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ABSTRACT 

 
Numerous of high-impact applications involve predictive modeling of real-world data. 

This spans from hospital readmission prediction for enhanced patient care up to event 

detection in power systems for grid stabilization. Developing performant machine learning 

models necessitates extensive high-quality training data, ample labeled samples, and 

training and testing datasets derived from identical distributions. Though, such 

methodologies may be impractical in applications where obtaining labeled data is 

expensive or challenging, the quality of data is low, or when challenged with covariate or 

concept shifts. Our emphasis was on devising transfer learning methods to address the 

inherent challenges across two distinct applications.  

We delved into a notably challenging transfer learning application that revolves around 

predicting hospital readmission risks using electronic health record (EHR) data to identify 

patients who may benefit from extra care. Readmission models based on EHR data can be 

compromised by quality variations due to manual data input methods. Utilizing high-

quality EHR data from a different hospital system to enhance prediction on a target hospital 

using traditional approaches might bias the dataset if distributions of the source and target 

data are different. To address this, we introduce an Early Readmission Risk Temporal Deep 

Adaptation Network, ERR-TDAN, for cross-domain knowledge transfer. A model 

developed using target data from an urban academic hospital was enhanced by transferring 

knowledge from high-quality source data. Given the success of our method in learning 

from data sourced from multiple hospital systems with different distributions, we further 

addressed the challenge and infeasibility of developing hospital-specific readmission risk 

prediction models using data from individual hospital systems. Herein, based on an 
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extension of the previous method, we introduce an Early Readmission Risk Domain 

Generalization Network, ERR-DGN. It is adept at generalizing across multiple EHR data 

sources and seamlessly adapting to previously unseen test domains. 

In another challenging application, we addressed event detection in electrical grids 

where dependencies are spatiotemporal, highly non-linear, and non-linear systems using 

high-volume field-recorded data from multiple Phasor Measurement Units (PMUs). 

Existing historical event logs created manually do not correlate well with the corresponding 

PMU measurements due to scarce and temporally imprecise labels. Extending event logs 

to a more complete set of labeled events is very costly and often infeasible to obtain. We 

focused on utilizing a transfer learning method tailored for event detection from PMU data 

to reduce the need for additional manual labeling. To demonstrate the feasibility, we tested 

our approach on large datasets collected from the Western and Eastern Interconnections of 

the U.S.A. by reusing a small number of carefully selected labeled PMU data from a power 

system to detect events from another.   

Experimental findings suggest that the proposed knowledge transfer methods for 

healthcare and power system applications have the potential to effectively address the 

identified challenges and limitations. Evaluation of the proposed readmission models show 

that readmission risk predictions can be enhanced when leveraging higher-quality EHR 

data from a different site, and when trained on data from multiple sites and subsequently 

applied to a novel hospital site. Moreover, labels scarcity in power systems can be 

addressed by a transfer learning method in conjunction with a semi-supervised algorithm 

that is capable of detecting events based on minimal labeled instances. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

A multitude of high-impact applications involve predictive modeling of real-world 

field-recorded temporal data. In various domains, from hospital readmission prediction to 

improve patients’ healthcare, through event detection in power systems to aid stabilize 

electrical grids, up to prediction in online businesses to improve customers’ experience, 

developing performant traditional machine learning models require large, high-quality 

training datasets, and a sufficient amount of labeled data to perform optimally. However, 

such approaches might be impracticable since such assumptions seem to be violated for a 

plethora of real-world problems, where labeled data is costly or infeasible to obtain, data 

attributes are of low-quality, and marginal distributions of the source and target domains 

are dissimilar (covariate shift), or the conditional distributions are different (concept shift). 

Such problems are found in diverse domains.  

In [1], a healthcare domain application for hospital readmission prediction was 

developed based on real-world electronic health record (EHR) data. In spite of enormous 

efforts of advanced data cleaning, preprocessing, data representation techniques, and 

optimal architecture of a deep learning method, the performance of the readmission 

prediction model was found to be degraded due to low-quality of EHR data consisting of a 

large number of erroneous and missing data due to the manual data entry scheme. This 
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method is limited to learning from EHR data drawn from the same distribution and is 

incapable of utilizing higher-quality EHR data from a source hospital system to enhance 

prediction on a target hospital since using traditional approaches might bias the dataset if 

distributions of the source and target data are different. In other words, traditional methods 

fail to perform cross-domain transfer to enhance prediction on the target task using a related 

source domain data from a different distribution. Furthermore, collecting data from 

multiple hospitals and developing performant readmission models for every site may not 

be feasible for many institutions. Another potential limitation is having sufficient historical 

data. Developing a readmission risk model based on data from source hospitals to predict 

readmission on an unseen test hospital using our previous and other conventional 

approaches is not effective because these methods are not capable of generalizing well to 

unseen test domains when training and testing distributions are different [6, 79]. Transfer 

learning methodologies have been investigated in the context of hospital readmission, 

aiming to enhance the learning of the target population by leveraging insights from a 

related source population. The studies reported in [80, 81], transfer learning is successfully 

applied to mitigate the challenges of limited data by utilizing a relevant source dataset. 

Conversely, the study reported in [82], potential benefits of transfer learning are 

investigated by assessing the fine-tuning capabilities of pre-trained models within the 

healthcare domain. Nonetheless, none of the aforementioned methods are capable of 

generalizing to unseen data collected from multiple hospital systems drawn from different 

distributions. Hence, there remains a demand for end-to-end models that perform cross-

domain knowledge transfer capable of learning from varied source datasets collected from 

different hospital systems with different distributions and generalizing on previously 
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unencountered domains in a unified framework, while capturing and maintaining long-

term temporal dependencies for hospital readmission.  

Event detection in power systems is critical to aid stabilize electrical grids by detecting 

various types of events using field-recorded Phasor Measurement Units (PMUs) data. This 

task is a challenging problem for machine learning methods due to scarce and temporally 

imprecise labels and the inability to automate event labeling in high-volume data such as 

PMU measurements. Extending event logs to obtain a sufficient number of labeled data is 

costly and often infeasible to obtain since it requires manual observations by a domain 

expert in the field. Developing performant traditional machine learning detectors based on 

fully supervised approaches might be infeasible since such detectors rely heavily on labeled 

data, which when done manually may be labor-intensive and hence prohibitively 

expensive. Moreover, supervised learning methods assume that the marginal distribution 

of the source training data and target test data are identical (no covariate shift assumption), 

which PMU data violate. Event detection can also be deemed as an unsupervised learning 

task, however unsupervised approaches fail to correct mistakes made by using labeled data 

and utilize the underlying assumption that events occur infrequently, meaning they fall in 

low-density regions of the instance space, which PMU data regularly violate this 

assumption. Supervised, and unsupervised approaches are infeasible for detecting events 

from PMU data [2-5]. 

Therefore, building predictive models from such data calls for devising advanced 

knowledge transfer-based methods to enhance predictions in domains where data covariate 

and concept shifts are a challenge, labels are scarce and difficult to obtain, and data are of 

low-quality. 
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1.2 Contributions 

This dissertation revolves around proposing knowledge transfer-based frameworks to 

address inherent challenges in real-world, high-impact applications in two different 

domains, healthcare and power systems. The main contributions of the conducted studies 

are presented in the following.  

Healthcare. Hospital readmission risk prediction methods for patients with diabetes 

based on electronic health record (EHR) data were developed to address gaps in literature. 

Advanced data preprocessing and representation techniques were utilized for the 

heterogenous temporal EHR data collected from five academic health systems, 

encompassing urban, suburban, and rural areas in Pennsylvania or Maryland. Models were 

developed using EHR data as defined by the Patient-Centered Clinical Research Network 

(PCORnet®) Common Data Model (CDM), which standardized EHR data across sites [1]. 

The extracted heterogenous EHR data encompass inherent challenges that have 

modelled difficulties for machine learning algorithms to effectively learn. This was 

primarily because data drawn from varied distributions and included low-quality elements. 

Challenges include non-uniform number of recordings of diagnoses, procedures, and vitals, 

in addition to missingness and erroneousness (i.e., outliers) owing to the manual entry 

scheme and the process of data extraction and merging from different databases. Moreover, 

the data exhibited distinct characteristics. For instance, in terms of sociodemographic, 4.9% 

of patients at a suburban site used in this study were Hispanic, in contrast to 22% at an 

urban site. The mean number of diagnostic recordings at one site was just 2.5, while other 

sites reported between 10 to 19 recordings. The non-uniform complicated the 
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preprocessing stage. Further differences were observed in categories such as race and 

tobacco use. 

Contributions were as follows:  

1) To develop deep learning models for the prediction of unplanned, all-cause 30-day 

readmission.  

2) To compare the performance of the deep learning models to traditional machine 

learning models.  

3) To explore model performance across a range of prior EHR encounters from 1 to 

100 being included in model development.  

4) To compare a deep learning model developed using a subset of a laboratory tests 

selected by domain knowledge with a deep learning model developed using all 

available laboratory test. 

Upon conducting extensive experiments to evaluate the model, data representation 

techniques and the utilization of sequential deep learning models were optimal to model 

EHR data. Deep learning models achieved 0.80 evaluated using F-1 score metric. However, 

building a model using the same techniques used on higher quality data collected from a 

rural academic hospital system, Penn State University Hospital System resulted in 91% F1- 

score. The degradation in F-1 score on Temple University Hospital System was due to low-

quality data.  

Utilizing EHR data from a source hospital system to enhance prediction on a target 

hospital using traditional approaches enlarge dataset bias which might deteriorate 

performance due to distributional difference of the source and target dataset, resulting in 

statistically unbounded risk for the target task. This was confirmed by training a model 
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using both source and target data which resulted in a lower F-1 score tested on Temple 

University Hospital (0.79% F-1 score). Traditional approaches are designed for a specific 

data type, and not capable of generalizing to other temporal data. Due to the need for an 

end-to-end model to perform cross-domain spatial knowledge transfer and predictive 

learning in a unified learning framework while capturing temporal dependencies for 

hospital readmission, we propose the following.  

To address the aforementioned limitations and challenges, we propose an early 

readmission risk temporal deep adaptation network, ERR-TDAN, to perform cross-domain 

spatial knowledge transfer from EHR data of different sites and perform predictive 

learning. Motivated by the success of the Deep Adaptation Network (DAN) in numerous 

transfer learning tasks which utilizes convolutional neural network (CNN) for computed 

vision tasks, we employed the idea of learning transferable features of temporal data by 

matching the source and target domain distributions in the latent feature space. We tailored 

it for the hospital readmission using EHR data and optimized for the target task. Results 

conducted show that ERR-TDAN might enhance hospital readmission prediction by 

performing cross-domain knowledge transfer utilizing higher-quality data from a related 

source domain [6]. The aims of this study were as follows:  

1) To develop a hospital readmission framework using EHR data that transfers 

knowledge between a rural academic hospital and an urban academic hospital to 

enhance predictions on the urban academic hospital.  

2) To study the optimal amount of retrospective EHR data needed for future 

predictions.  

3) To study the duration of optimal performance.  
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Given the success of our method in learning from data sourced from multiple hospital 

systems with different distributions, we further addressed the challenge and infeasibility of 

developing hospital-specific readmission risk prediction models using data from individual 

hospital systems. Herein, we devised an additional readmission risk prediction model to 

address the aforementioned limitations and challenges. We propose an early readmission 

risk domain generalization network, ERR-DGN, to perform cross domain knowledge 

transfer from electronic health record (EHR) data of different health systems to facilitate 

predictive learning. Motivated by the success of our previous study aforementioned and 

reported in [6], we employed the idea of learning transferable features of the EHR data by 

matching multiple source distributions in the latent space to generalize and enhance 

predictions on an unseen target task. ERR-TDAN [6] takes as an input two sites (i.e., source 

and target) and requires historical training data from both. In contrast, we tailored ERR-

TDAN to learn transferable features of multiple source datasets to predict rehospitalization 

risk on an unseen target hospital where data distribution might be significantly different 

from data at previously observer hospitals. We hypothesized that this novel approach 

would improve hospital readmission risk predictions among people with diabetes for a 

previously unobserved target domain. We further supplemented our experimental findings 

by studying the number of source sites needed to enhance predictions on an unseen target 

domain and examined model performance over time to avoid performance degradation due 

to data drift over time. 

Power systems. Event detection methods to detect line fault, transformer outages, and 

frequency events from PMU data collected from the Western and Eastern Interconnections 

of the United States were developed to address the following challenges: labels scarcity; 
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and spatial and temporal data drift. A multitude of models were developed based on transfer 

learning techniques in conjunction with semi-supervised detector to avoid and mitigate the 

labor-intensive manual labeling. Transfer learning methods were developed that leverages 

a small number of well-defined instances from one task to another within the Western 

Interconnection. Conducted experiments demonstrate that transfer learning methods are 

applicable for PMU data and can detect events without having to rely on event logs or 

extensive number of labels of PMU data. Further, the applicability of utilizing transfer 

learning techniques on PMU data were validated by utilizing statistical methods to compare 

the similarity between two continuous distribution functions. Results indicate that the 

source and target distributions are different which makes it applicable for transfer learning 

and violates the assumptions of fully supervised methods [2]. In this study, the following 

research questions were addressed:  

1) The effect of varying percentages of labeled data were studies to determine the 

minimum number of labeled data needed. The proposed transfer learning method 

found to be effective and can detect events based on only 20 labeled data instances 

while state-of-the-art supervised and unsupervised approaches performed poorly.  

2) A comparative analysis was performed to compare the transfer learning method 

versus baseline anomaly detectors.  

3) The effect of varying time window sizes was studies to determine the optimal 

window dimension to detect events from PMU data. 4) Varying ways of leveraging 

knowledge from a source task to detect events from the target task were studies, 

including leveraging knowledge temporally where related instances from the past 

were leveraged to detect events from the future, and using leveraging labeled data 
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from a selected set of PMUs by domain knowledge to detect events from another 

set of PMUs. This experiment demonstrates and validates data drift over time 

degrading the performance of traditional machine learning approaches.  

The aforementioned study is limited to transferring related labeled instances within the 

same interconnection since the Western and Eastern Interconnections comprise of different 

number of PMUs resulting in a non-uniform dimensions of feature vectors. Thus, we 

extended this study to leverage related data instances from one interconnection to detect 

events in another. Experiments conducted show that the proposed transfer learning method 

is more feasible than alternative baselines since distributions of the Western and Easter 

Interconnections data differ, which degraded the performance of traditional Machine 

learning methods. Moreover, conducted experiments demonstrate superior performance 

over various state-of-the-art ML algorithms (unsupervised, semi-supervised, and 

supervised) when leveraging labeled data from one power system to detect events in 

another, which mitigate the labor-intensive and costly manual labeling efforts [3]. In this 

study, the following research questions were addressed:  

1) Performed distribution comparison of both interconnections and validated transfer 

learning assumptions.  

2) Performed a comparative study to compare the transfer learning method versus 

baseline event detectors.  

3) Studied the effect of using various quantities of labeled data to find the minimum 

number of labeled data instanced needed from the one Interconnection to detect 

events from another.  
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1.4 Organization 

The remainder of this report is organized as follows. Chapter 2 discusses the challenges 

of labels scarcity and distributional differences between source and target domains in 

power system application domain and proposes transfer learning methods to avoid and 

mitigate the labor-intensive manual labeling efforts. Chapter 3 discusses a hospital 

readmission risk prediction method for patients with diabetes. This section provides 

advanced data preprocessing and representation techniques and serve as foundation for 

study reported in Chapter 4 and Chapter 5. Chapter 4 discusses the proposed early 

readmission risk temporal domain adaptation network, ERR-TDAN that is tailored for 

EHR data and optimized on the target domain; it performs cross-domain knowledge 

transfer while capturing temporal dependencies of EHR data. Chapter 5 presents the 

proposed early readmission risk domain generalization network, ERR-DGN, a domain 

generalization method, tailored for hospital readmission. ERR-DGN enhances readmission 

risk predictions when applied on an unseen target domain using EHR data collected from 

varied hospital systems with different distributions. Chapter 6 concludes the dissertation 

and outlines possible directions for future research.   
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CHAPTER 2 

TRANSFER LEARNING FOR EVENT DETECTION FROM 

PMU MEASUREMENTS WITH SCARCE LABELS 

2.1 Introduction 

The stored data collected by the Phasor Measurement Units (PMUs) at the electric 

utilities in the USA has increased to hundreds of terabytes in the last few years [7]. In the 

past decade, PMU data have been used extensively for post- mortem analysis in case of 

system-wide disturbances. In recent years, utilities have been interested in investigating 

ways to increase the value of the stored PMU data through novel applications of the 

machine learning models for improved situational awareness and predictive decision- 

making capabilities [8]. 

Event detection is an essential task that involves detecting instances in a dataset that 

significantly deviate from the norm [9]. The increase in the volume of PMU data is making 

it more challenging to quickly analyze a large number of historical recordings. 

Event detection can be deemed as an unsupervised learning task [10]. Usually, 

unsupervised approaches utilize the underlying assumption that events occur infrequently, 

meaning they fall in low-density regions of the instance space, or they are distant from 

normal events to identify them. However, PMU data regularly violate this assumption, 

affecting the performance of unsupervised approaches (e.g., maintenance events can occur 

infrequently and irregularly, but are considered normal). Labeled data allow detectors to 



13 
 

correct the errors made by unsupervised approaches. Unfortunately, a fully supervised 

learning approach to event detection relies heavily on labeled data, which when done 

manually may be labor-intensive and hence prohibitively expensive. 

Contribution. To avoid the expense of extensive manual labeling, semi- supervised 

approaches to event detection are often used in conjunction with active learning to 

efficiently collect labels [11]. However, when dealing with a large amount of PMU data, 

utilizing active learning to assign labels for each individual instance might be infeasible. 

To reduce the required labeling effort, we employ transfer learning techniques to leverage 

a small number of well-labeled instances from one task to another without additional 

labeling effort. The contribution is in the enhancement of the transfer learning method 

using a non-redundant approach that does not select duplicates/similar instances in order 

to improve computation efficiency. Additionally, we improved the semi-supervised 

detector by using an alternative similarity measure that is more applicable to the 

dimensionality of the PMU data. We demonstrate that a transfer learning method is 

applicable for PMU data and can detect events without having to rely on an extensive 

number of labels or event logs of PMU data. This technique may be propagated to other 

situations where some of the events’ data from one power system may be applied to 

enhance learning in another. Our approach outperforms state-of-the-art machine learning 

algorithms from varying learning types (unsupervised, semi- supervised, and supervised) 

on a large benchmark when developing the model from a large dataset that requires 

intensive event labeling effort. Experiments conducted show that the employed transfer 

learning method may mitigate the need of manual labeling and is capable of detecting 

events with minimal labeled data instances.  
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Organization. The remainder of this paper is organized as follows. Section II provides 

and describes the related work. Section III describes and provides preliminaries on transfer 

learning for event detection. Section IV describes the methodology used to conduct 

experiments, evaluate and elucidate the proposed transfer learning method, and provides 

insights into the comparison with a variety of learning types of algorithms used in the 

literature. Section V describes the data preprocessing techniques used in the experiments. 

The experimental setup is outlined in Section VI. Section VII presents the experimental 

results and discussion. Finally, Section VIII concludes the paper. Section IX discusses 

future work. References are provided at the end. 

2.2 Literature Review 

A variety of studies have investigated ways to reduce the size of the PMU dataset by 

different means of dimensionality reduction and feature engineering to address the increase 

in the volume of PMU data. The dimensionality reduction method based on Principal 

Component Analysis was used in [12] for early online event detection, and in [13] to detect 

and analyze complex cascading events. The feature engineering method based on the 

Minimum Volume Enclosing Ellipsoid was reported in [14]. Several studies have used 

signal transform methods, such as the fast variant of Discrete S-Transform [15- 17], or 

wavelet analysis [16-19]. Fast event detection based on Detrended Fluctuation Analysis on 

Big PMU Data was developed in [20]. Domain-specific shapelets were investigated for 

event detection and classification in [16,17]. In [21] the Dynamic Programming based 

Swinging Door Trending was used. Signal Energy Transform was used to detect and 

classify faults in [22]. Several machine learning models were tested in these studies: 
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Agglomerative Hierarchical Clustering [14], Extreme Learning Machine classifier [15], K-

Nearest Neighbor [16,17,23], Support Vector Machine (SVM) [16,17,23], Decision Tree 

[23], Convolutional Neural Network [19]. Transfer learning has been applied to several 

power systems applications in recent years, such as transient stability prediction in [24], 

detection of oscillation events in [25], and detection of high-impedance faults in 

distribution systems in [26]. Studies [24-26] demonstrate the applicability of transfer 

learning to a variety of power system problems. Our study extends the benefits of using 

transfer learning to solve the problem of transmission system event detection from an 

exceedingly small number of labeled events based on PMU data. 

2.3 Transfer Learning for Event Detection from a Small Number of 

Labels 

While event detection tasks would benefit from labeled data, it is often done using an 

unsupervised approach since assigning labels across all the events manually can be time- 

consuming and hence costly. The downside is that the unsupervised detectors do not benefit 

from labeled data that provide the possibility of correcting errors made by the unsupervised 

detectors. On the other hand, supervised learning algorithms rely on a sufficient number of 

labeled data. Thus, supervised, and unsupervised learning algorithms are infeasible for 

event detection tasks when labels are scarce and temporally imprecise. Transfer learning 

can be utilized to leverage a small number of related labeled data instances from a related 

task to the target task. Related instances can aid semi-supervised learning algorithms to 

detect events based on minimal labeled data, since it only selects and transfers tasks that 

are similar to instances in the target set. 
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Often, transfer learning is used in conjunction with semi- supervised learning 

algorithms, since semi-supervised algorithms assume only a limited amount of labeled data 

instances for training are available. Hence, semi-supervised learning algorithms are 

employed when labeled data instances are scarce and difficult to obtain. Semi-supervised 

learning algorithms aim to train a classifier from both the labeled and unlabeled data 

samples in order to achieve better performance than supervised learning algorithms trained 

on labeled data only. 

The aim of transfer learning is to learn a model for the unlabeled dataset of the target 

domain given labeled data from a related dataset of the source domain [27]. Since this study 

concerns event detection, the task is to compute and assign an anomaly score to each time 

window (data instance) in the target dataset that quantifies how anomalous the time 

window is based on similarity measures; assigning an anomaly score to a time window can 

be compared with a predefined threshold to classify whether an anomalous event exists 

within a given time window [27]. We use Ds to denote the source dataset, which contains 

labeled time windows, and Dt to denote the target dataset, which contains unlabeled time 

windows of events to be classified as either normal or anomalous events. We use xs to refer 

to a time window from the source dataset, and xt to refer to a time window from the target 

dataset.  

There are three important assumptions for transfer learning techniques to be considered 

when applied to event detection tasks [28]. First, the source and target datasets were 

obtained from the same m-dimensional feature space. Second, the marginal distributions 

of the source and target datasets differ (covariate shift assumption). A covariate shift 

assumption occurs when dissimilar behaviors are observed in either domain. Third, the 
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conditional distributions can differ due to changes in context, meaning the same behavior 

might have a different meaning in the two domains (concept shift assumption). 

Assumptions two and three complicate the transfer task.  

2.4 Methodology  

To demonstrate the performance of the utilized transfer learning method, a comparative 

analysis with a multitude of event detection algorithms with varying learning types used as 

a baseline was performed. Additionally, different datasets were used for experiments with 

varying splits of the data and window dimensions.  

2.4.1 Unsupervised Learning 

Unsupervised learning algorithms aim to identify hidden patterns without using any 

labeled data samples. Thus, unsupervised learning algorithms are capable of learning 

without an error signal to assess and evaluate the performance of the model. Since 

unsupervised learning algorithms do not require any labels during learning and identifying 

hidden patterns, event detection tasks using this method can be beneficial when labels are 

not available [29]. However, unsupervised learning algorithms utilize the fundamental 

assumption that events occur infrequently, and PMU data often violate this assumption 

[11]. The lack of labeled data instances that provide the option to correct the errors made 

by unsupervised detectors degrades the performance of the algorithms.  

As a part of the comparison study, an event detection experiment was performed using 

two unsupervised learning algorithms, namely: 1) the k-nearest neighbor outlier (kNNO) 

detection algorithm that computes for each data point the anomaly score as the distance to 

its k-nearest neighbors in the dataset [30], and 2) the isolation nearest neighbor ensembles 
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(iNNE) algorithm that computes for each data point the anomaly score roughly based on 

how isolated the point is from the rest of the data [31]. They learn a structure on the training 

data without incorporating any labels into the models. Event detection is performed on the 

test dataset to classify data samples as anomalous or normal events. 

In order to assess the performance of the algorithms, the predicted labels were 

compared to the ground truth (actual) labels obtained by visual inspection by a domain 

expert. 

2.4.2 Supervised Learning 

Supervised learning is based on training a model using previously observed labeled 

data samples and assuming that the marginal distribution of the source training data and 

the target test data are identical (no covariate shift assumption). Supervised learning 

algorithms tend to rely heavily on learning data samples and require a sufficient amount of 

training data before performing classification, which can be infeasible in event detection 

tasks [29]. The more complex the problem and the models are the more training data is 

required. 

We employed state-of-the-art and most common conventional supervised learning 

algorithms to compare with other learning types. We used scikit-learn library for Machine 

Learning in Python [32]. A variety of classification algorithms from this library were 

utilized, including Multilayer Perceptron (MLP), Logistic Regression (LR), K-Nearest 

Neighbor (KNN), Support Vector Machine (SVM).  
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2.4.3 Semi-Supervised Learning 

The semi-supervised learning concept is in between unsupervised and supervised 

learning. Semi-supervised classification algorithms aim to train a classifier from both the 

labeled and unlabeled data samples, such that they achieve better performance than the 

supervised or unsupervised learning algorithms. There are many practical benefits in using 

semi-supervised learning, especially, when labeled data instances are scarce and difficult 

to obtain, since such algorithms assume only a limited amount of labeled data instances for 

training are available. Semi-supervised learning algorithms might perform as well as 

supervised learning algorithms, but with much fewer time-labeled data instances, which is 

beneficial in event detection tasks to reduce annotation effort resulting in reduced 

implementation costs [33]. 

Two semi-supervised learning algorithms that do not rely entirely on labels obtained 

from event logs or by visual inspection to classify data samples as normal or anomalous 

events were utilized:  

1) the semi-supervised k-nearest neighbor anomaly (SSKNNO) detection algorithm, 

which is a combination of the well-known kNN (i.e., unsupervised learning) 

classifier and the kNNO (k-nearest neighbor outlier detection) (i.e., supervised 

learning) method [11]. Since SSKNNO is a distance-based method that relies on 

Euclidean similarity measure, the number of labeled instances does not affect the 

learning process. Having as minimum as one labeled data instance from each 

pattern of signals or type of event should be sufficient for the algorithm to detect 

events. The algorithm uses an unsupervised setting when a similar labeled data 

instance is not available in the training data.  
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2) the semi-supervised detection of outliers (SSDO) algorithm, which computes an 

unsupervised prior anomaly score, and then, corrects this score with the known 

label information. It is based on constrained k-means clustering [34]. These 

algorithms take a partially labeled dataset that consists of three labels: unknown 

(0), event (1), normal (-1), and assigns a binary label (-1, 1) to each unknown 

instance in the dataset.  

The performance of the algorithm was assessed by comparing the predicted labels to 

the ground truth labels. Small proportions of labeled data samples combined with unlabeled 

data samples were used during training. 

2.4.4 Transfer Learning + Semi-Supervised Learning 

We formulate the event detection task using transfer learning technique as: 

• Input: Ds and Dt from the same feature space. Where Ds denotes a source dataset 

containing labeled time windows and Dt denotes a target dataset containing 

unlabeled time windows Dt,; 

• Do: Compute an anomaly score for every time window in Dt based on Dt and a 

subset of the related time windows in Ds; 

• Output: y labels (predictions) indicating whether a time window in Dt contains 

normal or anomalous behavior.   

A two-step transfer learning approach used in our study is based on a recently 

introduced LocIT algorithm [11], that was not yet applied on PMU data. First, the algorithm 

takes as an input a labeled source dataset Ds. Then, it selects a subset from the labeled 
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source time windows to transfer to the unlabeled target dataset Dt. If the local data 

distribution of a certain time window is similar in both the source and target datasets, the 

algorithm transfers the time window from the source to the target domain. LocIT utilizes 

unsupervised learning techniques since labels for time windows in the target dataset are 

not available and the labeled time windows in the source dataset should not influence the 

transfer decision.  Second, the algorithm computes an anomaly score using a semi-

supervised learning algorithm based upon nearest-neighbor techniques that consider both 

the related time windows that were selected and transferred from the source Ds and the 

unlabeled target time windows [11]. 

LocIT selects and transfers similar time windows from Ds to Dtrans, where Dtrans is a 

subset that contains the selected labeled time windows for transfer [11]. Let D* = Dt ∪ 

Dtrans, where D* is a dataset containing the transferred time windows combined with the 

target unlabeled time windows. D* is a partially labeled dataset, where time windows from 

Dtrans are labeled as an event (1) or normal (-1), and Dt time windows are labeled as 

unknown (0). Then, a semi-supervised SSKNNO algorithm takes D* as input and classifies 

each unknown time window as an anomalous event or normal, indicating whether a given 

event occurred in a given time window or healthy signal respectively. This process is 

further illustrated in the flowchart in Figure 2.1 
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Local Structure of time windows. LocIT algorithm defines the localized source 

distribution for a given source time window xs using the subset 𝑁!(𝑥", 𝐷") of the nearest 

neighbor 𝜓 of xs in Ds; and defines the localized target distribution based upon the subset 

𝑁!(𝑥", 𝐷#) of xs ‘s 𝜓 nearest neighbor in Dt. Where 𝜓 controls the strictness of the transfer.  

The higher the value of 𝜓 is (i.e., 1.0), the stricter the transfer is. If 𝜓 is 0, the algorithm 

ignores the differences of local distribution and considers the complete global structure of 

Ds and Dt to determine the transfer. 

The algorithm transfers a time window from the source subset to the target subset if the 

distributions of both subsets are sufficiently identical. The similarity measure (i.e., location 

distance) used to compare the first and second order statistics of 𝑁!(𝑥", 𝐷") and 𝑁!(𝑥", 𝐷#) 

is defined as:  
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Figure 2.1: Flowchart that illustrates the two-step process of 
event detection using transfer learning + semi-supervised 
detector. 
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The location distance used in equation (2.1) is the l2-norm of the difference of the 

arithmetic mean (i.e., centroids) between two neighborhood subsets 𝑁$and 𝑁%. Large 

values of d1 reduce the chance of meaningful transfer.  

The distance between the covariance matrices of two neighborhood subsets (i.e., 

correlation distance) is defined as: 

 

𝑑%(𝑁$, 𝑁%) =
∥∥𝐶&( − 𝐶&)∥∥'

∥∥𝐶&(∥∥'
 (2.2) 

 

Where ∥⋅∥' is the Frobenius norm and C is the covariance matrix. The Frobenius norm was 

considered since 𝑁$ and 𝑁% are matrices. Large values of d2 indicate that the localized 

distributions of the source and target subsets are different, which decreases the chance of a 

meaningful transfer.  

Learning the Transfer Function. In order to transfer a time window from the source 

Ds to target subset Dt, the transfer function decides whether to transfer the time window 

based upon combining the values of d1 and d2. LocIT utilizes an SVM classifier that learns 

on the target distribution using the target data only to serve as the transfer function. SVM 

predicts whether a time window in the source instance fits in the target domain by 

leveraging the smoothness assumption, having the meaning that neighboring target time 

windows have similar localized distributions while the farthest time windows have 

dissimilar localized distributions. Hence, the negative training instances are generated by 

computing for every time window in the target subset a feature vector consisting of the 

distances between the neighborhood subsets of xt and its farthest neighbor. The one positive 
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training instance is generated for each instance xt by finding its nearest neighbor in the 

target subset and computing d1 and d2 on the target subset. Finally, once the SVM classifier 

is trained on the target subset using both the negative and positive training instances, each 

instance from the source subset can be predicted to check whether it belongs to the target. 

If it belongs, the algorithm transfers it and adds it to Dtrans.  

2. 5 Data Processing 

2.5.1 PMU Data 

The PMU dataset used for testing was provided in the Apache Parquet database. The 

original dataset contains measurements from 38 PMUs from the Western Interconnection 

of the U.S.A. captured over a period of two years (2016-2017). The dataset was 

anonymized by the provider. Geographical locations of the PMUs and the network 

topology information are not made available. The data are collected with two frame 

reporting rates per second (fps), 30 fps, and 60 fps, and contain measurements from PMUs 

located at several voltage levels in the transmission network. This dataset corresponds to a 

variety of event types, including line fault transformer outages, and frequency events. Some 

data quality issues, such as missing data, data duplicates, and outliers were observed but 

did not have a significant impact on our method.  

2.5.2 Event Log 

The event log received from the data provider contains manually created labels with 

only an approximation of the event start time with a precision of 1 minute. We referred to 

these labels as temporally imprecise. The time labels were not created based on the PMU 

time reference; thus, some events were mislabeled and did not occur at the location of the 
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PMUs used in this study. Using such limited labels makes it challenging to temporally 

extract more precise PMU labels from the event log.  

To extract temporally more precise labels, we considered a set of labels created based 

upon visual inspection of the PMU-recorded signals by a domain expert on our team. The 

domain expert on our team relabeled the data to ensure that the labels were accurate and 

precise, since the initial labels (event log) received were inaccurate. The different sets of 

labels (1-minute, 30-seconds, 10-seconds, 5-seconds, 2-seconds) for event and normal 

operations identified through this study are presented in Table 2.1. 

 

2.5.3 Feature Extraction 

We defined the Rectangle Area (RA) features extracted per PMU for each time 

window. No data cleansing was performed on the PMU dataset from the chosen 38 PMUs 

prior to the feature extraction. The RA feature, created using the frequency and positive-

sequence voltage magnitude measurements, is defined as: 

 
𝑅𝐴()*,,- = (𝑓./0 − 𝑓.12) ∗ (𝑉./0 − 𝑉.12) (2.3) 

Table 2.1: Number of labels per category and window selection 
method. 
Event Log  # Event 

Labels 
# Normal 

Labels 
Event Start 

Time 
Event End 

Time 
1-min Labels 1033 923 STVI – 5 sec STVI + 55 sec 
30-sec Labels 1038 1846 STVI – 2 sec STVI + 28 sec 
10-sec Labels 1038 1846 STVI – 1 sec STVI + 9 sec 
5-sec Labels 1038 1846 STVI STVI + 5 sec 
2-sec Labels 1038 1846 STVI STVI + 2 sec 
STVI - start time of the event based on visual inspection. 

 
 
Table 2.2: Split Into Two Subsets of Pmus For Transfer Learning 
Based On Calculated Rectangle Area During EventsTable 2.1: Number 
Of Labels Per Category and Window Selection Method 
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where fmax and fmin are the maximum and minimum frequency values, and Vmax and Vmin 

are the maximum and minimum positive sequence voltage magnitude recorded by the 

selected PMU device, inside the selected time window TW. 

After feature extraction, only minor cleansing of outliers was performed by removing 

RA values that were too large to be possible. Only 11 RA values were discarded. They were 

replaced with zeros. The impact of missing data is negligible. If at least two data points 

were present inside a time window, the RA was calculated. For example, in the case of the 

1-minute window on a 30 fps PMU, we only need 2 out of 1800 (30	𝑓𝑝𝑠 ∗ 	60	𝑠𝑒𝑐) points 

to be able to calculate the RA. In case there is only one data point within a time window, 

RA is set to zero. Data duplicates do not have any impact on this method since the minimum 

and maximum values of voltage and frequency are not affected by the duplicates.  

The RA feature is sufficient to capture whether an event has occurred within a time 

window. The RA feature is limited to detecting events and is not suitable for classifying 

event types. The RA feature was used since it yielded the best performances among 

multiple data processing techniques that were tested. Furthermore, aggregated RA features 

allow the utilization of simple and efficient similarity measures to compute distances 

between time windows to find the nearest and farthest neighbors. 

Data processed based on the rectangle area were standardized using StandardScaler, 

which subtracts the mean, and then scales each feature to unit variance. 

2.5.4 Temporal Split 

A set of 38 PMUs that contain time windows collected over a span of two years, 2016 

and 2017 was split into two subsets, where the first subset was used as a source dataset for 

transfer learning, Ds, and the second subset is the target for transfer learning, Dt. The split 
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between two the subsets was based on the temporal split between the years 2016 and 2017. 

Knowledge was leveraged and transferred from the year of 2016, Ds, to the target subset 

Dt, which contains time windows collected from the year of 2017. Dt is a fixed dataset that 

contains all windows from 2017 in all the experiments conducted. Proportions of labeled 

time windows were randomly selected from Ds, and combined with target time windows, 

Dt, in a dataset D*, which is a partially labeled dataset that contains the transferred related 

labeled windows from Ds and windows to be classified as anomalous or normal event, Dt. 

While proportions of labeled time windows were randomly selected, it was ensured that 

the selected time windows result in a balanced subset containing both anomalous and 

normal events.  

For the unsupervised, semi-supervised, and supervised classifiers, the set of 38 PMUs 

was also split temporally, hence, training data containing data time windows from the year 

of 2016, and test data containing data time windows from the year of 2017. Since these 

classifiers do not transfer related time windows, classifiers were trained on entire time 

windows from 2016, and tested/classified time windows from the future, hence, time 

windows collected from the entire 2017.  

Features for a certain time window were combined into a feature vector that contains 

38 RA features, one feature for each observed PMU. Labels y are created for each time 

window as (‘1’ – in case of an event reported, ‘-1’ – in case of a normal operation) for 

transfer learning and semi-supervised learning classifiers. Whereas, unsupervised and 

supervised learning classifiers, windows are labeled as (‘1’ – in case of an event reported, 

‘0’ – in case of a normal operation). When performance measures were applied to assess 
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the performance of the transfer learning and semi-supervised classifiers, predicted labels ‘-

1’ were transformed to ‘0’ to match with ground truth labels.  

2.5.5 PMUs Split 

Similarly, a set of 38 PMUs was split into two subsets, the source subsets, Ds, and the 

target subset, Dt. The split between two subsets was made using RA feature based on the 

following procedure. First, a set of 35 events was selected randomly. For each of the 35 

events, the RA feature was extracted on each PMU. For each of the 35 events, top 3 PMUs 

with the greatest RA were selected. Different subsets of PMUs were iterated until the 

smallest subset was found that had at least one of top three PMUs in each of the 35 events. 

This resulted in 12 chosen PMUs that combined have a representative in the top three RA 

in all 35 events. The procedure is outlined in Table 2.2 using a simplified example with 7 

PMUs and 4 events.  

 

 

 

 

 

 

 

 

 

 

 

Table 2.2: Split into two subsets of PMUs for transfer learning based on calculated Rectangle 
Area during events.  

Event 1 Event 2 Event 3 Event 4 Comment 
Top 

1 
RAPMU1=56 RAPMU5=32 RAPMU2=48 RAPMU4=17 

Only the top 3 PMUs with 
largest RA for an event are 
considered as candidates for the 
Source Subset 

Top 
2 

RAPMU3=54 RAPMU2=31 RAPMU7=32 RAPMU6=16 

Top 
3 

RAPMU7=44 RAPMU4=28 RAPMU3=27 RAPMU1=12 

Top 
4 

RAPMU2=42 RAPMU1=27 RAPMU1=24 RAPMU7=8 The rest of the PMUs with lower 
RA are not considered as 
candidates for the Source Subset … … … … … 

Final split with minimum elements in PMU Source Subset 
PMU Source Subset, Ds = {PMU1, PMU2} Each event has at least one of these two PMUs 
in the Top 3 based on the RA 
PMU Target Subset, Dt = {PMU3, PMU4, PMU5, PMU6, PMU7} 
 
 
 
Table 2.3: Selected Hyperparameters for The Binary Classifiers Categorized By Learning 
TypeTable 2.2: Split Into Two Subsets of Pmus For Transfer Learning Based On Calculated 
Rectangle Area During Events 
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Additional 7 PMUs were selected randomly from the remaining set of PMUs, totaling 

the final 19 PMUs in the PMU Source Subset. The remaining 19 PMUs were placed in the 

PMU target subset, Dt. A proportion of labeled time windows from Ds were randomly 

selected; selected time windows from Ds were leveraged and knowledge was transferred to 

Dt. Then, related time windows selected for transfer from Ds were combined with Dt in a 

dataset D*.  

Similarly, for the unsupervised, semi-supervised, and supervised classifiers, Ds was 

used as the training subset and Dt was used as the test subset. Since the aforementioned 

classifiers do not transfer related time windows to the target domain, all windows from the 

set of PMUs in Ds were used for the prediction task.  

Features for a certain time window are combined into a feature vector that contains 19 

RA features. The process of creating labels y is identical to the process of the Temporal 

Split experiment.  

2.6 Experimental Setup  

Extensive experiments conducted in our study are described in this section. Using 

limited proportions of labeled data incorporated into the models we assessed and compared 

the capabilities of our method to alternative models (unsupervised, semi-supervised, and 

supervised) to detect events based on a limited proportion of labels, or without any labels 

used. Experiments conducted included 2%, 5%, 10%, 25%, 40%, 55%, and 70% of 

available labeled data, corresponding to 20, 51, 103, 259, 415, 570, and 726 available 

labeled data instances respectively. Available data instances were randomly selected from 

the source dataset Ds, whereas target dataset Dt was fixed among all experiments. This does 
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not apply to unsupervised learning algorithms since they do not incorporate any labels 

during learning. The performance of the classifiers was evaluated using the area under the 

receiver operating characteristic (AUROC) since this metric is the standard in event 

detection tasks [35]. Other relevant performance measures including Precision, Recall, F-

1 score, and Matthews Correlation Coefficient (MCC) (also known as phi coefficient) were 

also reported. The formal definitions of these metrics are very common and can be easily 

found [35, 36, 37].  

 The different uses of leveraging knowledge from source to target domain are illustrated 

in Section V-D and Section V-E. A variety of experiments were conducted to address the 

following comparative questions:  

• How do window sizes (time intervals) over which features were computed affect 

the performance of the algorithms? Different window sizes varying from 2 seconds 

to 1 minute were experimented to determine the best choice for the event detection 

task. 

• How does the percentage of labeled time windows in the source data affect the 

performance of the models? Varying percentages of labeled source data ranging 

from 2% to 70% were experimented to analyze the performance of the models and 

analyze what percentage of labeled source data is sufficient for the models to detect 

events.  

2.6.1 Hyperparameter Tuning 

Hyperparameter tuning using cross-validation is infeasible since labels of time 

windows in the target domain are not available, and the distributions of the source data Ds 



31 
 

and target data Dt are dissimilar [38]. Instead, the baseline and recommended 

hyperparameters in comparative studies were used. LocIT has three significant 

hyperparameters that need to be set. We used a transfer threshold 𝜓 of 0.7, which indicates 

how closely related time windows to be transferred are and scaling that determines whether 

to scale the source and target domain before transfer using StandardScaler. In the final 

classifier, SSKNNO, the three significant hyperparameters were set as contamination of 

0.34, k of 1, and strict supervision. The contamination is the threshold of anomaly score, k 

is the number of nearest neighbors, and supervision indicates whether to use all time 

windows in the set of nearest neighbors (loose) or use only windows that count the window 

among their neighbors. Hyperparameters that were set for all classifiers are listed in Table 

2.3, categorized by a learning type. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3: Selected hyperparameters for the binary classifiers categorized by learning 
type. 

Unsupervised 
kNNO (weighted=True, k=10, contamination=0.34) 
iNNE (n_members=1000, sample_size=16, 
contamination=0.25) 

Supervised 

MLPClassifier (alpha=0.3) 
LogisticRegression (C=0.9) 
KNeighborsClassifier (n_neighbors=10, 
weights='distance') 
NuSVC (kernel='rbf') 

Semi-
supervised 

SSkNNO (metric='euclidean', k=1, 
supervision='strict', weighted=True, 
contamination=0.34) 
SSDO (metric='euclidean', k=10, 
contamination=0.39, alpha=0.2) 

Transfer 
Learning 

LocIT (transfer_threshold=0.7, scaling='none', 
metric=’euclidean’) 

 

 
FIGURE 2.2: AN EXAMPLE TO ILLUSTRATE THE DISTRIBUTIONAL DIFFERENCE BETWEEN 
THE SOURCE (2016) AND TARGET (2017). X-AXIS IS THE TIME WINDOW RA VALUES FOR 
A CERTAIN PMU, AND Y-AXIS, 𝑃 DENOTES TO THE PROBABILITY THAT A CERTAIN RA 
FEATURE WILL BELONG TO A CERTAIN PIN. BOTH TOP AND BOTTOM FIGURES SHOW THE 
DISTRIBUTION OF THE SAME PMU OVER TWO YEARS, WHERE SOURCE CONTAIN RA 
FEATURES COLLECTED OVER 2016 AND TARGET CONTAIN RA FEATURES COLLECTED OVER 
2017.Table 2.3: Selected Hyperparameters for The Binary Classifiers Categorized By 
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2.7 Experimental Results and Discussion 

2.7.1 Distributional Difference between Source and Target Datasets  

To demonstrate the applicability of utilizing transfer learning techniques on PMU 

measurements data for event detection, the three assumptions explained in Section III had 

to be validated. Transfer learning is typically applied on datasets where traditional machine 

learning modeling assumptions are violated since the marginal distributions of the source 

and target subsets are dissimilar (covariate shift assumption), or the conditional 

distributions are different owing changes in context, in which the meaning of the same 

behavior might be different in both the source and target domains (concept shift 

assumption). Therefore, in the initial experiment of our study Kolmogorov-Smirnov (KS) 

test for comparing the similarity between two continuous distribution functions 𝐺 and 𝐹, 

was used to check whether the source and target distributions are identical by comparing 

the underlying distributions 𝐹(𝑥) and 𝐺(𝑥) of two independent samples [38], where 𝑥 

denotes to the RA features for a certain PMU. The null hypothesis was 𝐹 = 𝐺, indicating 

that the distributions of the source and target are identical.  

We applied the KS test metric on the source and target subsets, where the source is a 

1-dimensional array containing the RA features collected over the year 2016 for a single 

PMU, and the target was a 1-dimensional array containing the RA features collected over 

2017 for the same PMU. This process was repeated for each PMU. Furthermore, we 

confirmed the results using the Empirical Distribution Function (EDF) by modeling and 

sampling the cumulative probabilities for a data sample that does not fit standard 

probability distribution. 
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We obtained the p-values from the KS test metric for all PMUs. The maximum p-value 

was 3.9𝑒3$4,  hence, due to a very small p-value (i.e., < 0.01) we can safely reject the null 

hypothesis, indicating the source and target distributions are different. Figure. 2.2 shows 

an example for one PMU to illustrate the distributional difference between the source and 

target subsets. The top and bottom figures show the distribution of the same PMU over two 

consecutive years. 

 

 

 

 

 

 

 

 

 

 

 

Many reasons could lead to a distributional difference of PMU data collected from the 

future. That might occur since power systems experience randomness of occurrence of 

events depending on the circumstances, including but not limited to, weather, equipment 

Figure 2.2: An example to illustrate the distributional difference between the 
source (2016) and target (2017). X-axis is the time window RA values for a certain 
PMU, and y-axis, 𝑃 denotes to the probability that a certain RA feature will belong 
to a certain pin. Both top and bottom figures show the distribution of the same 
PMU over two years, where source contain RA features collected over 2016 and 
target contain RA features collected over 2017. 
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failures, wear and tear, and the fact that operating conditions differ every year. Thus, this 

experiment suggests that transfer learning could be more applicable than supervised 

learning alternatives that assume the same distribution.   

2.7.2 The Effect of Varying Percentages of Labeled Data  

In order to study the effect of the amount of labeled source data on the performance of 

our model versus other models, a variety of percentages of labeled time windows were 

analyzed. Often, it is non-trivial to acquire labeled data or event logs for event detection 

tasks since label extraction can be expensive and sometimes impossible to obtain. Thus, 

this experiment is relevant and provides insights on what percentage of labeled data is 

sufficient for the models to detect anomalous events. We randomly sampled 2%, 5%, 10%, 

25%, 40%, 55%, and 70%, corresponding to 20, 51, 103, 259, 415, 570, and 726 of labeled 

source data Ds and only considered these labeled time windows when performing a transfer. 

Experiments were repeated five times and the results were averaged. This experiment was 

conducted based on Temporal Split of the data described in Section V-D. The best 

performing methods from three alternative learning types (i.e., unsupervised, semi-

supervised, fully supervised) were chosen and compared to the transfer learning method. 

Figure 2.3 shows that the AUROC improves with more labeled data added to the source 

subset on three datasets with different window dimensions, listed in Table I. The utilized 

transfer learning method LocIT, outperforms unsupervised kNNO, semi-supervised 

SSKNNO, fully supervised MLP, learning algorithms with limited or no labels used in the 

source data. With only 2% of labeled source data used, corresponding to ~20 characteristic 

events the transfer learning algorithm performed generally well, while the fully supervised 

algorithm performed poorly. The gap widened between supervised learning and transfer 
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learning algorithms as the labeled source data decreased. However, with >60% of labels, 

supervised learning outperformed transfer learning with a slight increase in AUROC. There 

were considerable discrepancies between supervised and transfer learning algorithms with 

<10% of labels used in all experiments conducted. The unsupervised kNNOs curves are 

straight lines because it is trained without using any labels and it only considers the target 

data. This was included to visualize and compare with other algorithms. The unsupervised 

algorithm was trained without any labels, outperformed supervised learning algorithm with 

<5% of labels in 2-seconds time windows. With 1-minute and 30-seconds time windows, 

unsupervised outperformed supervised learning with approximately <30% of labels used. 

Unsupervised learning performed poorly compared to transfer learning and semi-

supervised algorithms with a small percentage of labeled data used, since labeled data can 

assist with correcting the errors made by unsupervised detectors. The semi-supervised 

algorithm’s performance was adjacent to transfer learning’s performance with >10% of 

labeled data. Transfer learning’s performance was greater than semi-supervised learning 

with <10% of labeled data since only related time windows were used to guide with the 

event detection task. On average transfer learning yields an average increase in AUROC 

of approximately 13% compared to supervised learning, and 5% compared to unsupervised 

learning. This provides evidence that the proposed transfer learning approach can help with 

PMU event detection tasks when labels are not available or are expensive to obtain. 

Additionally, this shows that supervised learning algorithms rely heavily on labels and are 

infeasible for detecting events with limited labeled data.  
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2.7.3 Transfer Learning vs. Baseline Anomaly Detectors 

Table 2.4 compares the proposed transfer learning algorithm, LocIT to baseline 

algorithms with different learning types based upon the best performing length of time 

windows (i.e., 2-seconds) with only 2% of labeled data used to challenge the event 

detection task based on Temporal Split and PMUs Split of the data. In both experiments, 

transfer learning outperformed unsupervised, semi-supervised, and fully supervised 

algorithms. Results were consistent among all experiments conducted on all datasets. With 

sufficient amounts of labeled data available, supervised algorithms perform well. However, 

when limited or no labels are available, unsupervised algorithms, semi-supervised, and 

transfer learning with semi-supervised, outperform supervised learning algorithms. 

Additionally, Table IV shows consistency of results where LocIT outperforms other 
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X-axis: percentage of the labeled 
source  

 
Figure 2.3: Comparing performances of the proposed transfer learning algorithm 
LocIT based on varying percentages of labeled source data on different window 
dimensions to three alternative learning types SKNNO, MLP, and kNNO, based 
on AUROC metric. Performances improve with more labeled data added to the 
source. Results are consistent and show that LocIT, always performs better with 
limited labels used. This experiment was conducted based on a temporal split.  
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models with limited labeled data and shows significant improvement over supervised 

algorithms (MLP, LR, KNN, SVM). Experiments conducted provide evidence that 

Transfer Learning and Semi-supervised algorithms are more feasible than supervised 

algorithms for event detection tasks when labels are scarce. 

 

 

 

 

 

 

 

 

 

 

2.7.4 The Effect of Varying Time Window Sizes  

In order to explore how the window size affects the performance of the models, a 

variety of window sizes were analyzed, including 2-seconds, 5-seconds, 10-seconds, 30-

seconds, and 1-minute window sizes. Figure 2.4 shows that the AUROC improves with 

shorter window sizes among both experiments Temporal Split and PMUs Split. Applying 

Table 2.4: Performance of various models trained using only 20 labeled 
events based on Temporal and PMUs Split 
Experiment Model AUROC Precision Recall F1-score MCC 

2-sec. 
Temporal 
Split 

LocIT 0.93 0.93 0.93 0.93 0.86 
SSKNNO 0.90 0.92 0.92 0.92 0.83 
SSDO 0.82 0.84 0.84 0.84 0.67 
MLP 0.77 0.89 0.77 0.79 0.64 
LR 0.68 0.86 0.68 0.69 0.52 
KNN 0.67 0.85 0.67 0.68 0.50 
SVM 0.66 0.85 0.66 0.66 0.48 
kNNO 0.82 0.84 0.84 0.84 0.67 
iNNE 0.81 0.86 0.85 0.84 0.69 

2 sec. 
PMUs Split 

LocIT 0.94 0.95 0.95 0.95 0.89 
SSKNNO 0.90 0.93 0.92 0.92 0.84 
SSDO 0.80 0.85 0.84 0.84 0.68 
MLP 0.74 0.84 0.81 0.79 0.59 
LR 0.71 0.87 0.71 0.72 0.55 
KNN 0.76 0.85 0.82 0.81 0.61 
SVM 0.72 0.87 0.72 0.74 0.57 
kNNO 0.76 0.83 0.82 0.80 0.62 
iNNE 0.86 0.90 0.89 0.89 0.84 

Transfer Learning: LocIT; Semi-supervised: SKNNO, SSDO; 
Supervised: MLP, LR, KNN, SVM; Unsupervised: kNNO, iNNE 
 

 
 
 
FIGURE 2.4:  LOCIT’S PERFORMANCE BASED ON AUROC BY VARYING 
WINDOW SIZES BASED ON TEMPORAL AND PMUS DATA SPLIT. Table 2.4: 
Performance Of Various Models Trained Using Only 20 Labeled Events 
Based on Temporal And Pmus Split 
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transfer learning algorithm on 2-seconds window size yields an approximately 7% increase 

compared with 1-minute windows based on Temporal Split of the data, and 5% increase 

based on PMUs Split of the data. The increase in AUROC is due to the nature of the 

distance-based classifier. Each time window was manually inspected to make sure that the 

start of the anomalous event fell within of the selected time window. Anomalous events 

result in fluctuations (i.e., abnormal behavior) in the signal. As such, when detecting 

events, distance metrics in shorter time windows highlight the deviation from normal 

operation more than when longer time windows are used, since the anomalous event 

corresponds to a shorter timeframe, whereas the rest of the signal corresponds to normal 

operation. Hence, having a longer time window can dilute the event effect in the window. 

Fluctuations impact the RA feature values owing to the difference between the minimum 

and maximum values of positive sequence voltage magnitude and frequency. There was 

no significant increase in AUROC between the 2-second and 5-second windows. There 

was a significant improvement in AUROC when detecting events based on 2-second 

windows compared to 1-minute windows. The increase in AUROC observed when 

comparing 1-minute labels to 2-second labels can be explained by the smaller fluctuation 

of normal operation within a shorter time window. Experiments conducted show that 

shorter time windows result in a higher AUROC. Thus, the size of the time windows was 

determined based upon the size that exhibited the best performances formed on the results 

obtained from the conducted experiments. 
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Figure 2.5 demonstrates the fluctuations caused by longer time windows based upon 

two normal operation instances captured in a 2-second and 1-minute time windows. 1-

minute time window shows more fluctuations occurred during the normal operation, and 

the 2-second time window showed slight fluctuations occurred during the normal 

operation. Thus, the use of a shorter time window exhibits less fluctuation resulting in a 

better performance.  

 

 
 
 
 
 
 
 
 
 
 

Figure 2.4:  LocIT’s performance based on AUROC by varying 
window sizes based on temporal and PMUs data split.  
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2.7.5 Leveraging Knowledge on Temporal and PMU Splits 

Two experiments were conducted based on different ways of leveraging the data from 

source to target to test and ensure the model’s robustness. Different data splits are 

introduced in Section V-D and Section V-E. Figure 2.4 shows the performance of transfer 

learning algorithm, LocIT, based on Temporal Split and PMUs Split of the data. As can be 

seen, leveraging limited knowledge temporally, from the year of 2016 and transfer to 2017 

results in a slight decrease in AUROC, which can be explained by the randomness of 

occurrence of events depending on the circumstances that might differ from a year to 

2-seconds 
 

1-minute 
 

Figure 2.5:  The top figure shows 1-minute time window of normal operation, 
and the bottom figure shows 2-seconds time window of normal operation. Each 
colored line corresponds to a certain PMU. Shorter time windows produce less 
fluctuations, resulting in better performance in detecting events. 
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another. Leveraging knowledge from a set of PMUs to another set of PMUs shows an 

increase in AUROC, but the difference is not significant. Splitting the source and target 

datasets temporally yields a decrease of approximately 1.5% compared with the PMUs split 

of the data. Thus, this shows that it is feasible to transfer knowledge from historical data 

and apply it on time windows from the future, and/or time windows from a specific set of 

PMUs to another set of PMUs.  

2.7.6 Misclassified Time Windows 

We examined the time windows that were misclassified by the transfer learning 

approach to event detection to develop a better understanding of the nature of events that 

led to errors in detecting events. Both false positives (FPs) and false negatives (FNs) were 

observed. FPs are events that were misclassified as anomalous operation, but in fact, they 

were normal operations. FNs are the events that were misclassified as normal operation, 

but in fact, they were anomalous events. A pattern was observed based upon visually 

inspecting the misclassified events. These events were local events, meaning that they were 

not observed by most of the PMUs in the interconnect. Moreover, their impact on local 

PMUs in terms of prominent changes in voltage or in frequency is weak as compared to 

major events that might precede them. Recall that the input to the algorithm is a vector of 

RA features from all the PMUs. The difference between the maximum and minimum 

voltage and frequency in these instances was not as substantial, resulting in a smaller value 

of RA. Thus, since most PMUs did not observe these changes, false classification (i.e., 

errors) occurred. Additionally, since the employed semi-supervised detector is distance-

based, the weak changes in voltage or in frequency affected the distance metric due to 

fluctuations in the time window, hence, the detector misclassified these instances. 
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Furthermore, upon visual inspection of the misclassified events, we observed 

unrealistic values of frequency in the order of thousands of Hz or sudden drops to zero in 

the value of voltage and frequency, since no data cleansing was performed prior to the 

extraction of the RA features. Hence, this led to false classifications as well. 

Figure 2.6 provides two 2-second time windows that contain events. The top figure 

shows an apparent event with a significant drop in voltage and was observed by most 

PMUs, hence, it was classified correctly as anomalous event. The bottom figure shows a 

misclassified time window since there was a very minor drop in voltage and did not affect 

most of the PMUs (i.e., local event).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classified Correctly 
 

Misclassified 
 

Figure 2.6:  Both the top and bottom figures show 2-second time windows that 
contain events. The top figure shows an obvious event that was observed by most 
PMUs and was classified correctly as anomalous event. The bottom figure shows 
a very minor dip in voltage that did not affect most of the PMUs; hence, it was not 
classified correctly. The bottom time window was classified as normal event.  
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2.7.7 Statistical Significance Analysis  

Statistical analysis was performed to assess the significance and stability of the 

proposed method’s performance. To address how frequently we can expect the proposed 

algorithm LocIT to obtain the same performance measured based upon the AUROC metric 

under different conditions, we randomly selected 19 PMUs for the source data and the 

remaining 19 PMUs were the target data. For consistency with experiments conducted in 

this study, we leveraged only 20 labeled time windows from the source data to predict the 

target domain. We repeated the random selection of PMUs 10 times and obtained results 

from all algorithms used in this study. Then, we employed a t-test with a significance level 

of 0.1 to obtain confidence intervals with 90% confidence level for the average AUROC 

for each algorithm individually. Table 2.5 summarizes the average AUROCs and their 

corresponding two-sided confidence intervals. In general, confidence intervals obtained for 

the algorithms are very small (< 0.05), hence, it is possible to rely on these algorithms to 

obtain a similar AUROC with 90% confidence level. LocIT obtained an average AUROC 

of 0.94 with a confidence interval width of 0.0032, meaning that the average may vary up 

to ±0.0032 outperforming baselines with high confidence. 

Moreover, an additional analysis was performed to assess how statistically more 

significant the performance of LocIT is, compared to the other algorithms. We calculated 

the differences between LocIT’s AUROC and baseline methods and employed a t-test. The 

p-values obtained were very small (< 0.05). The p-value obtained by comparing LocIT to 

the second best-performing method SSKNNO was 1.4𝑒35, indicating that LocIT’s 

performance is significantly better than other baselines. 
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2.8 Extension and Enhancement to Perform Transfer Learning on PMU 

Data from a Power System to Detect Events in Another System 

The experiments conducted show that the proposed transfer learning approach is 

capable of detecting events by leveraging minimal labeled time windows from a related 

task within PMU data of the Western Interconnection of the U.S.A. Upon promising results 

reported in the previous study, the proposed technique could be extended to leverage 

labeled time windows from the Western Interconnection of the U.S.A. and transfer learning 

to the Eastern Interconnection of the U.S.A. for event classification task. The challenge of 

this task revolves around different number of PMUs at two interconnections, resulting in 

different dimensions of feature vectors. Moreover, the distance metric used in the semi-

supervised detector (SSKNNO) might be less effective for the Eastern Interconnection 

where a much larger number of PMUs were observed. Hence, implementation of an 

Table 2.5: Summarizes the average AUROC and their corresponding 
two-sided confidence interval, calculated at 90% confidence level. 

Learning Type Model Average AUROC and 
Confidence Interval 

Transfer Learning LocIT 0.94 ± 0.0032 
Semi-supervised SSKNNO 0.90 ± 0.0036 

SSDO 0.81 ± 0.0078 
Supervised MLP 0.74 ± 0.0058 

LR 0.72 ± 0.0074 
KNN 0.76 ± 0.0042 
SVM 0.72 ± 0.0199 

Unsupervised kNNO 0.75 ± 0.0037 
iNNE 0.85 ± 0.0113 

 
 
Table 2.6: Comparing the Proposed Method to Transfer Learning 
Alternatives.Table 2.5: Summarizes The Average Auroc and Their 
Corresponding Two-Sided Confidence Interval, Calculated At 90% 
Confidence Level 
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appropriate distance measure that is suitable for high dimensional feature vectors might be 

required to enhance the event detection task. 

Therefore, we extended and enhanced the transfer learning method to leverage related 

labeled instances from one power system to detect events from another. Set of experiments 

conducted show that events in one power system can be accurately detected by reusing a 

small number of carefully selected labeled PMU data from another without the need for 

additional labeling. We demonstrate this approach with a use of detecting events from 

historical PMU data recorded in the Eastern Interconnection in the USA by using similar 

labeled PMU data from the Western Interconnection. This technique may be propagated to 

other situations where some of the events’ data from one power system may be applied to 

enhance learning in another. This enhancement addresses the nonunified dimensions of 

feature vectors when leveraging data from a power system to detect events from another, 

and enhanced the semi-supervised detector by using a distance metric that is more 

applicable for the dimensions of PMU data. Our approach demonstrates superior 

performance over various state-of-the-art machine learning algorithms (i.e, unsupervised, 

semi-supervised, and supervised). 

2.8.1 Related Work  

In [2], TL was applied to detect events using PMU measurements by transferring 

relevant labeled data from a power system collected in one year (2016) to detect events 

from future instances (2017) in the same power system. In [39] TL technique in conjunction 

with deep learning model was utilized to enhance the detection of events in one power 

system using a model pre-trained on another. The use case of using PMU recorded data 

from the Western and Eastern Interconnections (WI and EI) in the US demonstrates that 
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the use of TL enhances the performance by leveraging labeled data from both WI and EI 

to enhance the detection on WI. This model transfers parameters of the pre-trained model, 

trained on EI to be used as the initial parameters of the model trained on the data of the WI. 

As illustrated in Sec. IV, the quality of data of the EI is poor compared to data from the 

WI, so detecting events from WI based on EI only might be insufficient. There are some 

limitations of the study reported in [39]: a) its proposed model does not detect events from 

one power system based on another without utilizing labeled data from both power 

systems, b) it utilizes a fully supervised learning estimator and considers only line, 

generator, oscillation events, and normal/healthy signals.  

2.8.2 New Event Detection Approach  

To address the mentioned gaps, our paper extends and enhances studies reported in [2, 

39] by exploring the benefits of knowledge transfer between two independent power 

systems, such as the WI and EI in the USA using a transfer function combined with a semi-

supervised detector to identify events based on minimal labeled data of the source task 

only, and it downgrades to unsupervised mode if no related labeled data instances were 

available in the source power system. 

To address the mentioned issues, we propose the following two methods based on TL 

techniques:  

1) Spatial transfer, sLocITR (spatial localized instance transfer reduced), which 

leverages labeled data from one power system to detect events in another system. 

Our approach does not require target labels, since it relies only on related instances 

from the source power system to detect events from the target power system, while 
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the study reported in [39] requires target labels since it leverages labeled data from 

both power systems (source and target) to detect events from the target power 

system.  

2) Spatiotemporal transfer, stLocITR, based on leveraging labeled data from one 

power system integrated with a small number of labeled data from another power 

system to detect future events. Table 2.6 summarizes the major differences between 

the proposed approach and studies reported in [2, 39]. 

 

2.8.3 Compression and Unification of Data Dimension 

To transfer labeled instances from one power system to another, we project time 

windows (TWs) from the source and target datasets of the two power systems with different 

numbers of PMUs to latent spaces of unified dimensions while preserving the properties 

of the original data. This is achieved by an Autoencoder, i.e., an unsupervised Neural 

Network (NN) for dimensionality reduction. Autoencoders utilize multiple neural 

computing layers to learn non-linear transformations of data to a latent space [40]. Other 

dimensionality reduction techniques such as Principal Component Analysis (PCA) were 

Table 2.6: Comparing the proposed method to transfer learning 
alternatives. 

Study Source Target Transfers Detector Target 
Labels 

[2] WIpast WIfuture Temporally 
Related data 

Semi-
supervised 

Not 
Required 

[39] EI & WI WI Parameters Supervised Required 

sLocITR WI EI Spatially 
Related data 

Semi-
supervised 

Not 
Required 

stLocITR WI & 
EIpast EIfuture 

Spatio-
Temporally 
Related data 

Semi-
supervised 

Not 
Required 

 
 
Table 2.7: Number of Labels per Category from both WI and EI 
Datasets.Table 2.6: Comparing the Proposed Method to Transfer 
Learning Alternatives. 
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also considered but failed to learn a representation that preserves the properties of the 

original data since such techniques are limited to linear transformations only [12]. The 

feature vectors (TWs) from both datasets were extended to 200 dimensions by padding with 

zeros, thus standardizing the number of dimensions in the two datasets. In the use case with 

the data from WI and EI, two fully connected layers with batch normalization were used 

to learn how to unify the 35-dimensional feature vectors from both WI and EI datasets. To 

enhance the performance of the ML models, the unified data were scaled to a standard 

range using Standard Scaler [2], defined as 𝑧 = 03	7
8

. 

2.8.4 Data Processing 

PMU Data. We utilize historical field measurements collected over two years, 2016-

2017 from 38 PMUs placed in the WI, and from 178 PMUs placed in the EI in the U.S. 

electric power system. The measurements from EI are collected at 30 frames per second 

(fps), while measurements from WI are collected at 30 fps or 60 fps. Locations of PMUs 

and the system topology are not provided to us. Some outliers, data duplicates and missing 

data are observed in both datasets but do not affect our method significantly [41]. Non-

uniform number of PMUs and data quality issues make this event detection task complex. 

WI dataset contained higher quality measurements than the EI dataset, since EI contains 

missing data ranging from ~1% to ~70%, whereas missing data of WI ranges from ~1% to 

~30%. Thus, we utilize labeled data from WI to detect events from EI, without using any 

labeled data from EI.  

Event Log. Similarly, both WI and EI datasets contain phasor measurements associated 

with line outages, transformer outages, and fundamental frequency deviations that are 
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labeled in the event log. Visual inspection of these events revealed that some events evolve 

from one type to another, hence, they were considered “complex” events. Complex events 

include events labeled generator, capacitor, bus, and oscillation. The provided event log 

most likely was obtained from the SCADA data, and therefore it contains temporally 

imprecise event labels (start time with a precision of 1-minute). In addition, due to the 

sparsity of PMU locations in the network, log events did not necessarily occur in the 

vicinity of the PMUs used in this study. To improve the temporal precision of the log 

events, visual inspection was performed by the domain expert on our team. Then, we used 

a more precise start time of the events confirmed through visual inspection. The study 

reported in [2] experimented various dimensions of TWs; 2-second TWs resulted in 

performant classification results; hence, the dimension of 2-seconds was used. Table 2.7 

presents the number of labels used for each proposed method.  

Feature Extraction for EI and WI data was performed as described in Section 2.5.3.  

 

 
 
 
 
 
 
 

2.8.5 Experimental Setup  

We propose two TL methods based on different splits of the source and target datasets.  

1) Spatial transfer, sLocITR, where labeled TWs were selected from Ds which 

consisted of TWs from WI and were used to detect events in Dt, which consisted of 

Table 2.7: Number of labels per category from both WI and EI datasets.  

Method 
# Event 
Labels from 
WI 

# Normal 
Labels from 
WI 

# Event 
Labels 
from EI 

# Normal 
Labels from 
EI 

sLocITR 1038 1846 0 0 
stLocITR 1038 1846 849 762 

 
 
Table 2.8: Comparative Analysis of the Utilized Transfer Learning 
Methods to Various Baselines Using the Selected Labeled tws from 
ds.Table 2.7: Number of Labels per Category from both WI and EI 
Datasets.  
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unlabeled TWs from EI. In this experiment, Ds contained the entire data of the WI, 

while Dt contained the entire data of the EI.  

2) Spatiotemporal, stLocITR, where Ds = WI ∪ EI2016; Dt = EI2017; where WI denotes 

the entire TWs of the WI, EI2016 denotes the TWs of the EI collected from 2016, 

used to detect events in EI2017 which denotes the TWs of the EI from 2017.  

We answer the following empirical questions:  

1) How does the proposed TL method perform compared to alternative baselines?  

2) How does the number of labeled source data selected from Ds affect the 

classification accuracy for events in the target domain Dt?  

The results validate our hypothesis and illustrate the benefits of employing TL 

techniques in conjunction with a semi-supervised detector to leverage knowledge and 

detect events based on minimal labeled data. To address question 2, we selected the top p 

related instances excluding redundant/similar instances to experiment how the proportion 

of labeled data affects the performance; where p ∈ {20, 51, 103, 259, 415, 570, 726} 

corresponding to 1% to 25% of labeled source data instances. 

The performance of the TL algorithm was evaluated by comparing it to common 

conventional ML algorithms of varying learning types described in Sec. III (i.e., 

unsupervised, supervised, and semi-supervised). The following metrics were used to 

evaluate the algorithms: The area under the receiver operating characteristic (AUROC), 

Precision, Recall, and F-1 score [35]. 
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2.8.6 Results and Discussion  

WI and EI Distribution Comparison. To validate the applicability of the TL on PMU 

data, we utilized Kolmogorov-Smirnov (KS) metric to test if the cumulative distribution 

functions of the source WI and target EI datasets are similar. KS metric was applied to 

compare two independent samples on the source and target system, where the source is 

represented as a 1-dimensional array that contains features from the WI and the target is a 

1-dimensional array that contains features from the EI. We obtained p-values by iteratively 

computing similarities between two independent samples. The maximum p-value was 

2.7𝑒3$9, thus, since the obtained p-value is very small, we can safely reject the null 

hypothesis, implying distributions of WI and EI are different. 

2.8.7 Transfer Learning versus Baseline Event Detection 

Table 2.8 presents and compares the performance of the proposed TL methods stLocITR 

and sLocITR to alternative baselines of various learning types. Consistent results demonstrate 

the effectiveness of the proposed methods and show that both methods outperformed fully 

supervised, semi-supervised, and unsupervised algorithms. The sLocITR method selected 

and transferred 570 (out of 2,884) related data instances (543 abnormal events + 27 normal) 

excluding redundant instances from WI to detect events from EI. stLocITR transferred 

additional 362 (out of 1,611) temporally disjoint related cases from EI, resulting in 

increased AUROC by 11% when compared to the best performing supervised and 

unsupervised learning algorithms, and a 5% improvement when compared to the best 

performing semi-supervised learning algorithms. sLocITR increases the AUROC by 12% 

when compared with the best supervised learning algorithm, 10% improvement when 
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compared with the best unsupervised learning algorithm, and 3% improvement when 

compared with the best semi-supervised learning algorithm. Unsupervised learning 

algorithm, kNNO outperformed supervised variant using the Spatial split, indicating that 

the source and target label sets differ significantly. In other words, there are many input-

output relationships in the target domain that do not have similar counterparts in the source. 

However, the underlying anomaly patterns remain similar. Unsupervised learning is based 

on detecting anomaly patterns only from the input signals, whereas supervised algorithms 

attempt to learn the relationship between the input signals and the output labels, which 

might be misinforming for some cases due to the distributional difference (label sets) of 

both interconnections.  

Table 2.8: Comparative analysis of the utilized transfer learning 
methods to various baselines using the selected labeled tws from ds. 

Method Learning Type Model AUC Precision Recall F1 

Spatio-
temporal 

Transfer 
Learning stLocITR 0.90 0.90 0.90 0.90 

Semi-
supervised 

SSKNNO 0.85 0.86 0.86 0.86 
SSDO 0.84 0.86 0.85 0.85 

Supervised 

RF 0.79 0.79 0.79 0.79 
KNN 0.79 0.80 0.78 0.79 
MLP 0.74 0.82 0.73 0.77 
SVM 0.72 0.81 0.70 0.75 

Unsupervised kNNO 0.79 0.80 0.79 0.79 
iNNE 0.74 0.75 0.73 0.74 

Spatial 

Transfer 
Learning sLocITR 0.87 0.87 0.87 0.87 

Semi-
supervised 

SSKNNO 0.84 0.84 0.84 0.84 
SSDO 0.83 0.85 0.84 0.84 

Supervised 

RF 0.75 0.77 0.74 0.75 
KNN 0.72 0.75 0.71 0.73 
MLP 0.68 0.77 0.66 0.71 
SVM 0.65 0.77 0.63 0.69 

Unsupervised kNNO 0.77 0.79 0.76 0.77 
iNNE 0.74 0.76 0.73 0.74 

 
 
Table 2.8: Comparative Analysis of the Utilized Transfer Learning 
Methods to Various Baselines Using the Selected Labeled tws from ds. 
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Experiments provide evidence that TL-based methods are more accurate than 

unsupervised, supervised, and semi-supervised alternatives for detecting events from one 

power system based on labeled data of another. 

2.8.8 The Effect of Using Various Quantities of Labeled Data 

Often, obtaining event logs or labeled data for event detection tasks is non-trivial or 

costly. Thus, we studied the effect of using various amounts of labeled source data to assess 

what number of labeled data is adequate to detect events from the EI of the U.S.A. based 

on minimal labeled data from the WI of the U.S.A. (Spatial Split). We selected from Ds 20, 

51, 103, 259, 415, 570, and 726 events to detect events from the target data Dt. We repeated 

the experiments 10 times and reported AUROCs, and their corresponding two-sided 

confidence interval calculated at 95% confidence level, presented in the shaded area of 

Figure 2.7 We selected the best methods from various learning types (i.e., fully supervised, 

semi-supervised, and unsupervised) and compared them with the proposed TL method 

stLocITR.  

Figure 2.7 shows that the TL method outperforms supervised learning on a large 

benchmark since there is a distributional difference between the Ds and Dt. Results show 

that the TL method outperforms baselines with varying quantities of labeled data 

incorporated. The straight line of the unsupervised learning algorithm kNNO with no labels 

incorporated is included for comparison. When sufficient labeled data are incorporated, 

semi-supervised SSKNNO outperforms unsupervised learning. The increase in labeled 

source data is not found to increase the performance of the supervised algorithm, since the 

source and target label sets differ greatly. This study demonstrates that transferring 570 

labeled data instances from the WI are sufficient to detect events from the 3,085 instances 
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of the EI PMU data. We randomly select a proportion of labeled data from Ds to train 

supervised and semi-supervised learning algorithms, whereas the TL algorithm uses the 

most relevant instances from Ds. When comparing sLocITR with a supervised learning 

algorithm, Figure 2.7 shows that selecting the top relevant instances results in not only 

better performance, but a more stable model since sLocITR has a significantly lower two-

sided confidence interval than RF. Table 2.9 illustrates event types when transferring the 

top selected 100, 300, and 500 instances. 

 

 

 

 

 

 

 

 

 

 

 

 

This experiment shows that supervised learning algorithms are infeasible when 

leveraging knowledge from one interconnection to another due to covariate and concept 

shift assumptions and when labels are scarce and difficult to obtain. 

 

Figure 2.7: Comparing the performance of the proposed method 
sLocITR to baselines based on varying number of labeled source 
data evaluated using AUROC and their corresponding two-sided 
confidence interval calculated at 95% confidence level.  
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2.8.9 Misclassified Events  

To further comprehend the errors made by the TL method, a domain expert visually 

inspected the misclassified TWs. The most common occurrence of these TWs is the presence 

of low-frequency oscillations that the algorithm was unreliable in detecting as only 0.3% of 

all events in WI were labeled as oscillations even though these events are more common. 

Low-frequency oscillation events are difficult to capture because their impact is most 

obvious after performing modal analysis.  

2.9 Conclusion 

Since obtaining extensively labeled data can be labor intensive, and requires domain 

knowledge, it may be too costly, especially, when working with big datasets. The results 

of our study show several benefits of the transfer learning approach utilized for event 

detection tasks:  

•  It yields an average increase in AUROC of approximately 13% compared to the 

best performing supervised learning algorithm, and 5% compared to the best 

performing unsupervised learning algorithm based on Temporal Split experiment. 

The significant accuracy improvements were evident when relying on only 2% of 

Table 2.9: Events transferred per category among Top 100, 300, and 
500.  
# Labeled 
Events Line Frequency Transformer Complex Normal 

100 68 15 3 6 8 
300 165 71 3 45 16 
500 269 103 3 103 22  
 
 
FIGURE 3.1: REPRESENTATION OF DATA INPUT TO THE DEEP LEARNING 
MODELS (LEFT), AND TRADITIONAL MODELS (RIGHT).Table 2.9: 
Events Transferred per Category Among Top 100, 300, And 500.  
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labeled data corresponding to 20 characteristic events. Further, it yields an 8% 

increase in AUROC compared with alternative state-of-the-art algorithms based on 

leveraging data from WI to detect events from EI, sLocITR.  

• The performance is less affected by the decrease in the number of available labels, 

and algorithm provides high performance even with only 20 representative labeled 

events used. In comparison, the supervised learning algorithms are infeasible for 

event detection in this domain when labels are very limited.  

• The proposed approach is robust to temporal and locational options for splitting the 

PMU data. Consequently, it is feasible to leverage and transfer knowledge from 

historical PMU data to improve learning on future unlabeled instances, and to 

transfer selected labeled events from a specific set of PMUs to another set of PMUs. 

The reported results provide evidence that identifying a variety of event types, 

including line faults, transformer outage, and frequency events by a model that can 

be deployed to detect events in future PMU data while avoiding challenges faced 

by online learning. Furthermore, reported results show that the proposed transfer 

learning method is more applicable than alternative baselines when reusing labeled 

instances from one power system to detect events from another.  

2.10 Disclaimer  

This report was prepared as an account of work sponsored by an agency of the United 

States Government. Neither the United States Government nor any agency thereof, nor any 

of their employees, makes any warranty, express or implied, or assumes any legal liability 

or responsibility for the accuracy, completeness, or usefulness of any information, 
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apparatus, product, or process disclosed, or represents that its use would not infringe 

privately owned rights. Reference herein to any specific commercial product, process, or 

service by trade name, trademark, manufacturer, or otherwise does not necessarily 

constitute or imply its endorsement, recommendation, or favoring by the United States 

Government or any agency thereof. The views and opinions of authors expressed herein do 

not necessarily state or reflect those of the United States Government or any agency 

thereof.   



58 
 

 

CHAPTER 3 

DEEP LEARNING VS TRADITIONAL MODELS FOR 

PREDICTING HOSPITAL READMISSION AMONG 

PATIENTS WITH DIABETES 

3.1 Introduction 

Hospital readmission is an undesirable, costly outcome for both patients and hospitals 

[42]. Patients with diabetes are at higher risk of readmission within 30 days of hospital 

discharge (30-day readmission) than patients without diabetes [43-45]. Of the nearly 9 

million discharges of diabetes patients annually in the US, [46] almost 2 million are 30-

day readmissions, corresponding to at least $20 billion in hospital costs [47-48]. Identifying 

higher risk patients with diabetes would enable the targeting of interventions to those at 

greatest need, optimizing the cost-benefit ratio.  

We previously published on the development and validation of the Diabetes Early 

Readmission Risk Indicator (DERRITM), a logistic regression (LR) model that predicts the 

risk of all-cause 30-day readmission among patients with diabetes [49]. The DERRITM was 

designed for use at the point of care based on user input of 10 factors. In split-sample 

internal validation, performance was modest (Area Under the Receiver Operating 

Characteristic Curve, AUROC 0.69). In external validation studies, the DERRITM AUROC 

was 0.63 and 0.80 [50,51]. In addition to variable predictive performance, application of 
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the DERRITM requires manual data collection and entry, which are major barriers to its use 

in clinical practice. 

In other published work, we showed that adding variables to the DERRITM substantially 

improves predictive accuracy to an AUROC of 0.82 [52]. This expanded model 

(DERRIplus), however, is not feasible for use at the point of care and included employment 

status, which is not routinely documented in Electronic Health Records (EHRs). Therefore, 

this model cannot be directly translated to an automated, EHR-integrated tool. There is an 

unmet need for a readmission risk prediction tool for patients with diabetes that is both 

accurate and easy to use. 

Over the past few years, multiple machine learning (ML) models for predicting 30-day 

readmission risk of diabetes patients have been published. Several traditional ML modeling 

approaches have been explored, including random forest (RF), k-nearest nearest neighbor, 

naïve Bayes, support vector machine (SVM), AdaBoost, and multilayer perceptron (MLP), 

with a wide range of performance (AUROC 0.53-0.99, accuracy 0.54-0.99) [52-63]. Deep 

learning (DL) models have also been developed for predicting readmission risk of diabetes 

patients, also with variable performance (AUROC 0.61-0.97, accuracy 0.69-0.95), none of 

which exceeded that of the best traditional ML models [64-68]. Two of these studies 

demonstrated a clear advantage of DL approaches over traditional ML models [64,65], and 

two studies found marginal benefit with DL approaches [66,68]. Comparisons of model 

performance across all these studies, however, is limited by the lack of standardized 

reporting of performance characteristics and variable approaches to testing. Therefore, it 

remains unclear if DL models outperform traditional ML models at predicting readmission 

risk for patients with diabetes.  
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Interestingly, all these prior models were developed on the same dataset [69], except 

for the DERRITM and DERRIplus. This publicly available dataset contains hospital 

encounters with a diagnosis of diabetes and a length of stay between 1 and 14 days at one 

of 130 US hospitals between 1999 and 2008. Only 3 International Classification of 

Diseases, Ninth Revision (ICD-9) diagnostic codes per encounter, and only 2 laboratory 

values (blood glucose and HbA1c) were recorded. Lastly, there is no distinction made 

between planned and unplanned readmissions. Thus, even the best of these models may 

not perform as well in patients today. More current, generalizable models are needed. 

Therefore, to address these gaps, the aims of the current study were as follows: 1) To 

develop DL models for the prediction of unplanned, all-cause 30-day readmission, 2) To 

compare performance of the DL models to traditional ML models, 3) To explore model 

performance across a range of prior EHR encounters from 1 to 100 being included in model 

development, and 4) To compare a DL model developed using a subset of laboratory tests 

selected by domain knowledge with a DL model developed using all available laboratory 

tests. All models were developed and tested in a dataset of 2,836,569 encounters of 36,641 

patients with diabetes using demographics, vital signs, diagnostic and procedure codes, 

medications, laboratory tests, and administrative data as defined by the National Patient-

Centered Clinical Research Network (PCORnet) Common Data Model (CDM) [70]. This 

study esablishes the foundational framework and baseline for the subsequent chapters.  
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3.2 Materials and Methods  

3.2.1 Definition of Patient Cohort 

Inclusion criteria were patients with at least one discharge from any of the three Temple 

University Health System hospitals in Philadelphia, PA, between July 1st, 2010, and 

December 31st, 2020, and diabetes defined by at least one of the following: a diagnosis of 

diabetes (ICD-9: 249.xx or 250.xx or ICD-10: E08.xxx through E13.xxx); a Hemoglobin 

A1c (HbA1c) level ≥6.5%, or an order for a diabetes specific medication. Encounters were 

excluded for patient age <18 years, discharge by transfer to another hospital, inpatient 

death, a diagnosis of gestational diabetes (ICD-9: 648.0x or ICD-10: O24.4x), a diagnosis 

of prediabetes (ICD-9: 790.29 or ICD-10: R73.03), or pregnancy (positive beta human 

chorionic gonadotropin laboratory test within 90 days before or after the encounter). 

Patients were sorted into one of 2 groups by readmission status: those who had at least 

one 30-day readmission and those who did not. Among the patients who had a readmission, 

one admission-readmission pair was randomly selected for analysis. Among the patients 

who did not have a readmission, one admission was selected randomly for analysis.  

3.2.2 Definition of Variables and Data Processing 

Tables were extracted from the CDM for each of the following domains: encounters, 

demographics, diagnoses, laboratory tests, medication orders, procedures, and vital signs. 

Because features of a given encounter existed in multiple tables, tables were merged by a 

unique identifier. Merging extracted tables resulted in a sample containing all records for 

a given encounter. This resulted in substantial missingness. Thus, missingness was used as 
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a separate feature. For continuous features, missing data were replaced with 0, while 

categorical features were replaced with a unique category.  

A total of 23 features were used as input to the models: 14 were extracted from the 

CDM and 9 were aggregated. Extracted features were: 1) Encounter type (Inpatient, 

Emergency Department, Observation Stay, Ambulatory Visit, Other Ambulatory Visit, 

Telehealth and Other; 2) Discharge Status (Assisted Living Facility, Against Medical 

Advice, Expired, Home Health, Home/Self Care, Hospice, Nursing Home, Rehabilitation 

Facility, Skilled Nursing Facility; 3) Sex; 4) Hispanic; 5) Race (American Indian/Alaska 

Native, Asian, Black, Pacific Islander, White, other/no information); 6) Tobacco (Current 

user, never user, former user, passive exposure, other/no information); 7) age; 8) Diagnosis 

Clinical Classification System (CCS) codes [70]; 9) Procedure CCS codes [70]; 10) 

Laboratory results; 11) Medication orders within 1 year before each encounter; 12) 

Diastolic blood pressure; 13) Systolic blood pressure; and 14) Body mass index (BMI). 

Aggregated features were: 1) Elixhauser conditions: a binary feature indicating the 

presence or absence of each condition [71]; 2) Duration of admission (length of stay in 

days); 3) number of procedure codes before conversion to CCS code; 4) number of 

diagnosis codes before conversion to CCS code; 5) number of days since the prior 

encounter regardless of encounter type; 6) number of days since the prior inpatient, 

observation or emergency department encounter; 7) number of days since the prior 

encounter of other (non-hospital) encounter types; 8) number of inpatient, observation and 

emergency department encounters before the current encounter; and 9) number of other 

(non-hospital) encounters before the current encounter. ICD-9 codes were converted to 

ICD-10 codes to unify the code format. ICD-10 codes and procedure codes were converted 
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to CCS codes. Based on domain knowledge, medications relevant to diabetes were 

categorized as follows: diabetes medications by class, cholesterol, corticosteroids, renin-

angiotensin system (RAAS) blood pressure agents, and non-RAS blood pressure agents. 

Other medications were ignored. Features found not to be reliable, mostly missing, or 

correlated were removed. Outliers in features such as dates, results, height, weight, BMI, 

and blood pressure (systolic and diastolic) were removed by observing the data 

distributions, percentiles, and domain knowledge. Missing values were treated as another 

category that indicates that a parameter was not collected in relation to the encounter. The 

primary outcome for model prediction (𝒚) was unplanned, all-cause inpatient readmission 

within 30 days of an inpatient encounter discharge as defined by the Centers for Medicare 

& Medicaid Services (CMS) [72]. Based on the CMS definition, only the first readmission 

within 30 days was analyzed.  

To prepare the data for machine learning models the following data preprocessing 

techniques were performed. Categorical features were one hot encoded; continuous and 

discrete features were normalized using min-max normalization techniques [73], defined 

as:  

x: =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥) 
(3.1) 

 

There were different numbers of recordings in each encounter for each of the following 

features. Thus, the following statistical values were computed instead. For diastolic and 

systolic blood pressures, we calculated minimum, maximum, and mean values. For BMI, 

minimum, maximum, mean, and coefficient of variance were used. These statistical values 

where normalized and used as features. Moreover, the number of features differed at 
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encounters due to the different number of laboratory tests, diagnoses, and procedures 

because an encounter could have multiple diagnosis and/or procedure codes, or none. To 

remedy this and unify the dimensionality of feature vectors, the following data 

representation techniques were used to enhance the learning of the models. For diagnosis 

and procedure codes, we used the representation of one-hot encodings, where each value 

was set to 0 or 1, indicating whether a diagnosis/procedure code existed or not for each 

encounter. We modified this data representation technique slightly for laboratory tests 

because each test had an associated result. Hence, we replaced 1, which indicated a code 

exists, with the laboratory result. Laboratory results were normalized using Equation 1. 

Because results were of different units and measures, when normalizing laboratory results, 

we considered the minimum and maximum for each laboratory code separately. This 

technique created a high dimensional sparse array due to the many unique codes. Then, we 

utilized Singular Value Decomposition (SVD) algorithm to learn an embedding and 

reduced dimensionality. SVD was used since it does not assume a square matrix as an input 

and better for sparse data [74]. Laboratory tests were reduced to 50 components, procedure 

codes were reduced to 45 components, and diagnosis codes were reduced to 25 

components. Different numbers of components were explored, and the sum of variance 

ratio was observed to determine the optimal number of components to reduce 

dimensionality. All features were concatenated in a feature vector for each encounter. SVD 

was applied on each encounter separately to reduce and unify dimensions; dimension of 

encounters was reduced to 50 features per encounter. Then, we concatenated all encounters 

for a given patient in a feature vector ordered sequentially by admission date. The class 
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distribution was 27,511 patients without readmission (negative class) and 9,130 patients 

who were readmitted (positive class).  

3.2.3 Experimental Approaches  

We conducted extensive experiments using the EHR data to address the following 

objectives: 

• Predict whether patients with diabetes will be readmitted within 30 days.  

• Compare the performance of the utilized DL methods with several traditional 

models. 

• Analyze how many prior encounters (i.e., historical data) within 2 years is optimal 

to predict readmission. 

• Evaluate the effects of incorporating all laboratory tests in the data versus learning 

from a subset of tests chosen by a domain expert.   

In this study, DL models take as an input a 3-dimensional tensor 𝑝	x	𝑒	x	𝑓 to represent 

f features for each of e encounters for p patients. In contrast, in traditional models, data is 

typically represented as a 2-dimensional matrix, with all features of all encounters 

corresponding to a single patient concatenated in a long feature vector. The dimensionality 

of each encounter was reduced and unified to 50 features, hence, in a deep model 𝑓 is of 

size 50. In a traditional model feature vector consists of all encounters and therefore is of 

size 𝑒	x	50. Patients have different numbers of encounters resulting in a nonuniform 

dimensions; hence, feature vectors were padded with 0s to achieve a unified form. Data 

representation used as input for DL and traditional models is illustrated at the left and right 

panels of Figure 3.1, respectively.  
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To model heterogenous sequential data, we developed 2 variants of DL models and 

compared both versus several traditional models used as baselines. DL models used in our 

study were: 1) 1-way Long Short-Term Memory (LSTM) networks, which are a variant of 

Recurrent Neural Network (RNN) that is capable of learning order dependence in 

sequential data [73]; and 2) Bidirectional Gated Recurrent Unit (GRU), which is another 

variant of RNN. Traditional models used as baselines were: 1) Random Forest (RF), an 

ensemble method for classification and regression; during training, it constructs multiple 

decision trees [71]; RF frequently achieves the state-of-the-art performance in existing 

literature on predictions using medical data. 2) Multi-layer Perceptron (MLP), a simple 

neural network model that does not account for temporal information. MLP consists of 

multiple layers of perceptron and performs backpropagation learning and utilizes a non-

linear activation function [72]. 3) Logistic Regression (LR), an interpretable model used 

Figure 3.1: Representation of data input to the deep learning models (left), 
and traditional models (right).  
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frequently in existing literature of readmission predictions and applied on medical data; 

and 4) AdaBoost, which is less prone to overfitting as its input parameters are not jointly 

optimized. The DL models were implemented using “Keras” Python libraries, a high-level 

API of “TensorFlow”. “Scikit-learn” library was utilized to implement traditional models 

in Python.  

The architecture of the proposed model, LSTM, comprises 128 neurons, a sequential 

layer, a reshape layer that was used to reshape the input to 3-dimensional tensor, and a 

masking layer with a mask value of 0 used to skip the timesteps for which the data were 

missing. Since padding with 0s was performed to unify dimensions, the masking layer was 

utilized to avoid any computation with the missing values in all layers following the 

masking layer, hence, missing values were not accounted for during learning. Additionally, 

a dropout was added between hidden and output layers. Utilizing this technique to 

randomly select a given percentage to drop, which is a common regularization technique 

that assist the model learn general pattern in data.  

RNN is a variant of neural networks, which consist of hidden neurons that are capable 

of analyzing temporal EHR data [73]. RNN comprises of the same structure as the basic 

neural network, but neurons in the same layer are connected, allowing a neuron to learn 

from the same neighboring layers, in addition to learning from outputs of the previous 

layers and the input data. Thus, RNN neurons include two sources of inputs, the present 

and the recent past. The process of learning is defined as:  
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𝒃𝒕 = 𝐑𝐞𝐋𝐔	(𝒃 +𝑾𝒉𝒕3𝟏 + 𝑼𝒙𝒕) (3.2) 

𝒚Y = 𝐬𝐢𝐠𝐦𝐨𝐢𝐝`𝒃 +a  
𝒕

𝑽𝒃𝒕d. 
(3.3) 

To compute value 𝑏! of a hidden neuron, 𝑡, a non-linear transformation function, ReLU, 

is applied to weighted  𝑊 value of its left hidden neuron 𝑏!"# and the weighted 𝑈 value of 

its input 𝑥!. Predictions are computed using a sigmoid function of weighted 𝑉 sum of all 

hidden neurons with added bias 𝑏. The drawback of RNN is that it suffers from the 

vanishing gradient problem, meaning that weights remain unchanged making it difficult 

for the model to convergence, hence, the model struggles to learn. To solve this, an LSTM 

layer was introduced in which sigmoid neurons of RNN are replaced with more complex 

short-term memory structure. LSTM shares the same weights across layers, which reduces 

the numbers of parameters that the network compute. The GRU is an alternate solution for 

a vanishing gradient problem. It substitutes the simple neuron with a gated unit, which has 

fewer parameters than the LSTM neurons, because it lacks an output gate [74]. 

In this study, extensive experiments were conducted to determine how many prior 

encounters is optimal to predict readmission. We conducted experiments by considering 𝑥 

encounters within the prior 2 years, where 𝑥 ∈ {1, 2, 4, 8, 15, 30, 60, 80, 100}. The average 

number of encounters per patient in this period was 21, and the 90th percentile was 56. The 

variation in encounter number resulted in a non-unified length of feature vectors. Thus, in 

an experiment that considers up to 60 encounters, feature vectors lacking data were padded 

with 0s to ensure that feature vectors for all patients represent 60 encounters. The 

hypothesis of this study was that DL models outperform traditional models on a large 
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benchmark, hence, a comparative analysis with a variety of evaluation metrics was 

performed to evaluate and compare the DL algorithms to the baseline traditional models. 

Moreover, to examine the importance of domain knowledge, we trained and tested the 

models on data with all laboratory studies included in the EHR dataset and compared with 

models trained and tested with a subset of laboratory studies based on prior papers 

reporting association with readmission (serum albumin, anion gap, arterial pH, bilirubin, 

blood urea nitrogen, carbon dioxide, serum creatinine, blood glucose, hematocrit, lactate, 

PaCO2, PaO2, serum sodium, troponin-I, venous pH, and white blood cell count) [52,75]. 

Using only a subset of laboratory studies may be beneficial by reducing dimensionality.  

Patients were sorted randomly into 3 nonoverlapping subsets, where 70% were used 

for training, 10% for validation, and 20% for testing. We employed cross-validation 

techniques to find the hyperparameters that yield the best performances. For LSTM and 

GRU, we varied the number of neurons, dropout, batch size, and the number of epochs 

using a grid search. Following the literature, in conducted experiments dropout percentage 

varied from 0 to 50, and the number of neurons varied from 32, to 512. We selected a 

dropout of 0.1, 128 neurons, a batch size of 512, and 16 epochs for LSTM, and 12 epochs 

for GRU, since bidirectional GRU converges faster than 1-way LSTM. Sigmoid activation 

function and Adam optimizer were used. Traditional models were fine-tuned as well and 

the hyperparameters that yielded best performances were chosen.  

3.2.4 Performance Metrics and Analysis  

The performance of the methods used in our study was evaluated by five common 

metrics: Area Under the Receiver Operating Characteristic Curve (AUROC), Recall (also 
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known as Sensitivity), Specificity, F1-score, and Accuracy. The formal definitions of these 

evaluation metrics are common and can be easily found [75]. 

Statistical significance analysis was performed to evaluate the stability and significance 

of the proposed model’s performance. We randomly selected different patients for training 

and testing and repeated the random selection 10 times to generate mean performance 

measures and 95% confidence intervals. LSTM was compared to the best performing 

traditional model (RF) by t-test. A p-value <0.05 was considered statistically significant. 

The Temple University Institutional Review Board approved the protocol. 

3.3 Results 

A total of 36,641 patients with 2,836,569 encounters were analyzed. There were 9,130 

patients with at least one readmission and 27,511 without a readmission. Influence of the 

number of encounters within the prior 2 years was evaluated for five prediction models 

where	𝒙 encounters were considered for each model, and experiments were repeated for 

𝑥 ∈ {1, 2, 4, 8, 15, 30, 60, 80, 100}. Figure 3.2 presents the AUROC of the proposed model, 

LSTM, versus traditional models across various numbers of encounters. Bidirectional GRU 

was also performed but omitted because it achieved an identical AUROC to LSTM. LSTM 

outperformed traditional models on a large benchmark across all experiments with different 

number of encounters. On average, the LSTM models yielded an increase in AUROC of 

0.06 when compared to the best performing traditional models, RF. Experiments show that 

predicting readmission based on a single prior encounter is not sufficient and yielded much 

lower performance (0.7 using the DL models and 0.68 using the best performing traditional 

model). DL models reached a plateau when trained using data from 30 encounters with 
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minimal improvement thereafter. The DL algorithm yielded 0.07 increase in AUROC 

versus best performing traditional model RF when using the optimal number of encounters, 

80. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 shows the performance of LSTM and traditional models using all laboratory 

tests from up to 80 of the most recent encounters in the prior 2 years. Overall, the 

confidence intervals were very small (<0.02), indicating a high degree of precision around 

the means. The proposed method, LSTM, obtained an average AUROC of 0.79 with a 95% 

CI of 0.001. The p-value obtained by comparing the LSTM AUROC to the second best-

Figure 3.2: The proposed Deep Learning (DL) method’s performance compared 
to baselines evaluated using the area under receiver operating characteristic 
(AUROC) metric across varying numbers of prior encounters. Results show that 
DL methods outperform traditional methods on a large benchmark, and 
improvement in AUROC reaches a plateau at 80 encounters. Results show that 
using historical data of up to 30 encounters might be sufficient, 80 is optimal, 
and ≤15 yields poor performance.  

LSTM - Long Short-Term Memory; RF - Random Forest; LR - Logistic 
Regression; MLP - Multi-Layer Perceptron. 
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performing model (RF) was <0.0001, hence, LSTM performance was significantly greater 

than the traditional models. 

Table 3.1: Performance of LSTM and traditional models using all laboratory tests from up 
to 80 of the most recent encounters in testing cohort of 7,329 patients with diabetes mean 
+/- 95% confidence interval (CI) are based on 10 runs. 

Model 
N=7,329 

AUROC 
+/-CI 

Recall Specificity F1-score Accuracy 

LSTM 0.79 ±0.001 0.81 ±0.002 0.94 ±0.010 0.80 ±0.003 0.81 ±0.002 

RF 0.72 ±0.004 0.76 ±0.001 0.97 ±0.019 0.71 ±0.002 0.76 ±0.001 

AdaBoost 0.70 ±0.000 0.76 ±0.000 0.94 ±0.000 0.73 ±0.000 0.77 ±0.000 

LR 0.69 ±0.000 0.77 ±0.000 0.91 ±0.000 0.75 ±0.000 0.77 ±0.000 

MLP 0.69 ±0.006 0.75 ±0.009 0.87 ±0.018 0.74 ±0.006 0.75 ±0.009 

LSTM - Long Short-Term Memory; RF - Random Forest; LR - Logistic Regression; MLP 
- Multi-Layer Perceptron. 

 

LSTM models achieved a Recall/Sensitivity of 0.81, indicating that performance was 

fairly strong at predicting true positives, (i.e., correctly classifying patients with 

readmissions). All models used in our study achieved a very good specificity, (i.e., the true 

negative rate). Thus, the trained models performed well at predicting patients who are not 

likely to be readmitted. LSTM achieved an F1-score of 0.80, indicating very good ability 

to distinguish between patients who will be readmitted or not.  

To determine whether domain knowledge about laboratory studies is helpful, we 

conducted two different experiments where we trained and tested the model based on a 

subset of 16 unique laboratory studies selected by domain knowledge versus using all 981 

unique laboratory studies included in the data.  One Hot encoding techniques were utilized 

and modified to associate the laboratory result with each laboratory code. A long unique 

array of laboratory codes 𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏_𝑐𝑜𝑑𝑒𝑠 was created. For each encounter, an array of 
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zeros 𝑙 of the same length as 𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏_𝑐𝑜𝑑𝑒𝑠 was created. 𝑙 consisted of the result at 

the same index of each laboratory test in 𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏_𝑟𝑒𝑠𝑢𝑙𝑡𝑠, to associate the result to a 

given laboratory code. An encounter without laboratory results would have an 𝑙 of zeros, 

indicating that no laboratory test was conducted for a given encounter. Since most 

encounters contained <3 laboratory codes, this resulted in a sparse array. SVD was 

therefore utilized to learn an embedding of a sparse feature vector and reduce 

dimensionality. The Receiver Operating Characteristic (ROC) Curves of the LSTM models 

based on all laboratory studies or selected laboratory studies were identical (0.79, Figure 

3.3).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Receiver Operating Characteristic (ROC) 
curves of the LSTM models using all laboratory studies or 
16 selected laboratory studies. 
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3.4 Discussion 

In this retrospective cohort of 36,563 patients with diabetes, DL models outperformed 

RF, MLP, AdaBoost, and LR models at predicting unplanned, all-cause 30-day 

readmission. The optimal LSTM model yielded an AUROC of 0.79 and accuracy of 0.81, 

indicating very good performance. Experiments designed to reveal the relationship 

between the number of prior encounters and model performance show that AUROC of the 

LSTM models increased as encounter number increased and plateaued at 30 encounters. 

Performance of the traditional models increased to a lesser extent up to prior encounter 

numbers of 15 or 30, then either plateaued (RF) or declined (MLP, AdaBoost, LR) as 

encounter number increased. Finally, an LSTM model that included a set of 16 laboratory 

tests selected by domain knowledge yielded equivalent performance to an LSTM model 

that included all available laboratory tests.  

In our study, the DL models performed better than the traditional models. We are aware 

of 4 studies that compared DL models to traditional models for predicting readmission risk 

of patients with diabetes. Two of these studies demonstrated a clear advantage of DL 

approaches over traditional ML models [64,65], while two studies found marginal benefit 

with DL approaches [66,68]. Performance of these DL models was variable with AUROC 

0.61-0.97 and accuracy 0.69-0.95, none of which exceeded that of the best traditional ML 

models, which reported AUROC as high as 0.99 and accuracy of 0.99 [64,68]. 

Comparisons of model performance across all these studies, however, is limited by the lack 

of standardized reporting of performance characteristics and variable approaches to testing. 

Our study considered with the prior studies that directly compared DL to traditional ML 

models, suggests that DL approaches usually yield better performance in this population.   
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We are unaware of other papers that have explored the relationship between the number 

of prior encounters and readmission risk model performance in patients with diabetes. In 

related work, however, one paper examined how the performance of models for predicting 

readmission risk in morbidly obese patients varied as the number of hospitalizations 

increased from a minimum of 2 up to 5 [76]. AUROC increased from 2 to 3 hospitalizations 

then plateaued. In another broadly related study, we found that the performance of LR 

models for predicting readmission risk of patients with diabetes tended to increase as 

sample size increased from 2,000 up to 6,000, then plateaued [77]. This body of research 

suggests that experimentation across a range of encounter number and sample size may 

reveal thresholds that could optimize data analysis, balancing information quantity with 

dimensionality.  

We are also unaware of other studies that have compared readmission risk models using 

laboratory data selected by domain knowledge with all laboratory data available in patients 

with diabetes. There is a tradeoff between including all laboratory data, which results in 

higher dimensionality and more computationally expensive models and involving a domain 

expert to select a subset of laboratory data, which can be costly and less feasible. Like the 

number of prior encounters beyond which model performance did not improve, the finding 

that performance of the model with the laboratory data subset was equivalent to the model 

with all laboratory data suggests that there is a similar plateau for this domain. Whether or 

not this phenomenon generalizes to other patient populations should be investigated.   

The presented LSTM models, which we are calling eDERRITM, are an extension of our 

prior models, the DERRITM and DERRIplus [49,52]. In terms of AUROC, the eDERRITM 

model performed better than the DERRITM but worse than the DERRIplus. Unfortunately, 
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the performance of 3 models cannot be directly compared in the current study because the 

dataset does not include zip code, employment status, or payer information. Unlike the 

DERRITM and DERRIplus, the eDERRITM models are developed with generally available 

EHR data such as demographics, vital signs, diagnostic and procedure codes, medications, 

laboratory tests, and administrative data as defined by the PCORnet CDM [70]. The CDM 

standardizes the abstraction of EHR data, enhancing the generalizability and scalability of 

models utilizing it. We plan to translate the eDERRITM into an application embedded in an 

EHR system that will automatically generate readmission risk predictions for hospitalized 

patients with diabetes.   

In addition to the generalizability of the CDM-based dataset, the current study has other 

notable strengths. The dataset is sampled from patients with a hospitalization between 

7/1/2010 and 12/31/2020, which is much more recent than the datasets used for other 

currently published readmission risk models in diabetes patients. Also, in contrast to the 

most used dataset, which only included hospital encounters with an associated diagnosis 

of diabetes and a length of stay less than 15 days, the current dataset included all encounter 

types regardless of the associated diagnosis, capturing both inpatient and outpatient data. 

Lastly, the sample size of 36,563 patients with 2,836,569 encounters provided ample data 

to develop DL models and conduct experiments up to 100 prior encounters.   

There are some limitations worth acknowledging. The data were sampled from a single 

urban, academic health system. Therefore, generalizability of the models to other 

populations is unknown and requires testing. The lack of both patient and hospital zip code 

precludes estimating the distance between a patient’s home zip code and the hospital, 
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which is known to be associated with readmission risk [49,52]. Lastly, readmissions to 

other hospitals were not captured. 

3.5 Conclusion 

An LSTM model with very good performance predicting unplanned, all-cause 30-day 

readmission among patients with diabetes was developed and internally tested. LSTM 

models outperform traditional models at predicting readmission in this population. LSTM 

model performance initially increases as the number of prior encounters increases then 

plateaus. Carefully selected laboratory features can yield predictive models with 

performance equal to that of models based all available laboratory studies. Additional study 

is needed to externally validate the model.   

This chapter establishes the foundational framework for the subsequent chapters. The 

primary metric employed was the AUROC, known for its effectiveness in datasets with 

balanced class distribution. However, given its limitations in scenarios of significant class 

imbalance, the focus is redirected towards the F1 score in the later chapters of the study. 
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CHAPTER 4 

KNOWLEDGE TRANSFER WITH DEEP ADAPTATION 

NETWORK FOR PREDICTING HOSPITAL 

READMISSION 

4.1 Introduction  

Previously, we published a risk deep learning (DL) model based on electronic health 

records (EHR) data collected from an urban academic hospital that predicts the risk of 

unplanned, 30-day readmission among patients with diabetes. We used a sequential model, 

long short-term memory (LSTM). Performance was adequate (F-1 Score 0.80), and results 

showed that this LSTM model can capture temporal dependencies of the EHR data [1].  

Performant readmission models based on DL techniques require large, high-quality 

training data to perform optimally. Utilizing EHR data from a source hospital system to 

enhance prediction on a target hospital using traditional approaches enlarge dataset bias 

which might deteriorate performance due to distributional difference of the source and 

target datasets, resulting in statistically unbounded risk for the target tasks [79]. Traditional 

approaches are designed for a specific data type, and not capable of generalizing to other 

temporal data. 

Transfer learning approaches have been explored for hospital readmission with the 

objective to improve learning at the target population by exploiting information from a 
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related source population. In [80, 81], classical transfer learning was employed to address 

data scarcity using a relevant source dataset. In [82], classical transfer learning techniques 

were explored as to what extent can transfer learning benefit learning on target tasks by 

fine-tuning pre-trained models in the healthcare domain. However, there is still a need for 

an end-to-end model to perform cross-domain spatial knowledge transfer and predictive 

learning in a unified learning framework while capturing temporal dependencies for 

hospital readmissions.  

In this paper, we propose an early readmission risk temporal deep adaptation network, 

ERR-TDAN, to perform cross-domain spatial knowledge transfer from EHR data of 

different sites and perform predictive learning. Deep Adaption Network (DAN) utilizes 

deep convolutional neural network (CNN) and generalizes it to the domain adaptation 

setting through learning transferable latent features between source and target domains for 

computer vision tasks [79]. Motivated by the success of DAN in numerous transfer learning 

tasks in computer vision, we employed the idea of learning transferable features of 

temporal data by matching the source and target domain distributions in the latent feature 

space. We tailored it for hospital readmission using EHR data and optimized for the target 

task.  

The aims of this study were as follows: 1) To develop a hospital readmission 

framework using EHR data that transfers knowledge between a rural academic hospital and 

an urban academic hospital to enhance predictions on the urban academic hospital.  2) To 

study the optimal amount of retrospective EHR data needed for future predictions. 3) To 

study the duration of optimal performance. Experiments conducted show that ERR-TDAN 

can enhance hospital readmission prediction.  
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4.2 Deep Adaptation Network  

Domain adaptation is a form of transfer learning commonly used in computer vision to 

address the problem of learning using data from two related domains but under different 

distributions [79, 83]. Domain adaptation can help improve the performance of a model by 

learning transferable features to minimize the gap between the source and target domains 

in an isomorphic latent feature space. DAN generalizes deep CNN for computer vision 

applications to utilize domain adaptation techniques to learn transferable feature 

representation in the latent embedding space [79]. Motivated by the success of DAN in 

various computer vision tasks [84-86], we utilized the idea of DAN for transferring cross-

domain spatial knowledge tailored for predicting hospital readmission on EHR data and 

optimized to enhance predictions on the target, rather than generalizing on both domains. 

A direct comparison to DAN is not applicable since DAN is modified for computer vision 

tasks using CNN. CNNs capture spatial correlations and are unable to capture temporal 

correlations of EHR data [79]. Thus, we employed the idea of DAN and tailored it for 

hospital readmission on EHR data to capture temporal dependencies using LSTM layers, 

establish cross-domain knowledge transfer, and optimized it for the target task using a 

customized loss function. 

4.3 The Proposed ERR-TDAN Framework  

An early readmission risk framework based on temporal deep adaptation network was 

developed to enhance prediction on the target data collected from Temple University 

Hospital System (TUHS) by establishing spatial knowledge transfer from a source data 

with higher quality features collected from Penn State University Hospital System 
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(PSUHS). The model was developed using data as defined by the National Patient-

Centered Clinical Research Network (PCORnet) Common Data Model (CDM) [70]. 

We applied a hospital readmission LSTM model that we previously published using 

EHR data collected from TUHS [1]. When trained on TUHS data and tested on the 

following year TUHS data this model F-1 score was 0.80. We trained and tested the same 

method on EHR data collected from PSUHS, where performance was better (F1-score 

0.91). The 11% increase in F-1 score was achieved since EHR data from PSUHS contained 

fewer missing data, denser features, and less erroneous data. However, training and 

evaluating the same method on data from both domains affected the performance (F-1 score 

0.79) since the model struggled to generalize and converge due to training data drawn from 

different distributions. To address this limitation, we employed the idea of DAN, tailored 

for hospital readmission on EHR data that captures temporal correlations and enhances 

target prediction through learning transferable features via domain-specific fully connected 

linear layers to explicitly reduce the domain discrepancy. DAN generalizes on both 

domains for computer vision tasks, whereas in our study we tailored this technique for 

hospital readmission using EHR data and optimized on the target task, instead of 

generalizing on both domains. To accomplish this, the hidden embeddings of the domain-

specific layers are embedded to a reproducing kernel Hilbert space through maximum 

mean discrepancy (MMD), to match the mean embeddings of two domain distributions. 

The model was optimized via a customized loss function. 
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Figure 4.1 presents the proposed framework, ERR-TDAN which consists of the 

following main processes:  

1) LSTM’s input was data from both source and target to learn hidden representation 

to map source and target data to a common embedding while capturing temporal 

dependencies of the EHR data.  

2) To match the embedding distributions of the source and target domains, deep 

adaptation network scenario is established through fully connected linear layers 

constructed to match the mean embeddings of different domain distributions. The 

hidden representation is embedded through a reproducing kernel Hilbert space to 

transfer knowledge and bridge the gap between two distributions via MMD to 

reduce domain discrepancy.  

3) The matched embeddings are then passed to a fully connected layer with a sigmoid 

function to classify if a patient is likely to be readmitted or not. In backpropagation, 

we optimize the model on the target domain using a customized loss function that 

combines the domain discrepancy loss and binary cross entropy loss. The following 

sections illustrate the framework in more detail. 
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4.3.1 Representation Learning of Temporal EHR Data with LSTM 

Initially, we utilized LSTM with two recurrent layers to form a stacked LSTM to learn 

hidden data representation embedded to a common latent feature space of the temporal 

EHR data of the source and target domains. LSTM, a sequential model capable of capturing 

temporal correlations, is commonly used for sequential tasks and is proven to be effective 

for hospital readmission using EHR data [1, 87]. LSTM takes as an input a 3-dimensional 

tensor of stacked source and target data. LSTM is structured based on basic neural network, 

but neurons of the same layer are connected, enabling a neuron to learn from adjacent 

layers, in addition to learning from outputs of the previous layers and the input data. Hence, 

neurons include two sources of inputs, the recent past and the present. A dropout of 0.1 

Figure 4.1: The proposed method framework, ERR-TDAN. It comprises of 
three main processes. 1) LSTM layers learn hidden representation of the input 
of both source and target domains. 2) Deep adaption network structure with 
fully connected layers is constructed to match the mean embeddings of 
different domains drawn from different distributions. 3) The matched 
embeddings are then passed to a fully connected layer with sigmoid function 
for binary classifications. The model is optimized through a customized loss 
function that penalizes on domain discrepancy of both source and target, and 
task loss to optimize for the target task.  
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was applied between the first and second LSTM layers. To add nonlinearity, we utilized 

ReLU activation function on the output of LSTM (embeddings), formulated as follows: 

 

𝒃𝒕 = 𝐑𝐞𝐋𝐔	(𝒃 +𝑾𝒉𝒕3𝟏 + 𝑼𝒙𝒕) (4.1) 

 
 
4.3.2 Learning Transferable Features and Predictions  

The output 𝑏# is then fed to domain-specific fully connected linear layers with deep 

adaptation network setting. Domain discrepancy is reduced by matching the mean 

embeddings of the source and target distributions. Hidden representation of the linear 

layers embedded through a reproducing kernel Hilbert space to bridge the gap between two 

distributions and transfer knowledge via MMD. MMD measures the distance of the source 

and target distributions in the embedding space. MMD distance measure was originally 

used to determine whether two samples are drawn from the same distribution and measures 

how distant the samples are [88]. In this study, we utilized MMD to learn transferable 

features between source and target domains to enhance prediction on the target. MMD was 

utilized as one of the two components of the loss function to minimize the domain 

discrepancy. The loss function is explained in more detail in the next section. MMD is 

defined as: 

𝑴𝑴𝑫𝒍𝒐𝒔𝒔(𝓓𝓢, 𝓓𝓣) =
∥∥
∥∥
∥𝟏
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𝟐

, (4.2) 

where 𝒟𝒮 and 𝒟𝒯denote source and target data respectively, 𝜙 denotes the Gaussian kernel 

function, ℋ denotes the Hilbert space, and 𝑛 and 𝑚 denote the number of observations of 
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the source and target sets, respectively. The temporal embeddings of the LSTM are then 

fed into fully connected layers with MMD loss to measure the distance between two 

distributions and reduce domain discrepancy.  

Prediction. The matched embeddings are then fed into a linear layer with output of 1 

with sigmoid activation function for predictions ŷ [1].  

4.3.3 Model Optimization via a Customized Loss Function 

We tailored the loss function for hospital readmission on the target domain by 

combining Binary Cross Entropy (BCE) loss to measure the error of reconstruction, applied 

on the target task only, and MMD loss applied on both source and target to reduce domain 

discrepancy. Since the aim of this study is to enhance prediction on the target domain using 

higher-quality source data, we reduced the weight of the MMD loss via the penalty 

parameter 𝛾 and optimized the loss on the target domain. Loss function used in the 

proposed ERR-TDAN model is defined as follows: 

𝑩𝑪𝑬𝒍𝒐𝒔𝒔 = (𝒙, 𝒚) = 𝑳 = {𝒍𝟏, … , 𝒍𝑵}L, 𝒍𝒏

= −𝒘𝒏[𝒚𝒏 ⋅ 𝐥𝐨𝐠 𝒙𝒏 + (𝟏 − 𝒚𝒏) ⋅ 𝐥𝐨𝐠(𝟏 − 𝒙𝒏)],	

𝑻𝑶𝑻𝑨𝑳𝒍𝒐𝒔𝒔 =
𝟏
𝑳𝑵
∑  𝑳𝑵
𝒕D𝟏 (𝑩𝑪𝑬𝒍𝒐𝒔𝒔(𝒙, 𝒚) + 𝜸	𝑴𝑴𝑫𝒍𝒐𝒔𝒔(𝒅𝓢, 𝒅𝓣)), 

(4.3) 

where 𝑥 and 𝑦	are the predictions and ground truth for a given batch respectively.	𝐿	denotes 

loss.	𝑁 is the batch size, 𝑤 is a rescaling weight given to the loss of each batch element, 𝛾 

is the penalty parameter of domain discrepancy. To optimize for the target task, we 

determined empirically that 0.5 value of 𝛾 is appropriate.   
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4.4 Data 

We collected data from an urban academic hospital, TUHS, and a rural academic 

hospital, PSUHS, between July 1st, 2010, and December 31st, 2020. We extracted data on 

encounters, demographics, diagnosis, laboratory tests, medication orders, procedures, and 

vital signs. in the cohort of patients with diabetes was defined as previously described [1]. 

Data preprocessing, handling of missingness of data, different number of recordings per 

encounter, learning embeddings to reduce dimensionality, address sparse feature vectors, 

and data representation were performed as [1] and as presented in Chapter 3. Additional 

features were aggregated to assist with learning temporal dependencies, including duration 

of stay in days, and number of days since the prior encounter. In addition to the 23 features 

outlined in Section 3.2.2, two more features were derived and incorporated into the model, 

bringing the total number of features utilized to 25. The two features are income quintile, 

and distance between the hospital and patient address.  

We obtained a total of 1,421,992 encounters corresponding to 20,471 patients for 

PSUHS, and a total of 3,023,267 encounters corresponding to 37,091 patients for TUHS. 

The class distributions were as follows. TUHS: 28,107 for the negative class (no 

readmission), and 8,984 for the positive class (readmitted within 30-days); PSUHS: 18,775 

for the negative class and 1,696 for the positive class.  

The characteristics of the samples from the two sites were different. For instance, 4.9% 

of patients were Hispanic at PSUHS, whereas TUHS contained large Hispanic population 

of 22%. Other differences included race and tobacco use. The numbers of unique ICD-9 

and ICD-10 codes, and vital recordings at PSUHS were larger than that at TUHS.  
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Patient encounters were sequentially ordered by admission date and represented in a 3-

dimensional tensor for the LSTM model, where each patient’s data is represented as a 2-

dimensional matrix in which features of each encounter are represented in a 1-dimensional 

array while a second dimension represents different hospitalizations of that patient. The 

third dimension is used to encode hospitalization information of different patients. 

4.5 Experimental Setup and Results  

We hypothesize that it is feasible to enhance readmission predictions on target data of 

TUHS using a source data from a relevant domain under different distribution. In this 

section, we conduct extensive experiments to evaluate the performance of the proposed 

model, ERR-TDAN and compare it to baselines.  F-1 score, precision, recall (sensitivity), 

specificity, and accuracy were used to evaluate the model’s performance [75]. We 

randomly selected different patients for training and testing. Experiments were iterated 10 

times; results were presented based on the mean and two-sided 95% confidence interval 

(CI). Moreover, we address the following research questions to evaluate optimal 

performance of the model. 

4.5.1 Can we enhance readmission risk prediction for a target hospital by utilizing data 

from another hospital?  

We randomly split TUHS and PSUHS data to 70% training, 10% validation, and 20% 

testing. Then, we concatenated training data of both domains, and fed to the ERR-TDAN. 

We tested the model on TUHS using 7,418 patients, of whom 1,557 had a readmission.  

Table 1 presents a comparative analysis to evaluate the proposed method, ERR-TDAN 

compared to alternative baselines. Table 1 shows that ERR-TDAN yielded a 5% increase 
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in F1-score when compared to a model we previously published for hospital readmission 

on EHR data collected from TUHS, and 3% increase using a generalized version of ERR-

TDAN (G-ERR-TDAN) of the domain adaptation framework with MMD loss without 

optimizing on the target task. G-ERR-TDAN results provide evidence that optimizing on 

the target task enhances target’s predictions is superior to generalizing on both domains. 

Table 4.1: Performance of the proposed method, ERR-TDAN and three alternatives tested 
on the target domain (TUHS) enhanced by a related source data (PSUHS). The average F1, 
recall/sensitivity, specificity, and accuracy and their corresponding two-sides 95% 
confidence interval (CI) on 10 experiments on training and testing patients’ data selected 
completely at random.  

Model Train F1-score Recall Specificity Accuracy 
[1] TUHS 0.80 ±0.003 0.81 ±0.002 0.94 ±0.010 0.81 ±0.002 

LSTM TUHS + PSUH 0.79 ±0.007 0.81 ±0.006 0.95 ±0.008 0.81 ±0.005 
G-ERR-TDAN TUHS + PSUH 0.82 ±0.001 0.81±0.001 0.92 ±0.002 0.81 ±0.001 
ERR-TDAN TUHS + PSUH 0.85 ±0.002 0.84 ±0.002 0.91 ±0.003 0.84 ±0.001 

 
 
4.5.2 What is the retrospective optimal amount of EHR data needed for future 

predictions? 

We conducted extensive experiments to find the optimal amounts of patient’s historical 

data needed for the model to perform optimally. Our objective was to determine a size of 

training data so that further enlargements do not improve predictions of hospitalization 

risk. The model was trained on varying 𝑡 and tested on 𝑡 + 𝑥, where 𝑡 denotes a period in 

the past and 𝑡 + 𝑥 denotes a period in the future. For a fair comparison, 𝑡 + 𝑥 was a fixed 

test dataset of 2020, and trained on varying training sets of 𝑡, including 6 months (July-

December of 2019), 1 year (2019), 2 years (2018-2019), 3 years (2017-2019), 4 years 

(2016-2019), and 5 years (2015-2019) look-back time. For instance, training on 2019, and 
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testing on 2020 (1 year look-back) to test if learning on 1 year of historical EHR data from 

the past is sufficient to perform optimally.  

Figure 2 (left) shows that 1 year of historical data are optimal to predict readmission 

since it yielded the highest F1-score with least amounts of data required.   

4.5.3 How often do we need to retrain the model to achieve optimal performance? 

Concept and covariate shifts are one of the major reasons model performances degrade 

overtime. Monitoring data drift helps avoid performance degradation. Thus, we conducted 

experiments to study the lifetime of the proposed model. Based on the optimal look-back 

time of question 2, we trained the model on EHR data collected in 2015 and tested it with 

1, 2, 3, 4, and 5 future gaps. For instance, training on data collected in 2015 and testing in 

2020 to experiment if the model’s performance would degrade after 5 years. We iterated 

this over various models trained on 1 year of data collected in 2015, 2016, and 2017 and 

tested for readmissions on future instances.   

Figure 2 (right) shows that F1-score decreased over time due to data drift. Performance 

was relatively stable when tested on 1 and 2 years in the future. There was a significant 

decrease in F1-score when used to predict readmissions with 3 years gap between training 

and testing. On overage, F1-score degraded 0.6% when used 3 years later, 3.5% when used 

4 years later, and 7% when used 5 years later. Therefore, to maintain optimal performance 

of hospital readmission models on EHR data, retraining the model every 3 years may avoid 

model degradation and maintain optimal performance.  
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4.6 Discussion and Conclusion 

We examined the hypothesis that it is feasible to enhance hospital readmission risk 

predictions on EHR data using data collected from a related source domain. ERR-TDAN 

model trained on joint TUHS, and PSUHS data yielded a 5% increase in F1-score when 

compared to an LSTM model trained on TUHS only, 6% increase in F1-score when 

compared to LSTM model trained on both TUHS and PUSH, and 3% increase when 

compared to a generalized version of ERR-TDAN (G-ERR-TDAN) aimed to generalize 

on both domains. Furthermore, conducted experiments showed that one year of historical 

data is sufficient to predict readmission. We studied the lifetime of the model to avoid 

performance degradation due to data drift over time. Experiments suggest that retraining 

the ERR-TDAN framework every three years avoids performance degradation. 

Figure 4.2: (left) presents the retrospective optimal amount of EHR data needed 
for future predictions. Results show that 1 year of historical data are sufficient to 
predict hospital readmission from the leading year. (right) presents the lifetime of 
the model to maintain and achieve optimal performance. Three different models 
were developed on data collected from 2015, 2016, and 2017 to predict future 
instances with 1 to 5 years gap. Results show that to maintain optimal 
performance, the proposed framework may benefit from retraining every three 
years. 
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We propose a framework, ERR-TDAN that establishes spatial knowledge transfer 

based on a temporal deep adaptation network tailored for hospital readmission on EHR 

data and optimized for the target task. ERR-TDAN can enhance readmission predictions 

of the target task using higher quality data from a related source domain under different 

distributions by matching the mean embeddings to reduce domain discrepancy. This is the 

first end-to-end transfer learning framework based on domain adaptation for hospital 

readmission. A deployment challenge for the proposed framework is that it requires 

training data from both source and target domains which might be difficult to obtain. In a 

planned follow up study we will evaluate applicability of the proposed method for 

prospective applications. In addition, we will compare the proposed hospital readmission 

method to alternatives aimed to learn from integrated data with explanatory variables of 

various quality.  
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CHAPTER 5 

 DOMAIN GENERALIZATION FOR ENHANCED 

PREDICTIONS OF HOSPITAL READMISSION ON 

UNSEEN DOMAINS 

5.1 Introduction 

We previously published multiple early readmission risk prediction models based on 

deep learning (DL) among people with diabetes. Our long short-term memory (LSTM) 

model was trained on data collected from an urban hospital to identify patients at high risk 

of readmission within the same hospital, presented in Chapter 3. This model exhibited good 

performance with an F-1 Score of 0.8, indicating that this LSTM model can recognize 

temporal dependencies [1]. We also developed a novel temporal deep adaptation network-

based model for early readmission risk, called ERR-TDAN, to enhance predictions on the 

target task by transferring knowledge from high-quality source data, presented in Chapter 

4 [6]. Baseline results of this study provided evidence that traditional approaches fail to 

generalize on unseen target domains when source and target data have different 

distributions. Utilizing domain adaptation techniques to enhance predictions on a seen 

target domain was shown to be effective in reducing domain discrepancy of data drawn 

from different distributions collected from different hospitals. ERR-TDAN is designed to 
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accept source and target data in training as input, thus, it is not capable of generalizing on 

unseen target domains. 

Collecting data from multiple hospitals and developing performant readmission models 

for every site may not be feasible for many institutions. Another potential limitation is 

having sufficient historical data. Developing a readmission risk model based on data from 

source hospitals to predict readmission on an unseen test hospital using our previous and 

other conventional approaches is not effective because these methods are not capable of 

generalizing well to unseen test domains when training and testing distributions are 

different [6, 79].  

Transfer learning methodologies have been investigated in the context of hospital 

readmission, aiming to enhance the learning of the target population by leveraging insights 

from a related source population. The studies reported in [80, 81], transfer learning is 

successfully applied to mitigate the challenges of limited data by utilizing a relevant source 

dataset. Conversely, the study reported in [82], potential benefits of transfer learning are 

investigated by assessing the fine-tuning capabilities of pre-trained models within the 

healthcare domain. Nonetheless, none of the aforementioned methods are capable of 

generalizing to unseen data collected from multiple hospital systems drawn from different 

distributions. Therefore, there remains a demand for an end-to-end model that performs 

cross-domain knowledge transfer that is capable of generalizing on previously 

unencountered domains in a unified framework, while capturing and maintaining long-

term temporal dependencies for hospital readmissions.   

In this paper, we propose an early readmission risk domain generalization network, 

ERR-DGN, to perform cross-domain knowledge transfer from electronic health record 



94 
 

(EHR) data of different health systems to facilitate predictive learning. Motivated by the 

success of our previous study reported [6] that leverages Deep Adaptation Network (DAN) 

techniques to enhance readmission risk predictions on a target hospital by leveraging high-

quality source data and matching mean embeddings of source and target distributions, we 

employed the idea of learning transferable features of the EHR data by matching multiple 

source distributions in the latent space to generalize and enhance predictions on an unseen 

target task. ERR-TDAN [6] takes as an input two sites (i.e., source and target) and requires 

historical training data from both. In contrast, we tailored ERR-TDAN to learn transferable 

features of multiple source datasets to predict rehospitalization risk on an unseen target 

hospital where data distribution might be significantly different from data at all previously 

observed hospitals. We hypothesized that this novel approach would improve hospital 

readmission risk predictions among people with diabetes for a previously unobserved target 

domain. 

5.2 Methods 

5.2.1 Domain Generalization 

Domain generalization (DG) is a form of knowledge transfer (i.e., transfer learning) 

commonly used in computer vision tasks to address the problem of learning from related 

source domains but under different distributions. DG pertains to the ability of models to 

generalize knowledge from multiple source domains to a previously unobserved target 

domain. The main goal is to transfer knowledge from the known source domains to be 

effective on the unknown target domains. The challenge is to ensure that the learned model 

does not overfit to the idiosyncrasies of the source domains but captures more general 
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patterns or invariants that are effective across all domains. Unlike traditional transfer 

learning, which typically focuses on adapting a model trained on a source domain to a 

specific known target domain, domain generalization aims to equip the model with the 

capability to perform effectively across any potential target domain without prior exposure 

to the model. This is achieved by emphasizing the learning of transferable and domain-

invariant features from the source domains. By training on multiple source domains, the 

model ideally internalizes the shared patterns and characteristics that are consistent across 

those domains, making it more robust and adaptable when confronted with data from a new 

domain. While domain adaptation focuses on adjusting a model trained on one domain to 

perform well on a specific different domain using target domain data, domain 

generalization aims to train a model on multiple domains to perform well on any new 

domain without accessing data from the unseen new domain. Both are types of transfer 

learning, but their objectives can differ. DG thus addresses the challenges of domain shift 

and dataset bias, making it especially valuable in fields where collecting data for every 

possible domain is infeasible or costly. DG can be effective for hospital readmission risk 

estimation since the process of collecting EHR data may be infeasible in some settings. 

Furthermore, DG can be effective in hospital systems where historical data is not available 

and a readmission risk model is needed [6, 79, 89, 83]. 

5.2.2 Formalization  

1) Domain. Let 𝒳 denote an input space and 𝒴 an output space. A domain is composed 

from a data sampled from a distribution, denoted as  𝒮 = {(x1 , 𝑦1)}1D$2 ∼ 𝑃NO , where 

x ∈ 𝒳 ⊂ ℝP , 𝑦 ∈ 𝒴 ⊂ ℝ denotes the label, and 𝑃NO denotes the joint distribution 

of the input sample and output label.  
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2) Domain Generalization. An input that consists of  𝑀 source domains (training set) 

we denote as 𝒮train = �𝒮1 ∣ 𝑖 = 1,⋯ ,𝑀�, where 𝒮1 = �sxQ1 , 𝑦Q1u�QD$
2+  denotes the 𝑖 −

𝑡ℎ domain. The joint distributions between each pair of domains are different, 

𝑃NO1 ≠ 𝑃NO
R , 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑀. The aim of DG is to learn a robust and generalizable 

predictive function from the  𝑀 training source domains to achieve a minimum 

prediction error on an unseen test domain 𝒮test 
 	that cannot be seen during training 

of the model and 𝑃NOtest ≠ 𝑃NO1  for 𝑖 ∈ {1,⋯ ,𝑀}. 

5.3 Methodology  

5.3.1 Distributional Difference and Selection of Unseen Target Domain 

This section details the methodology employed to validate the applicability of utilizing 

domain generalization on EHR data and identify a particularly challenging site to evaluate 

the proposed ERR-DGN method. We conducted pairwise comparisons, analyzing the data 

distributions from the five sites, to select the test site that exhibited the most divergence 

from the others. We utilized Kolmogorov-Smirnov (KS) statistic test for pairwise 

comparisons of similarity between two probability distributions functions G and F to check 

if two distributions from M domains are identical. This is achieved by comparing the 

underlying distributions F(x) and G(x) of two intendent samples [38], where x denotes a 

sample consisting of patient data. The null hypothesis was F= G, indicating that the 

distributions are identical. We applied KS test on two independent samples from different 

domains, with each sample being a 1-dimensional array representing a patient’s data. From 

each domain, we randomly selected 2000 patients/sample in which 1000 patients had 

readmission (positive class) and 1000 patients are without readmission (negative class). 
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Each sample was then compared with every sample from the other domain. This was 

reiterated to assess the underlying distributions between every pair of domains. We 

obtained p-values for each pairwise comparison and computed the mean p-value. 

5.3.2 The proposed ERR-DGN Framework 

An early readmission risk framework based on domain generalization techniques was 

developed to generalize and enhance predictions on an unseen target academic hospital 

system by establishing cross-domain knowledge transfer from four different academic 

hospital systems based on EHR data. Motivated by the success of ERR-TDAN on EHR 

data [6], we employed the concept of DAN for transferring cross-domain knowledge 

tailored for predicting hospital readmission on EHR data through learning transferable 

features via domain-specific fully connected linear layers to reduce domain discrepancy 

and optimized to generalize on several domains to enhance predictions on an unseen target 

domain. To accomplish this, the hidden embeddings of the domain-specific layers are 

embedded to a reproducing kernel Hilbert space through maximum mean discrepancy 

(MMD), to match the mean embeddings of domain distributions. We customized the loss 

function to optimize ERR-DGN to learn general patterns and characteristics from several 

source domains. 

Fig. 5.1 shows the proposed ERR-DGN framework, encompassing the following main 

processes:   

1) ERR-DGN accepts EHR data from multiple source domains as input. These 

datasets are then channeled through domain-specific LSTM layers, aiming to learn 

hidden representations that map source data to a common embedding while 
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capturing the temporal dependencies of the EHR data. Then, attention mechanism 

is applied to weigh the importance of different parts of the sequence differently, 

allowing the network to decide which parts of the input sequence to focus on.  

2) In order to match the embedding distributions of the source domains, deep 

adaptation network setting is formulated through domain-specific fully connected 

linear layers designed to match the mean embeddings across varying distributions. 

The hidden representations subsequently embedded through a reproducing kernel 

Hilbert space, utilizing pairwise computations to compare embedding 

distributions among all pairs. This process aids in transferring knowledge and 

mitigating the differences between distinct distributions by employing MMD to 

reduce domain variance. 

3) The matched embeddings are then concatenated and passed to a fully connected 

linear layer with a sigmoid activation function for binary classification to pinpoint 

patients that are likely to be readmitted. In evaluating the framework’s 

performance, a sample is processed via a singular domain-specific layer set, rather 

than all four. In backpropagation, we optimize the model to generalize on multiple 

source domains via a customized loss function that combines the sum of pairwise 

MMD loss calculations leveraged for domain discrepancy and binary cross 

entropy loss. The following sections elucidate the main processes of the 

framework in more detail. 

 

 

 



99 
 

 

 

5.3.2.1 Learning Representations of Temporal EHR Data via LSTM and 

Attention. Initially, we employed a stacked LSTM consisting of two recurrent layers. This 

aimed to learn hidden data representations embedded to a common latent feature space of 

the temporal EHR data of source domains. LSTM, a sequence-based model capable of 

capturing temporal dependencies, has been widely employed for sequential tasks and has 

demonstrated efficacy in predicting hospital readmission using the sequential and temporal 

Figure 5.1. The proposed ERR-DGN framework. ERR-DGN consists of three 
primary processes. Firstly, domain-specific LSTM layers derive hidden 
representations from the input of source domains, subsequently Attention 
mechanism is applied to extract relevant information. Secondly, a domain 
generalization network techniques utilized with fully connected layers designed to 
match the mean embeddings from domains drawn from different distributions. 
Lastly, the matched embeddings are then concatenated and passed through a fully 
connected layer with sigmoid activation function for binary classification. The 
optimization of this model is facilitated through a customized loss function that 
penalizes on domain discrepancy of source domains to aid in learning general 
patterns and characteristics that are shared across source domains.   

 



100 
 

EHR data [1, 6, 87]. LSTM layers accept 3-dimensional tensors of source data as input. It 

is built upon the foundation of neural networks, in LSTM, neurons within the same layer 

are interconnected. This allows a neuron to learn not only from the outputs of preceding 

layers and the current input but also from its neighboring layers. Consequently, each neuron 

has dual input sources, the immediate past and the present. A dropout rate of 0.1 was 

applied between the first and second LSTM layers. To introduce nonlinearity, the ReLU 

activation function was applied to the LSTM output (embeddings), formulated as follows: 

𝒃𝒕 = 𝐑𝐞𝐋𝐔(𝒃 +𝑾𝒉𝒕3𝟏 + 𝑼𝒙𝒕). (5.1) 

Here, 𝒃𝒕, the output, is then fed to domain-specific attention layer which serves to 

weigh the importance of different of certain features in the sequence differently, allowing 

the network to focus on relevant features of the sequence. The attention mechanism 

computes a weighted sum of all the hidden states of the LSTM, based on their relevance to 

the current timestep of the output sequence. The weights for this weighted sum are 

dynamically computed for each output timestep. Adding attention mechanism enhances 

LSTM layers by allowing the network to decide which features to focus on, leading to 

improved performance. This process is illustrated at a high level as the “base net” process 

in Fig. 5.1. 

5.3.2.2 Learning Transferable Features and Enhancing Predictive Performance. 

The hidden embeddings are subsequently passed to domain-specific fully connected layers 

within a deep adaptation network framework. To minimize domain discrepancy, the mean 

embeddings from multiple source distributions are matched. The representations from 

these linear layers are projected into a reproducing kernel Hilbert space, facilitating the 
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bridging of gaps distributions by utilizing pairwise computations to compare embedding 

distributions among all pairs, then the sum is computed quantifying the distance between 

distributions within the embedded space. and enabling knowledge transfer using MMD. 

The MMD distance metric was originally employed to determine if two samples originate 

from identical distributions, gauging the extent of their divergence [93]. In this study, 

MMD was utilized to generalize on multiple source domains by learning shared patterns 

and characteristics that are consistent across source domains, making it more robust and 

adaptable when applied with data from a new unseen domain. MMD served as the key 

component of the loss function, aiming to minimize domain discrepancies. A 

comprehensive explanation of the loss function is provided in the subsequent section. 

MMD can be defined as:  

𝑴𝑴𝑫𝒍𝒐𝒔𝒔(𝑺𝟏, 𝑺𝟐) =
∥∥
∥∥
∥𝟏
𝒏a  

𝒏

𝒊D𝟏

𝝓s𝒔𝒊𝟏u −
𝟏
𝒎a 

𝒎

𝒋D𝟏

𝝓s𝒔𝒋𝟐u
∥∥
∥∥
∥

𝓗

𝟐

, (5.2) 

 

where 𝑆$ and 𝑆%denote two distinct source domains data, 𝜙 denotes the Gaussian kernel 

function, ℋ denotes the Hilbert space, and 𝑛 denote the number of samples in 𝑆$and 𝑚 

denote the number of samples in 𝑆%. MMD is iteratively applied utilizing pairwise 

calculation setting to compare distributions of all source domains among all pairs, where 

𝒮1 = {𝑖 = 1,⋯ ,𝑀} and the joint distributions between each pair of domains are different, 

𝑃NO1 ≠ 𝑃NO
R , 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑀. The temporal embeddings of the LSTM are then fed into fully 

connected layers with MMD loss to measure the distance between every pair of 
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distributions and minimize domain discrepancy. This process is illustrated at a high level 

as the “transfer net” process in Fig. 5.1. 

Output. The matched embeddings are subsequently inputted into a linear layer with a 

single output, coupled with a sigmoid activation function, to derive probabilities for 

pinpointing patients at high risk of readmission. Utilizing the default threshold of 0.5, high 

risk patients are distinguished, and predictions are generated ŷ	[1].		

5.3.2.3 Customized Loss Function for Model Optimization. To achieve 

generalization across multiple source domains, we modified the loss function by 

integrating MMD loss and Binary Cross Entropy (BCE) loss. MMD was utilized using 

pairwise calculations to assess the discrepancies among distributions, thereby internalizing 

patterns and characteristics that are consistent across source domains. BCE was utilized to 

measure the error of reconstruction, applied on each source domain. The sum of BCE on 

each source domain and MMD loss among source distributions was computed as the loss. 

Loss function used in the proposed ERR-DGN model is defined as follows: 

 

𝑩𝑪𝑬𝒍𝒐𝒔𝒔 = (𝒙, 𝒚) = 𝑳 = {𝒍𝟏, … , 𝒍𝑵}L, 𝒍𝒏
= −𝒘𝒏[𝒚𝒏 ⋅ 𝐥𝐨𝐠 𝒙𝒏 + (𝟏 − 𝒚𝒏) ⋅ 𝐥𝐨𝐠(𝟏 − 𝒙𝒏)],	

𝑻𝑶𝑻𝑨𝑳𝒍𝒐𝒔𝒔 =
𝟏
𝑳𝑵
∑  𝑳𝑵
𝒕D𝟏 s(∑  𝑴

𝒊D𝟏 𝑩𝑪𝑬𝒍𝒐𝒔𝒔(𝒙𝒊, 𝒚𝒊)) + (∑  𝑷
𝒊D𝟏 𝜸𝑴𝑴𝑫𝒍𝒐𝒔𝒔(𝒔𝒊𝟏, 𝒔𝒊𝟐)u), 

(5.3) 

 

where 𝑥 and 𝑦	are the predictions and ground truth for a given batch respectively.	𝐿	denotes 

loss.	𝑁 is the batch size,	𝑀 is the number of source domains,	𝑃 is the number of pairwise 

calculations among distributions, 𝑤 is a rescaling weight given to the loss of each batch 

element, 𝛾 is the penalty parameter of domain discrepancy.  



103 
 

5.3.3 Experimental Setup 

This section outlines various research questions formulated to evaluate the performance 

of the framework. The primary measure of model performance was F1-score. Secondary 

measures of model performance were precision, recall (sensitivity), and accuracy [75]. The 

AUROC (C-statistic) was not employed as an evaluation metric in this study due to 

unreliability in the context of class imbalance, rendering the metric less indicative of actual 

performance [96]. Experiments were conducted 10 times, with results presented as the 

mean along with a two-sided 95% confidence interval (CI).  

Upper Bound Results. We developed several hospital readmission LSTM models 

based on a model that we previously published using EHR data collected from an urban 

academic hospital [1], To determine the maximal prediction capabilities of readmission 

risk models, we trained and tested the published LSTM model on each hospital site 

individually. Two different experiments were conducted. Experiment 1 was conducted by 

training the model on training samples of the same size (15,966 patients) and experiment 

2 was conducted by adopting a data split of 70% for training, 10% for validation, and for 

20% testing.  

Generalization on Unseen Target Domain. To evaluate the generalization capabilities 

of the proposed framework, ERR-DGN, experiments were conducted by leveraging 

knowledge from multiple source domains for training (Sites A-D) and tested on the unseen 

target domain with the most different data distributions (Site E), encompassing 67,066 

patients, of whom 9,553 had a readmission. Several baseline methods were developed for 

comparison. The baseline LSTM model was trained using data from Sites A-D by 

concatenating data from these multiple sites, since this baseline model is designed to accept 
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data from a single source. It was then tested on the unseen target domain, Site E. Additional 

experiments were conducted where the baseline LSTM model was trained on each source 

site to assess the performance of each source domain when applied to the unseen target. Of 

note, a direct comparison to ERR-TDAN is not applicable because ERR-TDAN requires 

source and target data in training, whereas our objective is to generalize a model and apply 

it on an unseen hospital that has not been seen in training. 

Exploring the Number of Source Sites. We studied the optimal number of source sites 

needed to enhance predictions on an unseen target domain, Site E, using a greedy approach. 

We trained the proposed method, ERR-DGN, using all combinations of 2, 3, and 4 sites. 

We methodically iterated this process, each time selecting the site that most enhanced 

predictions on the target site, and subsequently evaluating it in conjunction with other sites. 

The proposed domain Generalization method was evaluated and compared to the baseline 

LSTM to assess the effectiveness of domain generalization on EHR data collected from 

multiple hospital systems.  

Model Performance Over Time. To investigate the longevity of our proposed model, 

we conducted experiments by training the model on EHR data from 2016 and subsequently 

testing it with time gaps of 1, 2, 3, and 4 years into the future. For example, we trained on 

data from 2016 and tested its performance in 2020 to determine if there would be a decline 

in accuracy after a span of 4 years. The same process was conducted using training data 

from 2017 and testing data from 1, 2, and 3 years in the future. Data were not available 

from all sites before 2016, therefore data from 2016 – 2020 were used for these 

experiments.  
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5.4 Data Description and Study Design  

This is a retrospective cohort study that used EHR data from five academic health 

systems, encompassing urban, suburban, and rural areas in Pennsylvania or Maryland, 

spanning from July 1st, 2010, to December 31st, 2020. All 5 sites are members of the PaTH 

Network, itself a member of the National Patient-Centered Clinical Research Network 

(PCORnet). Models were developed using EHR data defined by and standardized 

according to the PCORnet Common Data Model (CDM) [70]. We extracted data on 

encounters, demographics, diagnoses, procedures, laboratory tests, medication orders, and 

vital signs. Eligibility criteria included patients who had at least one hospital discharge and 

a diabetes diagnosis, based on an International Classification of Diseases (ICD) diagnostic 

code for diabetes (ICD-9: 249.xx or 250.xx or ICD-10: E08.xxx through E13.xxx), a 

Hemoglobin A1c (HbA1c) level ≥6.5%, or a prescription for a diabetes-specific 

medication. We excluded encounters for patients aged <18 years, those transferred to 

another hospital upon discharge, cases of inpatient mortality, instances of gestational 

diabetes (ICD-9: 648.0x or ICD-10: O24.4x), prediabetes diagnoses (ICD-9: 790.29 or 

ICD-10: R73.03), or pregnancy (indicated by a positive beta human chorionic gonadotropin 

lab test within 90 days before or after the encounter) [1]. A total of 25 features extracted 

from CDM derived were incorporated into the models as presented in Sections 3.2.2 and 

4.4. 

Patients were categorized based on their hospital readmission status into two groups: 

those with at least one readmission within 30 days of discharge and those without any 30-

day readmissions, as performed in the previously developed readmission models, presented 

in Chapters 3 and 4. For the readmission group, a random admission-readmission pair was 
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selected for predictive modeling. Similarly, for patients without readmissions, a single 

random admission was selected for the same purpose. 

To model heterogenous sequential data, we concatenated all encounters for a given 

patient in a feature vector ordered sequentially by admission date. The primary outcome 

for modeling was unplanned, all-cause readmission within 30 days after an inpatient 

discharge, as defined by the Centers for Medicare & Medicaid Services (CMS) [72]. In line 

with the CMS guidelines, only the first readmission within the 30-day period was 

considered for modeling. Data were represented in 3-dimensional tensors 𝑝	𝑥	𝑒	𝑥	𝑓 that 

represent 𝑓 features for each 𝑒 encounters for 𝑝 patients. Data preprocessing, managing 

missing data, accommodating the challenge of handling varying numbers of recordings per 

encounter, learning embeddings for dimensionality reduction, addressing sparse feature 

vectors, and data representations were performed as presented in [1]. Added features, such 

as length of hospital stay (in days) and the number of days since the previous encounter, 

were aggregated to aid in learning temporal dependencies. [1] We previously conducted 

experiments to determine how many prior encounters are optimal to predict readmission, 

finding that 80 or 100 most recent encounters in the prior 2 years yielded the best 

performance. Thus, we utilized up to 100 most recent encounters in the prior 2 years for 

each patient. For patients who had less than 100 encounters in the 2-year window, feature 

vectors were padded with 0’s to unify dimensions. Singular Value Decomposition (SVD) 

was utilized to learn embeddings and reduce dimensionality of encounters to 150 features 

per encounter, while preserving explained variance of >0.95. This yielded high-

dimensional feature vectors, consisting of 15,000 features per patient’s sample (150 

features per encounter X 100 encounters).  
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The study protocol was approved by the Johns Hopkins Medicine (JHM) and PennState 

Health Institutional Review Boards (IRB). The other three participating institutions ceded 

oversight to the JHM single IRB. 

5.5 Results  

5.5.1 Data Characteristics  

Table 5.1 presents data collected from the 268,754 eligible patients within the five 

hospital systems, detailing the number of encounters (any EHR interaction: visit, call, 

medication, or lab order, et al.), number of patients, and class distributions. 

Table 5.1. Key site characteristics of 268,754 patients with diabetes by site. Any EHR 
interaction (ambulatory visit, hospitalization, phone call, order, et al), and 30-day 
readmission (positive class).     

Site No. Encounters No. Patients Positive Class Area 
Site A 4,599,933 54,316 11,442 (21%) Urban 
Site B 2,934,532 37,091 9,014 (24%) Urban 
Site C 12,804,784 90,323 11,172 (12%) Mixed 
Site D 1,363,413 19,958 1,585 (8%) Suburban 
Site E 13,396,308 67,066 9,553 (14%) Rural 

 

Table 5.2 illustrates key characteristics of the data and shows that each site was 

statistically different from Site E for every pair-wise comparison except the proportion of 

females at Site A. Statistical Significance. Chi-square and t-test were used to test the 

statistical significance between variables of the unseen target domain, Site E, and other 

source sites. T-test was utilized for continuous variables to compare if the means of two 

groups are statistically different. Chi-square test of independence was employed to test the 

association between categorical variables [94, 95]. P-values obtained show that there is a 
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significant difference between variables (p<0.001) of the unseen target domain, Site E, and 

source sites, with the exception of sex between Site A and Site E.  

 
Table 5.2. Key characteristics of 268,754 patients with diabetes by site. p denotes the p-
value, µ denotes the mean, and s denotes the standard deviation.  

Variable Site A 
N=54,316 

Site B 
N=37,091 

Site C 
N=90,323 

Site D 
N=19,958 

Site E 
N=67,066 

Age (years),  
(µ & s) 

61.8 ±14.9 
p<0.001 

60.3 ±13.6 
p<0.001 

64.3 ±14.9 
p<0.001 

61.0 ±15.3 
p<0.001 62.7 ±15.2 

Sex (Female) 
26,988 
(50%) 
p=0.24 

18,789 
(51%) 

p<0.001 

45,844 
(51%) 

p<0.001 

9,268 
(46%) 

p<0.001 

33,094 
(49%) 

Race 

White 28,319 
(52%) 

8,707 
(23%) 

77,432 
(86%) 

17,305 
(87%) 

64,330 
(96%) 

Black 18,215 
(34%) 

17,732 
(48%) 8,388 (9%) 1,170 (6%) 1,882 (3%) 

Asian 1,977 (3%) 569 (2%) 630 (<1%) 160 (<1%) 336 (<1%) 

Other 5,805 
(11%) 

10,083 
(27%) 3,873 (4%) 1,323 (7%) 518 (<1%) 

p p<0.001 p<0.001 p<0.001 p<0.001 - 

Hispanic (Yes) 2,058 (4%) 
p<0.001 

8,495 
(23%) 

p<0.001 

534 (<1%) 
p<0.001 

965 (5%) 
p<0.001 1,833 (3%) 

Tobacco 

Current 738 (1%) 8,010 
(22%) 

17,147 
(19%) 

2,440 
(12%) 

8,432 
(13%) 

Never 2,837 (5%) 12,798 
(34%) 

49,594 
(55%) 

10,490 
(53%) 

18,256 
(27%) 

Quit 1,561 (3%) 12,199 
(33%) 

16,795 
(19%) 

5,543 
(28%) 

20,359 
(30%) 

Other 49,180 
(91%) 

4,084 
(11%) 6,787 (7%) 1485 (7%) 20,019 

(30%) 
p p<0.001 p<0.001 p<0.001 p<0.001 - 

No. diagnostic 
codes, (µ & s) 

2.5 ±2.7 
p<0.001 

19.1 ±11.0 
p<0.001 

15.3 ±7.5 
p<0.001 

18.1 ±13.5 
p<0.001 10.0 ±5.1 

No. procedure 
codes, (µ & s) 

6.3 ±4.5 
p<0.001 

18.7 ±11.8 
p<0.001 

2.4 ±2.84 
p<0.001 

22.3 ±23.2 
p<0.001 18.6 ±15.1 

Admission 
duration (days), 
(µ & s) 

6.8 ±9.5 
p<0.001 

6.2 ±9.8 
p<0.001 

5.5 ±7.1 
p<0.001 

6.4 ±9.7 
p<0.001 3.5 ±5.3 

Prior encounters,  
(µ & s) 

114.1 
±126.5 

p<0.001 

97.9 ±111.7 
p<0.001 

222.6 
±200.6 

p<0.001 

88.9 ±108.5 
p<0.001 199.6 

±205.5 
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Table 5.2. (Continued) 
Prior IP, OS, ED 
encounters, (µ & 
s) 

3.1 ±6.8 
p<0.001 

3.4 ±7.5 
p<0.001 

7.5 ±15.4 
p<0.001 

3.9 ±6.9 
p<0.001 4.6 ±9.4 

Days since prior 
encounter, (µ & 
s) 

11.4 ±54.5 
p<0.001 

25.5 ±92.1 
p<0.001 

12.2 ±54.9 
p<0.001 

25.3 ±90.4 
p<0.001 12.3 ±51.8 

Days since prior 
IP, OS, ED enc., 
(µ & s) 

151.8 
±247.4 

p<0.001 

218.8 
±390.2 

p<0.001 

218.8 
±390.2 

p<0.001 

328.5 
±518.9 

p<0.001 

333.7 
±526.3 

 

5.5.2 Upper Bound Results  

This section presents results obtained from baseline methods training and testing the 

models internally at each site. Table 5.3 shows that F-1 scores range from 0.80 to 0.91 in 

experiment 1 and from 0.80 to 0.92 in experiment 2. The performance differs across sites 

since data quality of EHR data varied. Certain sites contained fewer missing data, denser 

features, and less erroneous data than others.  

 
Table 5.3. Performance of the baseline LSTM method based on EHR data collected from 
five academic hospital systems evaluated using average F-1 score and accuracy metrics. 
Two experiments were conducted to assess the capabilities of the model on each site and 
obtain upper bound results. Experiment 1 was conducted by learning from EHR data of 
15,966 patients randomly selected from n patients and tested on the remaining patients 
from the same site. Experiment 2 was conducted by adopting a data split of each site to 
70% for training, 10% for validation, and 20% for testing.  

  Experiment 1 Experiment 2 
Site N F1-score Accuracy F1-score Accuracy 

Site A 54,316 0.80 0.81 0.80 0.81 
Site B 37,091 0.80 0.81 0.81 0.82 
Site C 90,323 0.86 0.88 0.88 0.89 
Site D 19,958 0.91 0.92 0.91 0.92 
Site E 67,066 0.85 0.86 0.87 0.88 
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5.5.3 Distributional Difference and Selection of Unseen Target Domain 

This section presents results obtained from analyzing distributional differences to 

validate the applicability of applying domain generalization techniques on EHR data and 

identify a particularly challenging unseen target domain. 

To highlight the applicability of applying domain generalization techniques to EHR 

data sourced from various academic hospital systems, we provide evidence that EHR 

datasets collected from multiple hospital systems violate conventional machine learning 

modeling assumptions. This is evident as either the marginal distributions of source and 

target data diverge, indicating a covariate shift, or the conditional distributions vary due to 

contextual modifications, suggesting a concept shift. Obtained mean p-values ranges from 

0.008 to 0.07, indicating that some distributions are statistically different (p-value < 0.05), 

and others are marginal. Thus, 𝑃NO1  for 𝑖 ∈ {1,⋯ ,𝑀} ≠ 𝑃NO
Q  for 𝑗 ∈ {1,⋯ ,𝑀}, 𝑤ℎ𝑒𝑟𝑒	𝑖	 ≠

𝑗, we can safely reject the null hypothesis, indicating distributions of data collected from 

five different hospital systems are different. 

Fig. 5.2 presents the mean p-values quantifying the distance between pairs of data 

distributions. As can be seen, distributions are not identical, validating the applicability of 

leveraging domain generalization on EHR data collected from multiple hospital systems. 

Table 5.2 presents descriptive statistics of selected variables from varying hospital sites to 

exemplify main factors that entail distributional difference by testing if there are significant 

marginal differences between source sites and the unseen target site.  

The experiment was leveraged to identify a particularly challenging unseen target site 

to evaluate the proposed ERR-DGN method by analyzing the data distributions from the 

five sites, in order to select the site that exhibited the most divergence from the others. Fig. 
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5.2 shows that site E is the least similar site to others with minimum p-value of 0.008 and 

maximum p-value of 0.02. Hence, site E was selected as the unseen target domain.  

 

 

Distributional difference was further confirmed by applying the baseline LSTM model 

trained and tested on site C and E respectively representing the sites that exhibit the greatest 

divergence; F1 score was 0.73, yielding a 15% deterioration in model performance when 

compared to the baseline model trained and tested on data collected from the same site. 

Additionally, we applied the baseline LSTM model trained and tested on site A and site B 

respectively, exhibiting the least divergence in F1 score (0.71), a 9% deterioration relative 

to the baseline model. Performances were significantly affected since the model struggled 

to generalize effectively and converge due to training data drawn from different 

Figure 5.2. Presents the mean p-values 
quantifying the distance between two data 
distributions of EHR data collected from five 
different hospital systems. Results show that 
Site E exhibits the most divergence from 
others (p-value range: 0.008 – 0.02). 
Furthermore, due to small mean p-values, we 
safely reject the null hypothesis of the KS test 
indicating that distributions are statistically 
different.  
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distributions. To overcome this limitation and the absence of a comprehensive model 

capable of generalizing on multiple source domains for hospital readmission on EHR data 

in literature, we adapted the concept of DAN, specifically tailored for domain 

generalization on several source domains, aiming to enhance prediction on an unseen target 

hospital.  

5.5.4 Generalization on Unseen Target Domain 

This section presents results obtained to assess the generalization capabilities of the 

proposed framework, ERR-DGN. Results obtained aided in validating the assumption that 

training on EHR data from one source domain and testing it on target data from a different 

hospital system violates conventional machine learning modeling assumptions.  

Table 5.4 illustrates the baseline LSTM model when trained on combined data from 

Sites A-D and tested on the unseen Site E. This baseline model yielded 0.73 in F1-score, 

demonstrating no further improvement to a baseline model trained on a single source 

domain (Site A). The F1 score varied between 0.61 (indicating suboptimal performance 

when trained on Site B) and 0.73 (indicating satisfactory performance when trained on Site 

A). The proposed framework, ERR-DGN, yielded a 6% increase in the F1-score compared 

to the baseline model trained on Sites A-D, and on average, a 10% increase when compared 

to the baseline LSTM model trained on a single source. The confidence intervals were very 

small (<0.01), indicating a high degree of precision around the means. 
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Table 5.4. Performance of the proposed method, ERR-DGN and baselines. The average 
F1-Scores and their corresponding two-sided 95% confidence interval on 10 experiments. 
 

Model Source Target 
(unseen) Precision Recall F1 Specificity Accuracy 

Baseline 
LSTM 

Site B Site E 0.75 0.52 0.61 ±0.009 0.53 0.52 
Site C Site E 0.75 0.67 0.70 ±0.005 0.74 0.67 
Site D Site E 0.76 0.70 0.72 ±0.006 0.77 0.70 
Site A Site E 0.76 0.70 0.73 ±0.002 0.78 0.70 

Sites A-D Site E 0.75 0.71 0.73 ±0.007 0.78 0.70 
ERR-DGN Sites A-D Site E 0.79 0.80 0.79 ±0.006 0.94 0.80 

 
 
5.5.5 Exploring Number of Source Sites 

This section presents results obtained from extensive experiments conducted using a 

greedy approach to determine the optimal number of source sites needed to enhance 

predictions on an unseen target domain, Site E. Table 5 illustrates this greedy approach 

taken to find the number of sites that are most effective on Site E. Results from ERR-DGN 

for 1 site are not displayed, since ERR-DGN is designed to generalize over data from 

multiple sources. In contrast, the baseline LSTM model is constructed to handle data 

exclusively from a single source.  

Table 5.5 shows that performance plateaued at three source sites, and adding more 

source sites was not found to increase performance. By testing and comparing different 

numbers of sites in combination, we observed a 3% boost in F1-score compared to when 

using two sites and a 6% improvement in comparison to using just one site with the baseline 

approach. 
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Table 5.5. Presents a comparative analysis using a greedy approach to find the optimal 
number of source sites needed to enhance predictions on unseen target domain. Presented 
results are evaluated using F1-Score.  

# Sites Source Target 
(unseen) ERR-DGN Baseline 

LSTM 

1 

Site B 

Site E 

- 0.61 
Site C - 0.70 
Site D - 0.72 
Site A - 0.73 

2 
Site A + Site B 0.72 0.69 
Site A + Site C 0.75 0.72 
Site A + Site D 0.76 0.73 

3 

Site A + Site D + Site 
B 0.76 0.72 

Site A + Site D + Site 
C 0.79 0.73 

4 Sites A-D 0.79 0.73 
 
 
5.5.6 Model Performance Over Time 

This section illustrates the longevity of the proposed model to avoid a decline in model 

performance over time. Fig. 5.3 illustrates a gradual decline in F1-score over time. The 

model's performance remained relatively consistent when tested for predictions 1 and 2 

years into the future. However, a noticeable dip in the F1-score was observed with a 4-year 

gap between training and testing data. On average, there was a 1% decline in F1-score 

when predictions were made 3 years post-training and a 4% drop after 4 years.  
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5.6 Discussion 

We propose a framework, ERR-DGN, that is capable of generalizing on EHR data from 

distinct hospital systems with different distributions. ERR-DGN is designed to enhance 

hospital readmission prediction when applied on an unseen target data relative to 

conventional approaches. Its strength lies in its ability to capture and internalize patterns 

and characteristics consistent across multiple source domains. ERR-DGN yielded a 6% 

increase in F1-score compared to the baseline. Baseline models struggled to generalize 

effectively when tested on an unseen target data, likely because concatenating data from 

varied different sources introduced bias. Several factors could lead to a distributional 

difference, including but not limited to sociodemographic, diagnosis and procedure codes, 

and capture of such codes. In addition, we studied the number of source sites needed to 

Figure 5.3. The model's longevity and its ability on 
sustain optimal performance are showcased here. We 
developed two distinct models using data acquired in 
2016 and 2017, aiming to forecast outcomes with a 
time gap ranging from 1 to 4 years. The findings 
suggest that for preserving peak efficiency, it might be 
advantageous to retrain the proposed framework 
approximately every three years. 
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enhance predictions on an unseen target domain, finding that three source hospital systems 

from varied area types were found to be sufficient to predict readmission on an unseen 

domain. Lastly, we examined model performance over time, showing that performance 

was stable for 3 years then declined in year 4. This suggests that periodic retraining at least 

every 3 years may mitigate model degradation over time. 

This study is a substantial extension of our paper published at AIME-2023 [6], as it 

includes the following contributions:  

1) We enhanced the framework proposed in AIME-2023 [3] to learn the model on 

EHR data observed at multiple hospital systems and subsequently apply the 

rehospitalization prediction model to a novel site, rather than leveraging historic 

data from a single source and a target domain to enhance readmission risk 

predictions on the target domain. In other words, the proposed method ERR-DGN 

has no access to the data of the target hospital in training, unlike the framework 

in [6] that requires both source and target data in training.  

2) We broadened the scope by incorporating three additional hospital systems, 

bringing the total to five sites encompassing 268,754 patients.  

3) We validated the applicability of utilizing domain generalization techniques on 

EHR data collected from five different hospital systems by comparing the 

underlying distributions to check whether source and target distributions are 

identical.  

4) In a forward search-based optimization we analyzed benefits of learning from 

multiple hospital sites for deploying a readmission risk prediction model to a 

previously unencountered site.  
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5) We determined the duration of the optimal performance of the model. 

In present study, we explored an often-overlooked feature of datasets collected from 

multiple sites: differences among sites. Indeed, we found that distributions of the variables 

and many characteristics of the samples drawn from each site were statistically 

significantly different. Furthermore, we confirmed that a conventional LSTM model 

trained on 4 sites and tested on the unseen fifth site performed rather poorly relative to 

models trained and tested internally on each site. It is impractical for most hospitals to train 

existing models on their own data, much less to develop new models. Existing methods 

lack the ability to generalize across varied hospital system data distributions without access 

to target training data. Hence, there is a need for modeling approaches that maximize 

performance on unseen domains like ERR-DGN described here. ERR-DGN is the first end-

to-end domain generalization framework for hospital readmission. 

The ERR-DGN approach performs well relative to most previously published 30-day 

readmission risk models, which reported F1-scores of 0.386 to 0.58 [97-99] and 0.812 [25]. 

Of note, these previously reported models were all trained and tested internally on samples 

drawn from the same source, unlike the ERR-DGN which was tested on data from an 

unseen source. In addition, most papers on readmission risk models do not report F1-score, 

so opportunities for comparison are limited [101]. Transfer learning has been explored for 

hospital readmission to address data scarcity using relevant source datasets.  

The key strengths of this study include the use of a relatively large dataset, the 

incorporation of multiple sites with varied characteristics collected over 10 years, and the 

use of data curated according to the PCORnet CDM, which standardized data across sites.  

Some limitations should be acknowledged as well. Data were drawn from sites in 2 states 
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(PA and MD) and may not be nationally representative. Although data curated by PaTH in 

the CDM format is a strength in terms of data quality, our results might not generalize to 

institutions outside of PCORnet. To mitigate this risk, only variables that are commonly 

and routinely collected in EHRs were used for modeling. In addition, a deployment 

challenge for ERR-DGN is that it requires training data from at least two source domains. 

In a subsequent study, we aim to assess the feasibility of applying the proposed method 

prospectively as well as to further explore how Site E is different and what characteristics 

need to be considered to optimize performance across sites.  

We proposed a framework to be applied on sites where historical EHR data is not 

available or the development of a new readmission model on a certain site might be 

infeasible. We conducted extensive experiments to evaluate our hypothesis and compared 

to baseline methods. The proposed method outperformed baseline methods and results 

show that ERR-DGN can be an effective tool to enhance hospital readmission on an unseen 

target hospital. We further supplemented our findings by exploring the number of hospital 

sites needed and longevity of the model. This approach might be propagated to other 

scenarios where training occurs on relevant EHR data from different distributions.    
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CHAPTER 6 

CONCLUSION 

 
In closing, the studies discussed introduced several transfer learning approaches to 

mitigate challenges faced with real-world, field-recorded data in different high-impact 

domain applications, including healthcare and power systems. Data drift, labels scarcity, 

and data quality are one of the primary reasons that impact the performance of traditional 

machine learning and deep learning methods. Hence, this dissertation introduces methods 

that can mitigate the labor-intensive manual labeling to address labels scarcity and data 

drift to aid stabilize electrical grids. Additionally, we proposed frameworks designed for 

hospital readmission that address data quality issues, learning from different distributions 

to enhance predictions in the target domain, and generalize to unseen target domains, 

aiming to improve patient care and reduce the significant costs associated with 30-day 

readmissions.  

We examined the hypothesis that it is feasible to enhance hospital readmission risk 

predictions on EHR data using data collected from a related source domain. The proposed 

model yielded a 5% increase in F-1 score when compared to baselines. Furthermore, we 

conducted studies to address concerns and research questions related to this domain 

application to avoid performance degradation due to data drift over time. We proposed and 

validated a framework that establishes spatial knowledge transfer based on a temporal deep 

adaptation network tailored for hospital readmission predictions of the target task using 

higher quality data from a related source domain under different distributions by matching 
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the mean embeddings to reduce domain discrepancy. This approach is the first end-to-end 

transfer learning framework based on domain adaptation for hospital readmission. 

Conducted experiments show that the proposed early readmission risk temporal domain 

adaptation network method can enhance hospital readmission and improve patients’ 

healthcare.  

We further proposed a framework, ERR-DGN, that is capable of generalizing on EHR 

data from distinct hospital systems with different distributions to enhance hospital 

readmission prediction when applied on an unseen target data relative to conventional 

approaches. Its strength lies in its ability to capture and internalize patterns and 

characteristics consistent across multiple source domains. ERR-DGN yielded a 6% 

increase in F1-score compared to the baseline. Baseline models struggled to generalize 

effectively when tested on unseen target data, likely because concatenating data from 

varied different sources introduced bias. In addition, we studied the number of source sites 

needed to enhance predictions on an unseen target domain, finding that three source 

hospital systems from varied area types were found to be sufficient to predict readmission 

on an unseen domain. Lastly, we examined model performance over time, showing that 

future performance was stable for 3 years then declined in year 4. This suggests that 

periodic retraining at least every 3 years may mitigate model degradation over time. 

Proposed transfer learning in conjunction with a semi-supervised detectors that detect 

events based on minimal, well-defined labeled data instances from a related source task to 

mitigate the labor-intensive manual labeling efforts. This study shows that the proposed 

transfer learning method yields a substantial increase in AUROC compared with alternative 

state-of-the-art baselines (fully supervised, semi-supervised, and unsupervised). 
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Experiments conducted show that this method is more feasible than alternative baselines 

when conventional machine learning modeling assumptions are violated and outperforms 

the baselines when reusing labeled data instances from one power system to detect events 

from another. Furthermore, this method can detect events based on a small amount of 

transferred relevant labeled data from another power system.  
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