boxes show the resulting total errors , resulting from averaging over all study days.
The numerical values, as well as the excess errors of the models relative to GARZ, are shown
in rows 5-6 of Table 2

The results of the low density days demonstrate quite clearly that a) traffic models yield
noticeably better predictions than simple interpolation; and b) second-order models reproduce
the real traffic behavior better than the first-order LWR model. The fact that the GARZ
model does not differ much from the ARZ model results from the fact that for low densities,
the two families of flow rate curves are very similar (see Fig. . In turn, the results of the
high density days confirm that a) as expected, the quality of the ARZ model worsens relative
to the other models; while b) the GARZ model does not suffer from the same amount of
accuracy deterioration than ARZ. A somewhat unexpected observation is that for the high-
density days, the Interpolation predictor does not perform worse than LWR and ARZ. The
reason for this lies is the fact that LWR and ARZ propagate information too slowly, and thus
capture features with a delay (see Fig. . In contrast, interpolation propagates information
instantaneously—which is obviously unrealistic, but here happens to lead to less severe errors
than the spurious delays in LWR and ARZ.

6. INHOMOGENEOUS ARZ AND GARZ MODELS

Thus far we have restricted our attention to homogeneous second-order models, in which
each vehicle remains for all times attached to its specific velocity curve u,(p) = V(p,w).
However, it is plausible that in real traffic, drivers vary their empty road velocity w over time,
and that the overall traffic dynamics tend towards an equilibrium velocity curve Ueq(p) =
V(p, Weq). We therefore extend our model validations to the inhomogeneous ARZ model (7)),
denoted ARZ-7, and the inhomogeneous GARZ model @, denoted GARZ-7. In both cases
the equilibrium velocity curve is the LWR velocity curve.

As argued in for a Cauchy problem the solutions of the inhomogeneous second-order
models converge (as t — oo for 7 fixed; or as 7 — 0 for tgpa fixed) to solutions of the first-
order LWR model. In the presence of boundary data, the same statement holds; however,
the limits of the second-order model solutions are LWR. solutions with different boundary
conditions than the LWR solutions that we consider here. Consequently, the models ARZ-7



24 S. FAN, M. HERTY, AND B. SEIBOLD

GARZ and ARZ model with relaxation (RTMC sensor data) GARZ and ARZ model with relaxation (NGSIM 4:00-4:15)
1.1 T T 0.28 T
5 B LWR model B LWR model
@ GARZ model (homogeneous) 0.26[| @ GARZ model (homogeneous) )
O ARZ model (homogeneous) 0.24f B ARZ model (homogeneous) ]
= GARZ with relaxation term = GARZ with relaxation term
1.14f1===ARZ with relaxation term 1 0.22[ r=r=ne ARZ with relaxation term 1
) + GARZ-t with optimal t = 143 seg ) + GARZ-t with optimal t = 57 seq
§ % ARZ-t with optimal t = 29 sec § 0.2] % ARZ-t with optimal T = 14 sec 1
] |
g Soigp 1
§1.12 8
[ © 0.16f 1
0.14F
11 " " " " " 0.1 . . .
107 10° 10 10”' 10° 10’ 10° 107 107 10° 10°
relaxation time t (hours) relaxation time t (hour)
GARZ and ARZ model with relaxation (NGSIM 5:00-5:15) GARZ and ARZ model with relaxation (NGSIM 5:15-5:30)
0.28 " 0.28 "
® LWR model B LWR model
0.26[| @ GARZ model (homogeneous) ) 0.26[| @ GARZ model (homogeneous) )
0.24f B ARZ model (homogeneous) i 0.24f B ARZ model (homogeneous) i
= GARZ with relaxation term =—=GARZ with relaxationterm | L ee——— ]
0.22[f == ARZ with relaxation term 1 0.22fr==n ARZ with relaxation term ",.--""' 1
o + GARZ-t with optimal © = 45 sed ) + GARZ-t with optimal t = 45 sed ,+*
§ 0.2] % ARZ-t with optimal t = 29 sec 1 § 0.2]] % ARZ-t with optimal 1 = 23 sec | 1
1 I
g So.1g |
s s
o 5 E
0.12 .
1 1 10% 107 107 10° 10%
relaxation time < (hour) relaxation time < (hour)

Figure 10. Model errors of the inhomogeneous ARZ and GARZ models, ARZ-7 (dashed blue) and
GARZ-7 (solid black), as functions of the relaxation time 7. Shown are the time-averaged errors (23))
for one day in the RTMC data set (top left), and spatio-temporally averaged errors for the three
NSGIM data sets: 4:00pm—4:15pm (top right), 5:00pm—5:15pm (bottom left), and 5:15pm—5:30pm
(bottom right). Also shown are the errors with the homogeneous (i.e., 7 — 00) ARZ model (blue
square) and GARZ model (black circle), the error obtained with the LWR model (red square), and
the choices of 7 that yield the smallest model error (red star and red plus).

and GARZ-7 are not merely perturbations of the LWR model, but instead could reproduce
the dynamics of real traffic better than LWR and better than homogeneous second-order
models.

The inhomogeneous second-order models are based on the same data-fitted functions as
their homogeneous counterparts. The only new parameter is the relaxation time 7. Since
historic fundamental diagram data is commonly devoid of temporal information relevant for
traffic dynamics, there is no canonical way to obtain the value of 7 from historic data. Re-
garding realistic choices for 7, the only information found in the literature is that it cannot
be much smaller than 3 seconds due to physical restrictions of the vehicle engines. Due to
this absence of a good modeling principle for the value of 7, we conduct our model validation
procedure for multiple instances of the inhomogeneous ARZ and GARZ models, where we let
7 range from milliseconds to days. For each test, whichever choice of 7 yields the smallest
model error is then the optimal ARZ-7 (respectively optimal GARZ-7) model.

The described 7-study is conducted for one day (January 8, 2003) in the RTMC data set,
and for the three NGSIM data sets. For the RTMC data we evaluate the temporally averaged
error , and for the NSGIM data the spatio-temporally averaged errors . The results
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Data set | ARZ | ARZ-Top | GARZ | GARZ-7op

NGSIM  4:00-4:15 || 0.153 (+13%) | 0.141  (+4%) | 0.138 (+2%) | 0.135
NGSIM  5:00-5:15 || 0.174 (+43%) | 0.137  (+13%) | 0.129 (+6%) | 0.122
NGSIM  5:15-5:30 | 0.228 (+87%) | 0.165  (+35%) | 0.129 (+6%) | 0.122
( ) ) (+4%)
)

RTMC  congested || 0.208 (+18%) | 0.192 (+8%) | 0.184 0.177
RTMC non-cong. || 0.067 (+6%) | 0.066 (+5%) | 0.064 (+2%) | 0.063

Table 3. Spatio-temporal average errors of the homogeneous ARZ and GARZ models, together with
the inhomogeneous versions, ARZ-7 and GARZ-7, with optimal choices of the relaxation time 7.
Shown are the results for the three NGSIM data sets (rows 2-4), as well as the RTMC data, separated
into congested and non-congested days (rows 5-6). In each row, the parentheses denote the excess
error relative to the best model (GARZ-7,p¢ in all cases). For the RTMC data, the optimal 7 values
are computed separately for each day; then, averages over all respective days are taken.

of the study are shown in Fig. In each test case, the ARZ-7 and GARZ-7 models are
computed for many values of 7 (blue and black functions, respectively). In addition, the
(homogeneous) ARZ and GARZ models are computed (blue square and black circle). As
expected, they agree with ARZ-7 and GARZ-7, respectively, for 7 > 1. Moreover, the LWR
model is computed (red square). As argued above, due to the presence of boundary data with
u # Ugq(p), its results are different from ARZ-7 and GARZ-7 for 7 < 1. Finally, in each test
case the particular 7 = 7op¢ is marked (red star and red plus) for which ARZ-7 and GARZ-,
respectively, yield the smallest model errors. It is apparent that in all four cases shown in
Fig. the inhomogeneous models possess an optimal relaxation time 0 < 7op; < 00.

As one can see in Fig. the error-minimizing relaxation times are 7,p; ~ 25s for the
ARZ model (the result for NGSIM 4:00pm—4:15pm is not as reliable, because the minimum is
weakly pronounced), and 7opt ~ 50s for the GARZ model in the NGSIM data. Moreover, for
the RTMC data, the GARZ model yields 7opt ~ 150s. If the values of 7, give an indication
about the time scales on which driving behavior evolves in reality, then their relatively large
values give rise to the interesting observation that real driving behavior changes rather slowly;
much slower than the time scales on which vehicles are able to accelerate due to engine power.
In addition, one can observe that the GARZ model’s optimal relaxation time is noticeably
slower for the RTMC data than it is for the NGSIM data. While it is in principle possible
that this difference stems from differences in driving behavior between Minnapolis vs. the San
Francisco Bay Area, more plausibly the difference stems from the combination of a relatively
flat minimum of the black error curve, and from aggregation and lack of precision effects in
the sensor data.

In order to quantify how much the inhomogeneous second-order models can improve the
model accuracy relative to homogeneous second-order models, we consider the model errors
of the ARZ-7 and GARZ-7 models (with 7 = 7, for each test case) in comparison with the
errors of the ARZ and GARZ models. The resulting error values, together with the excess
errors relative to the GARZ-7,,¢ model shown in parentheses, are shown in Table One
can see that the addition of a relaxation term can improve the accuracy of the ARZ model
noticeably, in particular for flow at high traffic densities (see NSGIM 5:15-5:30). This is in
part due to the fact that the ARZ model’s unrealistic spread in flow rate curves for large
densities is ameliorated by a relaxation towards the LWR curve. In contrast, the addition of
a relaxation term (of the considered form) to the GARZ model does hurt the model accuracy,
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but it does not lead to significant improvements either; the GARZ model appears to be quite
good already in its homogeneous form, at least for the data sets studied here.

7. CONCLUSIONS

We have presented a systematic approach to construct a data-fitted generalized Aw-Rascle-
Zhang (GARZ) model of traffic flow from historic fundamental diagram data. The modeling
advantages and the mathematical properties of the GARZ model have been discussed. More-
over, the predictive accuracy of the GARZ model has been compared with other macroscopic
traffic models via a three-detector test on vehicle trajectory and stationary sensor data. The
actual model comparison has been carried out in a macroscopic sense, i.e., discretization
effects are kept small, and thus the accuracy of the actual PDE is investigated.

The model comparison considers a hierarchy of models: (i) the first-order Lighthill-Whitham-
Richards (LWR) model, that is defined via a single curve Q(p) in the fundamental diagram;
(ii) the second-order Aw-Rascle-Zhang (ARZ) model, that is defined via a family of curves in
the fundamental diagram Q. (p) = Q(p) + p(w — Q’(0)), each of which is the LWR curve plus
a linear function; (iii) the second-order GARZ model, that is defined via a family of curves
that are not simple transformations of each other, i.e., Qu(p) = pV (p, w), where V(p,w) is a
two-parameter generalized velocity function; and finally, the model validation is augmented
by (iv) an Interpolation predictor that reconstructs the traffic density and velocity in the
study domain via a simple linear interpolation of the boundary data. Moreover, the second-
order traffic models are considered in their homogeneous form, ARZ and GARZ, as well as
inhomogeneous versions thereof, ARZ-t7 and GARZ-7, for which a relaxation term towards
the LWR equilibrium state is added.

The general conclusions that can be drawn from the comparisons are as follows. First, and
most importantly, the GARZ model yields the most accurate predictions, and it reproduces
the behavior of the real data in the best fashion. Second, the ARZ model is superior to
the LWR model for low traffic densities; but its model accuracy suffers noticeably as traffic
becomes more congested. This observation can be interpreted as a manifestation of the ARZ
model’s multiple stagnation densities—a drawback that is addressed by the GARZ model.
Third, in terms of averaged errors, the Interpolation predictor yields model errors that are
similar to, or even slightly lower than, those of the LWR and ARZ models. At the same time,
predictions based on mere interpolation are more oscillatory and less sharp than predictions
obtained via traffic models. In addition, interpolation performs less well on longer road
segments. Fourth, it is observed that the addition of a relaxation term can further improve the
accuracy of second-order models. However, a noticeable improvement is only observed when
the relaxation time 7 is chosen well. In turn, when 7 is selected too small, the inhomogeneous
model could be less accurate than the corresponding homogeneous model.

The studies of the inhomogeneous second-order models reveal that the optimal relaxation
times lie in the range 14-60 seconds (with some values even larger). This is two orders of
magnitude larger than the drivers’ reaction time, and one order of magnitude larger than what
the vehicles’ engine capabilities would allow. A possible explanation for such seemingly slow
relaxation is that in the ARZ and the GARZ models, it is the drivers’ empty road velocities
that relax, i.e., their general driving behavior, and not the actual vehicle velocities.

One modeling shortcoming of the ARZ model that is not addressed by the GARZ model
studied in this paper is that no unique functional relationship between flow rate and density
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for low densities (“free flow regime”) is allowed. To address this point, phase transition
models (cf. [I5 B1]) and variations of the ARZ model that result from introducing an upper
bound on the vehicle velocity [17] have been proposed. Moreover, a specific phase transition
model has been applied in a practical context [I1]. The possibility to allow for a unique
flow rate vs. density relationship may be of importance in certain applications. As described
in a companion paper [25], this task can also be achieved within the GARZ framework, by
collapsing the fundamental diagram curves into a single function in the free flow regime.
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