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ABSTRACT

Numerous of high-impact applications involve predictive modeling of real-world data.
This spans from hospital readmission prediction for enhanced patient care up to event
detection in power systems for grid stabilization. Developing performant machine learning
models necessitates extensive high-quality training data, ample labeled samples, and
training and testing datasets derived from identical distributions. Though, such
methodologies may be impractical in applications where obtaining labeled data is
expensive or challenging, the quality of data is low, or when challenged with covariate or
concept shifts. Our emphasis was on devising transfer learning methods to address the
inherent challenges across two distinct applications.

We delved into a notably challenging transfer learning application that revolves around
predicting hospital readmission risks using electronic health record (EHR) data to identify
patients who may benefit from extra care. Readmission models based on EHR data can be
compromised by quality variations due to manual data input methods. Utilizing high-
quality EHR data from a different hospital system to enhance prediction on a target hospital
using traditional approaches might bias the dataset if distributions of the source and target
data are different. To address this, we introduce an Early Readmission Risk Temporal Deep
Adaptation Network, ERR-TDAN, for cross-domain knowledge transfer. A model
developed using target data from an urban academic hospital was enhanced by transferring
knowledge from high-quality source data. Given the success of our method in learning
from data sourced from multiple hospital systems with different distributions, we further
addressed the challenge and infeasibility of developing hospital-specific readmission risk

prediction models using data from individual hospital systems. Herein, based on an
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extension of the previous method, we introduce an Early Readmission Risk Domain
Generalization Network, ERR-DGN. It is adept at generalizing across multiple EHR data
sources and seamlessly adapting to previously unseen test domains.

In another challenging application, we addressed event detection in electrical grids
where dependencies are spatiotemporal, highly non-linear, and non-linear systems using
high-volume field-recorded data from multiple Phasor Measurement Units (PMUs).
Existing historical event logs created manually do not correlate well with the corresponding
PMU measurements due to scarce and temporally imprecise labels. Extending event logs
to a more complete set of labeled events is very costly and often infeasible to obtain. We
focused on utilizing a transfer learning method tailored for event detection from PMU data
to reduce the need for additional manual labeling. To demonstrate the feasibility, we tested
our approach on large datasets collected from the Western and Eastern Interconnections of
the U.S.A. by reusing a small number of carefully selected labeled PMU data from a power
system to detect events from another.

Experimental findings suggest that the proposed knowledge transfer methods for
healthcare and power system applications have the potential to effectively address the
identified challenges and limitations. Evaluation of the proposed readmission models show
that readmission risk predictions can be enhanced when leveraging higher-quality EHR
data from a different site, and when trained on data from multiple sites and subsequently
applied to a novel hospital site. Moreover, labels scarcity in power systems can be
addressed by a transfer learning method in conjunction with a semi-supervised algorithm

that is capable of detecting events based on minimal labeled instances.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A multitude of high-impact applications involve predictive modeling of real-world
field-recorded temporal data. In various domains, from hospital readmission prediction to
improve patients’ healthcare, through event detection in power systems to aid stabilize
electrical grids, up to prediction in online businesses to improve customers’ experience,
developing performant traditional machine learning models require large, high-quality
training datasets, and a sufficient amount of labeled data to perform optimally. However,
such approaches might be impracticable since such assumptions seem to be violated for a
plethora of real-world problems, where labeled data is costly or infeasible to obtain, data
attributes are of low-quality, and marginal distributions of the source and target domains
are dissimilar (covariate shift), or the conditional distributions are different (concept shift).
Such problems are found in diverse domains.

In [1], a healthcare domain application for hospital readmission prediction was
developed based on real-world electronic health record (EHR) data. In spite of enormous
efforts of advanced data cleaning, preprocessing, data representation techniques, and
optimal architecture of a deep learning method, the performance of the readmission
prediction model was found to be degraded due to low-quality of EHR data consisting of a

large number of erroneous and missing data due to the manual data entry scheme. This



method is limited to learning from EHR data drawn from the same distribution and is
incapable of utilizing higher-quality EHR data from a source hospital system to enhance
prediction on a target hospital since using traditional approaches might bias the dataset if
distributions of the source and target data are different. In other words, traditional methods
fail to perform cross-domain transfer to enhance prediction on the target task using a related
source domain data from a different distribution. Furthermore, collecting data from
multiple hospitals and developing performant readmission models for every site may not
be feasible for many institutions. Another potential limitation is having sufficient historical
data. Developing a readmission risk model based on data from source hospitals to predict
readmission on an unseen test hospital using our previous and other conventional
approaches is not effective because these methods are not capable of generalizing well to
unseen test domains when training and testing distributions are different [6, 79]. Transfer
learning methodologies have been investigated in the context of hospital readmission,
aiming to enhance the learning of the target population by leveraging insights from a
related source population. The studies reported in [80, 81], transfer learning is successfully
applied to mitigate the challenges of limited data by utilizing a relevant source dataset.
Conversely, the study reported in [82], potential benefits of transfer learning are
investigated by assessing the fine-tuning capabilities of pre-trained models within the
healthcare domain. Nonetheless, none of the aforementioned methods are capable of
generalizing to unseen data collected from multiple hospital systems drawn from different
distributions. Hence, there remains a demand for end-to-end models that perform cross-
domain knowledge transfer capable of learning from varied source datasets collected from

different hospital systems with different distributions and generalizing on previously



unencountered domains in a unified framework, while capturing and maintaining long-
term temporal dependencies for hospital readmission.

Event detection in power systems is critical to aid stabilize electrical grids by detecting
various types of events using field-recorded Phasor Measurement Units (PMUs) data. This
task is a challenging problem for machine learning methods due to scarce and temporally
imprecise labels and the inability to automate event labeling in high-volume data such as
PMU measurements. Extending event logs to obtain a sufficient number of labeled data is
costly and often infeasible to obtain since it requires manual observations by a domain
expert in the field. Developing performant traditional machine learning detectors based on
fully supervised approaches might be infeasible since such detectors rely heavily on labeled
data, which when done manually may be labor-intensive and hence prohibitively
expensive. Moreover, supervised learning methods assume that the marginal distribution
of the source training data and target test data are identical (no covariate shift assumption),
which PMU data violate. Event detection can also be deemed as an unsupervised learning
task, however unsupervised approaches fail to correct mistakes made by using labeled data
and utilize the underlying assumption that events occur infrequently, meaning they fall in
low-density regions of the instance space, which PMU data regularly violate this
assumption. Supervised, and unsupervised approaches are infeasible for detecting events
from PMU data [2-5].

Therefore, building predictive models from such data calls for devising advanced
knowledge transfer-based methods to enhance predictions in domains where data covariate
and concept shifts are a challenge, labels are scarce and difficult to obtain, and data are of

low-quality.



1.2 Contributions

This dissertation revolves around proposing knowledge transfer-based frameworks to
address inherent challenges in real-world, high-impact applications in two different
domains, healthcare and power systems. The main contributions of the conducted studies
are presented in the following.

Healthcare. Hospital readmission risk prediction methods for patients with diabetes
based on electronic health record (EHR) data were developed to address gaps in literature.
Advanced data preprocessing and representation techniques were utilized for the
heterogenous temporal EHR data collected from five academic health systems,
encompassing urban, suburban, and rural areas in Pennsylvania or Maryland. Models were
developed using EHR data as defined by the Patient-Centered Clinical Research Network
(PCORnet®) Common Data Model (CDM), which standardized EHR data across sites [1].

The extracted heterogenous EHR data encompass inherent challenges that have
modelled difficulties for machine learning algorithms to effectively learn. This was
primarily because data drawn from varied distributions and included low-quality elements.
Challenges include non-uniform number of recordings of diagnoses, procedures, and vitals,
in addition to missingness and erroneousness (i.e., outliers) owing to the manual entry
scheme and the process of data extraction and merging from different databases. Moreover,
the data exhibited distinct characteristics. For instance, in terms of sociodemographic, 4.9%
of patients at a suburban site used in this study were Hispanic, in contrast to 22% at an
urban site. The mean number of diagnostic recordings at one site was just 2.5, while other

sites reported between 10 to 19 recordings. The non-uniform complicated the



preprocessing stage. Further differences were observed in categories such as race and
tobacco use.

Contributions were as follows:

1) To develop deep learning models for the prediction of unplanned, all-cause 30-day
readmission.

2) To compare the performance of the deep learning models to traditional machine
learning models.

3) To explore model performance across a range of prior EHR encounters from 1 to
100 being included in model development.

4) To compare a deep learning model developed using a subset of a laboratory tests
selected by domain knowledge with a deep learning model developed using all

available laboratory test.

Upon conducting extensive experiments to evaluate the model, data representation
techniques and the utilization of sequential deep learning models were optimal to model
EHR data. Deep learning models achieved 0.80 evaluated using F-1 score metric. However,
building a model using the same techniques used on higher quality data collected from a
rural academic hospital system, Penn State University Hospital System resulted in 91% F1-
score. The degradation in F-1 score on Temple University Hospital System was due to low-
quality data.

Utilizing EHR data from a source hospital system to enhance prediction on a target
hospital using traditional approaches enlarge dataset bias which might deteriorate
performance due to distributional difference of the source and target dataset, resulting in

statistically unbounded risk for the target task. This was confirmed by training a model
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using both source and target data which resulted in a lower F-1 score tested on Temple
University Hospital (0.79% F-1 score). Traditional approaches are designed for a specific
data type, and not capable of generalizing to other temporal data. Due to the need for an
end-to-end model to perform cross-domain spatial knowledge transfer and predictive
learning in a unified learning framework while capturing temporal dependencies for
hospital readmission, we propose the following.

To address the aforementioned limitations and challenges, we propose an early
readmission risk temporal deep adaptation network, ERR-TDAN, to perform cross-domain
spatial knowledge transfer from EHR data of different sites and perform predictive
learning. Motivated by the success of the Deep Adaptation Network (DAN) in numerous
transfer learning tasks which utilizes convolutional neural network (CNN) for computed
vision tasks, we employed the idea of learning transferable features of temporal data by
matching the source and target domain distributions in the latent feature space. We tailored
it for the hospital readmission using EHR data and optimized for the target task. Results
conducted show that ERR-TDAN might enhance hospital readmission prediction by
performing cross-domain knowledge transfer utilizing higher-quality data from a related

source domain [6]. The aims of this study were as follows:

1) To develop a hospital readmission framework using EHR data that transfers
knowledge between a rural academic hospital and an urban academic hospital to
enhance predictions on the urban academic hospital.

2) To study the optimal amount of retrospective EHR data needed for future
predictions.

3) To study the duration of optimal performance.



Given the success of our method in learning from data sourced from multiple hospital
systems with different distributions, we further addressed the challenge and infeasibility of
developing hospital-specific readmission risk prediction models using data from individual
hospital systems. Herein, we devised an additional readmission risk prediction model to
address the aforementioned limitations and challenges. We propose an early readmission
risk domain generalization network, ERR-DGN, to perform cross domain knowledge
transfer from electronic health record (EHR) data of different health systems to facilitate
predictive learning. Motivated by the success of our previous study aforementioned and
reported in [6], we employed the idea of learning transferable features of the EHR data by
matching multiple source distributions in the latent space to generalize and enhance
predictions on an unseen target task. ERR-TDAN [6] takes as an input two sites (i.e., source
and target) and requires historical training data from both. In contrast, we tailored ERR-
TDAN to learn transferable features of multiple source datasets to predict rehospitalization
risk on an unseen target hospital where data distribution might be significantly different
from data at previously observer hospitals. We hypothesized that this novel approach
would improve hospital readmission risk predictions among people with diabetes for a
previously unobserved target domain. We further supplemented our experimental findings
by studying the number of source sites needed to enhance predictions on an unseen target
domain and examined model performance over time to avoid performance degradation due
to data drift over time.

Power systems. Event detection methods to detect line fault, transformer outages, and
frequency events from PMU data collected from the Western and Eastern Interconnections

of the United States were developed to address the following challenges: labels scarcity;



and spatial and temporal data drift. A multitude of models were developed based on transfer
learning techniques in conjunction with semi-supervised detector to avoid and mitigate the
labor-intensive manual labeling. Transfer learning methods were developed that leverages
a small number of well-defined instances from one task to another within the Western
Interconnection. Conducted experiments demonstrate that transfer learning methods are
applicable for PMU data and can detect events without having to rely on event logs or
extensive number of labels of PMU data. Further, the applicability of utilizing transfer
learning techniques on PMU data were validated by utilizing statistical methods to compare
the similarity between two continuous distribution functions. Results indicate that the
source and target distributions are different which makes it applicable for transfer learning
and violates the assumptions of fully supervised methods [2]. In this study, the following

research questions were addressed:

1) The effect of varying percentages of labeled data were studies to determine the
minimum number of labeled data needed. The proposed transfer learning method
found to be effective and can detect events based on only 20 labeled data instances
while state-of-the-art supervised and unsupervised approaches performed poorly.

2) A comparative analysis was performed to compare the transfer learning method
versus baseline anomaly detectors.

3) The effect of varying time window sizes was studies to determine the optimal
window dimension to detect events from PMU data. 4) Varying ways of leveraging
knowledge from a source task to detect events from the target task were studies,
including leveraging knowledge temporally where related instances from the past

were leveraged to detect events from the future, and using leveraging labeled data



from a selected set of PMUs by domain knowledge to detect events from another
set of PMUs. This experiment demonstrates and validates data drift over time

degrading the performance of traditional machine learning approaches.

The aforementioned study is limited to transferring related labeled instances within the
same interconnection since the Western and Eastern Interconnections comprise of different
number of PMUs resulting in a non-uniform dimensions of feature vectors. Thus, we
extended this study to leverage related data instances from one interconnection to detect
events in another. Experiments conducted show that the proposed transfer learning method
is more feasible than alternative baselines since distributions of the Western and Easter
Interconnections data differ, which degraded the performance of traditional Machine
learning methods. Moreover, conducted experiments demonstrate superior performance
over various state-of-the-art ML algorithms (unsupervised, semi-supervised, and
supervised) when leveraging labeled data from one power system to detect events in
another, which mitigate the labor-intensive and costly manual labeling efforts [3]. In this

study, the following research questions were addressed:

1) Performed distribution comparison of both interconnections and validated transfer
learning assumptions.

2) Performed a comparative study to compare the transfer learning method versus
baseline event detectors.

3) Studied the effect of using various quantities of labeled data to find the minimum
number of labeled data instanced needed from the one Interconnection to detect

events from another.
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1.4 Organization

The remainder of this report is organized as follows. Chapter 2 discusses the challenges
of labels scarcity and distributional differences between source and target domains in
power system application domain and proposes transfer learning methods to avoid and
mitigate the labor-intensive manual labeling efforts. Chapter 3 discusses a hospital
readmission risk prediction method for patients with diabetes. This section provides
advanced data preprocessing and representation techniques and serve as foundation for
study reported in Chapter 4 and Chapter 5. Chapter 4 discusses the proposed early
readmission risk temporal domain adaptation network, ERR-TDAN that is tailored for
EHR data and optimized on the target domain; it performs cross-domain knowledge
transfer while capturing temporal dependencies of EHR data. Chapter 5 presents the
proposed early readmission risk domain generalization network, ERR-DGN, a domain
generalization method, tailored for hospital readmission. ERR-DGN enhances readmission
risk predictions when applied on an unseen target domain using EHR data collected from
varied hospital systems with different distributions. Chapter 6 concludes the dissertation

and outlines possible directions for future research.
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CHAPTER 2

TRANSFER LEARNING FOR EVENT DETECTION FROM

PMU MEASUREMENTS WITH SCARCE LABELS

2.1 Introduction

The stored data collected by the Phasor Measurement Units (PMUs) at the electric
utilities in the USA has increased to hundreds of terabytes in the last few years [7]. In the
past decade, PMU data have been used extensively for post- mortem analysis in case of
system-wide disturbances. In recent years, utilities have been interested in investigating
ways to increase the value of the stored PMU data through novel applications of the
machine learning models for improved situational awareness and predictive decision-
making capabilities [8].

Event detection is an essential task that involves detecting instances in a dataset that
significantly deviate from the norm [9]. The increase in the volume of PMU data is making
it more challenging to quickly analyze a large number of historical recordings.

Event detection can be deemed as an unsupervised learning task [10]. Usually,
unsupervised approaches utilize the underlying assumption that events occur infrequently,
meaning they fall in low-density regions of the instance space, or they are distant from
normal events to identify them. However, PMU data regularly violate this assumption,
affecting the performance of unsupervised approaches (e.g., maintenance events can occur

infrequently and irregularly, but are considered normal). Labeled data allow detectors to
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correct the errors made by unsupervised approaches. Unfortunately, a fully supervised
learning approach to event detection relies heavily on labeled data, which when done
manually may be labor-intensive and hence prohibitively expensive.

Contribution. To avoid the expense of extensive manual labeling, semi- supervised
approaches to event detection are often used in conjunction with active learning to
efficiently collect labels [11]. However, when dealing with a large amount of PMU data,
utilizing active learning to assign labels for each individual instance might be infeasible.
To reduce the required labeling effort, we employ transfer learning techniques to leverage
a small number of well-labeled instances from one task to another without additional
labeling effort. The contribution is in the enhancement of the transfer learning method
using a non-redundant approach that does not select duplicates/similar instances in order
to improve computation efficiency. Additionally, we improved the semi-supervised
detector by using an alternative similarity measure that is more applicable to the
dimensionality of the PMU data. We demonstrate that a transfer learning method is
applicable for PMU data and can detect events without having to rely on an extensive
number of labels or event logs of PMU data. This technique may be propagated to other
situations where some of the events’ data from one power system may be applied to
enhance learning in another. Our approach outperforms state-of-the-art machine learning
algorithms from varying learning types (unsupervised, semi- supervised, and supervised)
on a large benchmark when developing the model from a large dataset that requires
intensive event labeling effort. Experiments conducted show that the employed transfer
learning method may mitigate the need of manual labeling and is capable of detecting

events with minimal labeled data instances.
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Organization. The remainder of this paper is organized as follows. Section II provides
and describes the related work. Section III describes and provides preliminaries on transfer
learning for event detection. Section IV describes the methodology used to conduct
experiments, evaluate and elucidate the proposed transfer learning method, and provides
insights into the comparison with a variety of learning types of algorithms used in the
literature. Section V describes the data preprocessing techniques used in the experiments.
The experimental setup is outlined in Section VI. Section VII presents the experimental
results and discussion. Finally, Section VIII concludes the paper. Section IX discusses

future work. References are provided at the end.

2.2 Literature Review

A variety of studies have investigated ways to reduce the size of the PMU dataset by
different means of dimensionality reduction and feature engineering to address the increase
in the volume of PMU data. The dimensionality reduction method based on Principal
Component Analysis was used in [12] for early online event detection, and in [13] to detect
and analyze complex cascading events. The feature engineering method based on the
Minimum Volume Enclosing Ellipsoid was reported in [14]. Several studies have used
signal transform methods, such as the fast variant of Discrete S-Transform [15- 17], or
wavelet analysis [16-19]. Fast event detection based on Detrended Fluctuation Analysis on
Big PMU Data was developed in [20]. Domain-specific shapelets were investigated for
event detection and classification in [16,17]. In [21] the Dynamic Programming based
Swinging Door Trending was used. Signal Energy Transform was used to detect and

classify faults in [22]. Several machine learning models were tested in these studies:
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Agglomerative Hierarchical Clustering [ 14], Extreme Learning Machine classifier [15], K-
Nearest Neighbor [16,17,23], Support Vector Machine (SVM) [16,17,23], Decision Tree
[23], Convolutional Neural Network [19]. Transfer learning has been applied to several
power systems applications in recent years, such as transient stability prediction in [24],
detection of oscillation events in [25], and detection of high-impedance faults in
distribution systems in [26]. Studies [24-26] demonstrate the applicability of transfer
learning to a variety of power system problems. Our study extends the benefits of using
transfer learning to solve the problem of transmission system event detection from an

exceedingly small number of labeled events based on PMU data.

2.3 Transfer Learning for Event Detection from a Small Number of

Labels

While event detection tasks would benefit from labeled data, it is often done using an
unsupervised approach since assigning labels across all the events manually can be time-
consuming and hence costly. The downside is that the unsupervised detectors do not benefit
from labeled data that provide the possibility of correcting errors made by the unsupervised
detectors. On the other hand, supervised learning algorithms rely on a sufficient number of
labeled data. Thus, supervised, and unsupervised learning algorithms are infeasible for
event detection tasks when labels are scarce and temporally imprecise. Transfer learning
can be utilized to leverage a small number of related labeled data instances from a related
task to the target task. Related instances can aid semi-supervised learning algorithms to
detect events based on minimal labeled data, since it only selects and transfers tasks that

are similar to instances in the target set.
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Often, transfer learning is used in conjunction with semi- supervised learning
algorithms, since semi-supervised algorithms assume only a limited amount of labeled data
instances for training are available. Hence, semi-supervised learning algorithms are
employed when labeled data instances are scarce and difficult to obtain. Semi-supervised
learning algorithms aim to train a classifier from both the labeled and unlabeled data
samples in order to achieve better performance than supervised learning algorithms trained
on labeled data only.

The aim of transfer learning is to learn a model for the unlabeled dataset of the target
domain given labeled data from a related dataset of the source domain [27]. Since this study
concerns event detection, the task is to compute and assign an anomaly score to each time
window (data instance) in the target dataset that quantifies how anomalous the time
window is based on similarity measures; assigning an anomaly score to a time window can
be compared with a predefined threshold to classify whether an anomalous event exists
within a given time window [27]. We use D; to denote the source dataset, which contains
labeled time windows, and D; to denote the target dataset, which contains unlabeled time
windows of events to be classified as either normal or anomalous events. We use x; to refer
to a time window from the source dataset, and x; to refer to a time window from the target
dataset.

There are three important assumptions for transfer learning techniques to be considered
when applied to event detection tasks [28]. First, the source and target datasets were
obtained from the same m-dimensional feature space. Second, the marginal distributions
of the source and target datasets differ (covariate shift assumption). A covariate shift

assumption occurs when dissimilar behaviors are observed in either domain. Third, the
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conditional distributions can differ due to changes in context, meaning the same behavior
might have a different meaning in the two domains (concept shift assumption).

Assumptions two and three complicate the transfer task.

2.4 Methodology

To demonstrate the performance of the utilized transfer learning method, a comparative
analysis with a multitude of event detection algorithms with varying learning types used as
a baseline was performed. Additionally, different datasets were used for experiments with

varying splits of the data and window dimensions.

2.4.1 Unsupervised Learning

Unsupervised learning algorithms aim to identify hidden patterns without using any
labeled data samples. Thus, unsupervised learning algorithms are capable of learning
without an error signal to assess and evaluate the performance of the model. Since
unsupervised learning algorithms do not require any labels during learning and identifying
hidden patterns, event detection tasks using this method can be beneficial when labels are
not available [29]. However, unsupervised learning algorithms utilize the fundamental
assumption that events occur infrequently, and PMU data often violate this assumption
[11]. The lack of labeled data instances that provide the option to correct the errors made
by unsupervised detectors degrades the performance of the algorithms.

As a part of the comparison study, an event detection experiment was performed using
two unsupervised learning algorithms, namely: 1) the k-nearest neighbor outlier (kNNO)
detection algorithm that computes for each data point the anomaly score as the distance to

its k-nearest neighbors in the dataset [30], and 2) the isolation nearest neighbor ensembles
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(INNE) algorithm that computes for each data point the anomaly score roughly based on
how isolated the point is from the rest of the data [31]. They learn a structure on the training
data without incorporating any labels into the models. Event detection is performed on the
test dataset to classify data samples as anomalous or normal events.

In order to assess the performance of the algorithms, the predicted labels were
compared to the ground truth (actual) labels obtained by visual inspection by a domain

expert.

2.4.2 Supervised Learning

Supervised learning is based on training a model using previously observed labeled
data samples and assuming that the marginal distribution of the source training data and
the target test data are identical (no covariate shift assumption). Supervised learning
algorithms tend to rely heavily on learning data samples and require a sufficient amount of
training data before performing classification, which can be infeasible in event detection
tasks [29]. The more complex the problem and the models are the more training data is
required.

We employed state-of-the-art and most common conventional supervised learning
algorithms to compare with other learning types. We used scikit-learn library for Machine
Learning in Python [32]. A variety of classification algorithms from this library were
utilized, including Multilayer Perceptron (MLP), Logistic Regression (LR), K-Nearest

Neighbor (KNN), Support Vector Machine (SVM).
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2.4.3 Semi-Supervised Learning

The semi-supervised learning concept is in between unsupervised and supervised
learning. Semi-supervised classification algorithms aim to train a classifier from both the
labeled and unlabeled data samples, such that they achieve better performance than the
supervised or unsupervised learning algorithms. There are many practical benefits in using
semi-supervised learning, especially, when labeled data instances are scarce and difficult
to obtain, since such algorithms assume only a limited amount of labeled data instances for
training are available. Semi-supervised learning algorithms might perform as well as
supervised learning algorithms, but with much fewer time-labeled data instances, which is
beneficial in event detection tasks to reduce annotation effort resulting in reduced
implementation costs [33].

Two semi-supervised learning algorithms that do not rely entirely on labels obtained
from event logs or by visual inspection to classify data samples as normal or anomalous

events were utilized:

1) the semi-supervised k-nearest neighbor anomaly (SSKNNO) detection algorithm,
which is a combination of the well-known kNN (i.e., unsupervised learning)
classifier and the kNNO (k-nearest neighbor outlier detection) (i.e., supervised
learning) method [11]. Since SSKNNO is a distance-based method that relies on
Euclidean similarity measure, the number of labeled instances does not affect the
learning process. Having as minimum as one labeled data instance from each
pattern of signals or type of event should be sufficient for the algorithm to detect
events. The algorithm uses an unsupervised setting when a similar labeled data

instance is not available in the training data.
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2) the semi-supervised detection of outliers (SSDO) algorithm, which computes an
unsupervised prior anomaly score, and then, corrects this score with the known
label information. It is based on constrained k-means clustering [34]. These
algorithms take a partially labeled dataset that consists of three labels: unknown
(0), event (1), normal (-1), and assigns a binary label (-1, 1) to each unknown

instance in the dataset.

The performance of the algorithm was assessed by comparing the predicted labels to
the ground truth labels. Small proportions of labeled data samples combined with unlabeled

data samples were used during training.

2.4.4 Transfer Learning + Semi-Supervised Learning

We formulate the event detection task using transfer learning technique as:

e Input: D, and D; from the same feature space. Where Dy denotes a source dataset
containing labeled time windows and D; denotes a target dataset containing
unlabeled time windows D; ;

e Do: Compute an anomaly score for every time window in D;based on D; and a
subset of the related time windows in Dsy;

e Output: y labels (predictions) indicating whether a time window in D; contains

normal or anomalous behavior.

A two-step transfer learning approach used in our study is based on a recently
introduced LoclIT algorithm [11], that was not yet applied on PMU data. First, the algorithm

takes as an input a labeled source dataset D;. Then, it selects a subset from the labeled

20



source time windows to transfer to the unlabeled target dataset D, If the local data
distribution of a certain time window is similar in both the source and target datasets, the
algorithm transfers the time window from the source to the target domain. LoclT utilizes
unsupervised learning techniques since labels for time windows in the target dataset are
not available and the labeled time windows in the source dataset should not influence the
transfer decision. Second, the algorithm computes an anomaly score using a semi-
supervised learning algorithm based upon nearest-neighbor techniques that consider both
the related time windows that were selected and transferred from the source Dy and the
unlabeled target time windows [11].

LoclT selects and transfers similar time windows from Ds to Dyans, Where Diyans 1S a
subset that contains the selected labeled time windows for transfer [11]. Let D" = D, U
Dyrans, where D" is a dataset containing the transferred time windows combined with the
target unlabeled time windows. D" is a partially labeled dataset, where time windows from
Dirans are labeled as an event (1) or normal (-1), and D; time windows are labeled as
unknown (0). Then, a semi-supervised SSKNNO algorithm takes D* as input and classifies
each unknown time window as an anomalous event or normal, indicating whether a given
event occurred in a given time window or healthy signal respectively. This process is

further illustrated in the flowchart in Figure 2.1
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Figure 2.1: Flowchart that illustrates the two-step process of
event detection using transfer learning + semi-supervised

detector.

Local Structure of time windows. LoclT algorithm defines the localized source
distribution for a given source time window x; using the subset Ny, (xs, D) of the nearest
neighbor Y of x;in D;; and defines the localized target distribution based upon the subset
Ny, (x5, D¢) of x; °s P nearest neighbor in D;. Where 1 controls the strictness of the transfer.

The higher the value of 1 is (i.e., 1.0), the stricter the transfer is. If i is 0, the algorithm

ignores the differences of local distribution and considers the complete global structure of

Dy and D; to determine the transfer.
The algorithm transfers a time window from the source subset to the target subset if the

distributions of both subsets are sufficiently identical. The similarity measure (i.e., location

distance) used to compare the first and second order statistics of Ny, (x, Ds) and Ny, (x5, D)

1s defined as:

di(Ny, N;) = (2.1)

1
(53

X;ENq XjEN; 2
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The location distance used in equation (2.1) is the 12-norm of the difference of the
arithmetic mean (i.e., centroids) between two neighborhood subsets N;and N,. Large
values of d; reduce the chance of meaningful transfer.

The distance between the covariance matrices of two neighborhood subsets (i.e.,

correlation distance) is defined as:

lCw, = Cul,

e [
1%F

(2.2)

Where |||l is the Frobenius norm and C is the covariance matrix. The Frobenius norm was
considered since N; and N, are matrices. Large values of d> indicate that the localized
distributions of the source and target subsets are different, which decreases the chance of a
meaningful transfer.

Learning the Transfer Function. In order to transfer a time window from the source
Dy to target subset Dy, the transfer function decides whether to transfer the time window
based upon combining the values of d; and d>. LocIT utilizes an SVM classifier that learns
on the target distribution using the target data only to serve as the transfer function. SVM
predicts whether a time window in the source instance fits in the target domain by
leveraging the smoothness assumption, having the meaning that neighboring target time
windows have similar localized distributions while the farthest time windows have
dissimilar localized distributions. Hence, the negative training instances are generated by
computing for every time window in the target subset a feature vector consisting of the

distances between the neighborhood subsets of x; and its farthest neighbor. The one positive
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training instance is generated for each instance x; by finding its nearest neighbor in the
target subset and computing d; and d> on the target subset. Finally, once the SVM classifier
is trained on the target subset using both the negative and positive training instances, each
instance from the source subset can be predicted to check whether it belongs to the target.

If it belongs, the algorithm transfers it and adds it to Dyans.

2. 5 Data Processing

2.5.1 PMU Data

The PMU dataset used for testing was provided in the Apache Parquet database. The
original dataset contains measurements from 38 PMUs from the Western Interconnection
of the U.S.A. captured over a period of two years (2016-2017). The dataset was
anonymized by the provider. Geographical locations of the PMUs and the network
topology information are not made available. The data are collected with two frame
reporting rates per second (fps), 30 fps, and 60 fps, and contain measurements from PMUs
located at several voltage levels in the transmission network. This dataset corresponds to a
variety of event types, including line fault transformer outages, and frequency events. Some
data quality issues, such as missing data, data duplicates, and outliers were observed but

did not have a significant impact on our method.

2.5.2 Event Log

The event log received from the data provider contains manually created labels with
only an approximation of the event start time with a precision of 1 minute. We referred to
these labels as temporally imprecise. The time labels were not created based on the PMU

time reference; thus, some events were mislabeled and did not occur at the location of the
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PMUs used in this study. Using such limited labels makes it challenging to temporally
extract more precise PMU labels from the event log.

To extract temporally more precise labels, we considered a set of labels created based
upon visual inspection of the PMU-recorded signals by a domain expert on our team. The
domain expert on our team relabeled the data to ensure that the labels were accurate and
precise, since the initial labels (event log) received were inaccurate. The different sets of
labels (1-minute, 30-seconds, 10-seconds, 5-seconds, 2-seconds) for event and normal

operations identified through this study are presented in Table 2.1.

Table 2.1: Number of labels per category and window selection

method.
Event Log # Event | # Normal | Event Start | Event End
Labels | Labels Time Time
1-min Labels | 1033 923 STvi—5sec | STvi+ 55 sec
30-sec Labels | 1038 1846 STvi—2sec | STvi+ 28 sec
10-sec Labels | 1038 1846 STvi—1sec | STvi+9 sec
5-sec Labels 1038 1846 STv1 STvi+ 5 sec
2-sec Labels 1038 1846 STv1 STvi + 2 sec
ST - start time of the event based on visual inspection.

2.5.3 Feature Extraction

We defined the Rectangle Area (RA) features extracted per PMU for each time
window. No data cleansing was performed on the PMU dataset from the chosen 38 PMUs
prior to the feature extraction. The RA feature, created using the frequency and positive-

sequence voltage magnitude measurements, is defined as:

RAPMU,TW = (fmax - fmin) * (Vmax - Vmin)

(2.3)
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where fmax and fmin are the maximum and minimum frequency values, and Viax and Viin
are the maximum and minimum positive sequence voltage magnitude recorded by the
selected PMU device, inside the selected time window TW.

After feature extraction, only minor cleansing of outliers was performed by removing
RA values that were too large to be possible. Only 11 R4 values were discarded. They were
replaced with zeros. The impact of missing data is negligible. If at least two data points
were present inside a time window, the RA was calculated. For example, in the case of the
I-minute window on a 30 fps PMU, we only need 2 out of 1800 (30 fps * 60 sec) points
to be able to calculate the RA. In case there is only one data point within a time window,
RA is set to zero. Data duplicates do not have any impact on this method since the minimum
and maximum values of voltage and frequency are not affected by the duplicates.

The RA feature is sufficient to capture whether an event has occurred within a time
window. The RA feature is limited to detecting events and is not suitable for classifying
event types. The RA feature was used since it yielded the best performances among
multiple data processing techniques that were tested. Furthermore, aggregated RA features
allow the utilization of simple and efficient similarity measures to compute distances
between time windows to find the nearest and farthest neighbors.

Data processed based on the rectangle area were standardized using StandardScaler,

which subtracts the mean, and then scales each feature to unit variance.

2.5.4 Temporal Split

A set of 38 PMUs that contain time windows collected over a span of two years, 2016
and 2017 was split into two subsets, where the first subset was used as a source dataset for

transfer learning, Dy, and the second subset is the target for transfer learning, D;. The split
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between two the subsets was based on the temporal split between the years 2016 and 2017.
Knowledge was leveraged and transferred from the year of 2016, D;, to the target subset
D, which contains time windows collected from the year of 2017. D, is a fixed dataset that
contains all windows from 2017 in all the experiments conducted. Proportions of labeled
time windows were randomly selected from Dy, and combined with target time windows,
D, in a dataset D”, which is a partially labeled dataset that contains the transferred related
labeled windows from D and windows to be classified as anomalous or normal event, D..
While proportions of labeled time windows were randomly selected, it was ensured that
the selected time windows result in a balanced subset containing both anomalous and
normal events.

For the unsupervised, semi-supervised, and supervised classifiers, the set of 38 PMUs
was also split temporally, hence, training data containing data time windows from the year
of 2016, and test data containing data time windows from the year of 2017. Since these
classifiers do not transfer related time windows, classifiers were trained on entire time
windows from 2016, and tested/classified time windows from the future, hence, time
windows collected from the entire 2017.

Features for a certain time window were combined into a feature vector that contains
38 RA features, one feature for each observed PMU. Labels y are created for each time
window as (‘1” — in case of an event reported, ‘-1’ — in case of a normal operation) for
transfer learning and semi-supervised learning classifiers. Whereas, unsupervised and
supervised learning classifiers, windows are labeled as (‘1° — in case of an event reported,

‘0’ — in case of a normal operation). When performance measures were applied to assess
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the performance of the transfer learning and semi-supervised classifiers, predicted labels ‘-

1’ were transformed to ‘0’ to match with ground truth labels.
2.5.5 PMUs Split

Similarly, a set of 38 PMUs was split into two subsets, the source subsets, D;, and the
target subset, D.. The split between two subsets was made using R4 feature based on the
following procedure. First, a set of 35 events was selected randomly. For each of the 35
events, the R4 feature was extracted on each PMU. For each of the 35 events, top 3 PMUs
with the greatest R4 were selected. Different subsets of PMUs were iterated until the
smallest subset was found that had at least one of top three PMUs in each of the 35 events.
This resulted in 12 chosen PMUs that combined have a representative in the top three RA
in all 35 events. The procedure is outlined in Table 2.2 using a simplified example with 7

PMUs and 4 events.

Table 2.2: Split into two subsets of PMUs for transfer learning based on calculated Rectangle
Area during events.

Event 1 Event 2 Event 3 Event 4 Comment
Top|RApmu1=56| RApmus=32 | RApmu2=48| RApmus=17
1 Only the top 3 PMUs with
Top| RApmu3=54 [RApmu2=31| RApmu7=32 | RApmuc=16| largest RA for an event are
2 considered as candidates for the
Top| RArmu7=44 | RApnua=28 | RApmus=27 |RApmu1=12| Source Subset
3
Top| RApmu2=42 | RApmu1=27 | RApmu1=24 | RApmu7=8 | The rest of the PMUs with lower
4 RA are not considered as
candidates for the Source Subset
Final split with minimum elements in PMU Source Subset
PMU Source Subset, Ds= {PMU1, PMU2} Each event has at least one of these two PMUs
in the Top 3 based on the R4

PMU Target Subset, D; = {PMU3, PMU4, PMUS, PMU6, PMU7}
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Additional 7 PMUs were selected randomly from the remaining set of PMUs, totaling
the final 19 PMUs in the PMU Source Subset. The remaining 19 PMUs were placed in the
PMU target subset, D;. A proportion of labeled time windows from D, were randomly
selected; selected time windows from D, were leveraged and knowledge was transferred to
D,. Then, related time windows selected for transfer from D; were combined with D; in a
dataset D",

Similarly, for the unsupervised, semi-supervised, and supervised classifiers, D; was
used as the training subset and D; was used as the test subset. Since the aforementioned
classifiers do not transfer related time windows to the target domain, all windows from the
set of PMUs in Dy were used for the prediction task.

Features for a certain time window are combined into a feature vector that contains 19
RA features. The process of creating labels y is identical to the process of the Temporal

Split experiment.

2.6 Experimental Setup

Extensive experiments conducted in our study are described in this section. Using
limited proportions of labeled data incorporated into the models we assessed and compared
the capabilities of our method to alternative models (unsupervised, semi-supervised, and
supervised) to detect events based on a limited proportion of labels, or without any labels
used. Experiments conducted included 2%, 5%, 10%, 25%, 40%, 55%, and 70% of
available labeled data, corresponding to 20, 51, 103, 259, 415, 570, and 726 available
labeled data instances respectively. Available data instances were randomly selected from

the source dataset Dy, whereas target dataset D; was fixed among all experiments. This does
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not apply to unsupervised learning algorithms since they do not incorporate any labels
during learning. The performance of the classifiers was evaluated using the area under the
receiver operating characteristic (AUROC) since this metric is the standard in event
detection tasks [35]. Other relevant performance measures including Precision, Recall, F-
1 score, and Matthews Correlation Coefficient (MCC) (also known as phi coefficient) were
also reported. The formal definitions of these metrics are very common and can be easily
found [35, 36, 37].

The different uses of leveraging knowledge from source to target domain are illustrated
in Section V-D and Section V-E. A variety of experiments were conducted to address the

following comparative questions:

e How do window sizes (time intervals) over which features were computed affect
the performance of the algorithms? Different window sizes varying from 2 seconds
to 1 minute were experimented to determine the best choice for the event detection
task.

e How does the percentage of labeled time windows in the source data affect the
performance of the models? Varying percentages of labeled source data ranging
from 2% to 70% were experimented to analyze the performance of the models and
analyze what percentage of labeled source data is sufficient for the models to detect

events.

2.6.1 Hyperparameter Tuning

Hyperparameter tuning using cross-validation is infeasible since labels of time

windows in the target domain are not available, and the distributions of the source data D;
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and target data D; are dissimilar [38]. Instead, the baseline and recommended
hyperparameters in comparative studies were used. LocIT has three significant
hyperparameters that need to be set. We used a transfer threshold ¢ of 0.7, which indicates
how closely related time windows to be transferred are and scaling that determines whether
to scale the source and target domain before transfer using StandardScaler. In the final
classifier, SSKNNO, the three significant hyperparameters were set as contamination of
0.34, k of 1, and strict supervision. The contamination is the threshold of anomaly score, k
is the number of nearest neighbors, and supervision indicates whether to use all time
windows in the set of nearest neighbors (loose) or use only windows that count the window
among their neighbors. Hyperparameters that were set for all classifiers are listed in Table
2.3, categorized by a learning type.

Table 2.3: Selected hyperparameters for the binary classifiers categorized by learning
type.

kNNO (weighted=True, k=10, contamination=0.34)
Unsupervised |iNNE (n_members=1000, sample size=16,
contamination=0.25)

MLPClassifier (alpha=0.3)
LogisticRegression (C=0.9)

Supervised |KNeighborsClassifier (n_neighbors=10,
weights="distance')

NuSvC (kernel='rbf'")

SSKNNO (metric='euclidean', k=1,
supervision="strict', weighted=True,
contamination=0.34)

SSDO (metric='euclidean', k=10,
contamination=0.39, alpha=0.2)

Semi-
supervised

Transfer LocIT (transfer_threshold=0.7, scaling='none',
Learning metric="euclidean’)
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2.7 Experimental Results and Discussion

2.7.1 Distributional Difference between Source and Target Datasets

To demonstrate the applicability of utilizing transfer learning techniques on PMU
measurements data for event detection, the three assumptions explained in Section III had
to be validated. Transfer learning is typically applied on datasets where traditional machine
learning modeling assumptions are violated since the marginal distributions of the source
and target subsets are dissimilar (covariate shift assumption), or the conditional
distributions are different owing changes in context, in which the meaning of the same
behavior might be different in both the source and target domains (concept shift
assumption). Therefore, in the initial experiment of our study Kolmogorov-Smirnov (KS)
test for comparing the similarity between two continuous distribution functions G and F,
was used to check whether the source and target distributions are identical by comparing
the underlying distributions F(x) and G(x) of two independent samples [38], where x
denotes to the RA features for a certain PMU. The null hypothesis was F = G, indicating
that the distributions of the source and target are identical.

We applied the KS test metric on the source and target subsets, where the source is a
I-dimensional array containing the RA features collected over the year 2016 for a single
PMU, and the target was a 1-dimensional array containing the RA features collected over
2017 for the same PMU. This process was repeated for each PMU. Furthermore, we
confirmed the results using the Empirical Distribution Function (EDF) by modeling and
sampling the cumulative probabilities for a data sample that does not fit standard

probability distribution.
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We obtained the p-values from the KS test metric for all PMUs. The maximum p-value
was 3.9e715 hence, due to a very small p-value (i.e., < 0.01) we can safely reject the null
hypothesis, indicating the source and target distributions are different. Figure. 2.2 shows
an example for one PMU to illustrate the distributional difference between the source and
target subsets. The top and bottom figures show the distribution of the same PMU over two

consecutive years.

Source

0.035 -
0.030 -
0.025 -
a 0020
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Figure 2.2: An example to illustrate the distributional difference between the
source (2016) and target (2017). X-axis is the time window RA values for a certain
PMU, and y-axis, P denotes to the probability that a certain RA feature will belong
to a certain pin. Both top and bottom figures show the distribution of the same
PMU over two years, where source contain RA features collected over 2016 and
target contain RA features collected over 2017.

Many reasons could lead to a distributional difference of PMU data collected from the
future. That might occur since power systems experience randomness of occurrence of

events depending on the circumstances, including but not limited to, weather, equipment
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failures, wear and tear, and the fact that operating conditions differ every year. Thus, this
experiment suggests that transfer learning could be more applicable than supervised

learning alternatives that assume the same distribution.

2.7.2 The Effect of Varying Percentages of Labeled Data

In order to study the effect of the amount of labeled source data on the performance of
our model versus other models, a variety of percentages of labeled time windows were
analyzed. Often, it is non-trivial to acquire labeled data or event logs for event detection
tasks since label extraction can be expensive and sometimes impossible to obtain. Thus,
this experiment is relevant and provides insights on what percentage of labeled data is
sufficient for the models to detect anomalous events. We randomly sampled 2%, 5%, 10%,
25%, 40%, 55%, and 70%, corresponding to 20, 51, 103, 259, 415, 570, and 726 of labeled
source data Dy and only considered these labeled time windows when performing a transfer.
Experiments were repeated five times and the results were averaged. This experiment was
conducted based on Temporal Split of the data described in Section V-D. The best
performing methods from three alternative learning types (i.e., unsupervised, semi-
supervised, fully supervised) were chosen and compared to the transfer learning method.

Figure 2.3 shows that the AUROC improves with more labeled data added to the source
subset on three datasets with different window dimensions, listed in Table I. The utilized
transfer learning method LoclT, outperforms unsupervised kNNO, semi-supervised
SSKNNO, fully supervised MLP, learning algorithms with limited or no labels used in the
source data. With only 2% of labeled source data used, corresponding to ~20 characteristic
events the transfer learning algorithm performed generally well, while the fully supervised

algorithm performed poorly. The gap widened between supervised learning and transfer
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learning algorithms as the labeled source data decreased. However, with >60% of labels,
supervised learning outperformed transfer learning with a slight increase in AUROC. There
were considerable discrepancies between supervised and transfer learning algorithms with
<10% of labels used in all experiments conducted. The unsupervised kNNOs curves are
straight lines because it is trained without using any labels and it only considers the target
data. This was included to visualize and compare with other algorithms. The unsupervised
algorithm was trained without any labels, outperformed supervised learning algorithm with
<5% of labels in 2-seconds time windows. With 1-minute and 30-seconds time windows,
unsupervised outperformed supervised learning with approximately <30% of labels used.
Unsupervised learning performed poorly compared to transfer learning and semi-
supervised algorithms with a small percentage of labeled data used, since labeled data can
assist with correcting the errors made by unsupervised detectors. The semi-supervised
algorithm’s performance was adjacent to transfer learning’s performance with >10% of
labeled data. Transfer learning’s performance was greater than semi-supervised learning
with <10% of labeled data since only related time windows were used to guide with the
event detection task. On average transfer learning yields an average increase in AUROC
of approximately 13% compared to supervised learning, and 5% compared to unsupervised
learning. This provides evidence that the proposed transfer learning approach can help with
PMU event detection tasks when labels are not available or are expensive to obtain.
Additionally, this shows that supervised learning algorithms rely heavily on labels and are

infeasible for detecting events with limited labeled data.

35



2-seconds 30-seconds 1-minute

.
09

’
’
087 1 08 Vil 0.8 /

07 07 07 74

== LocIT == Loc|T / == 0c|T
087 .0 SKNNO 0671 .0 SKNNO 08 / -0 SKNNO
-x= MLP -%- MLP -%= MLP

— kNNO — kNNO — kNNO

05%r T T T 05 T T 0.5+ T T T ™ T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 0 0 10 20 30 40 50 60 0

Y-axis: AUROC

X-axis: percentage of the labeled
source

Figure 2.3: Comparing performances of the proposed transfer learning algorithm
LoclIT based on varying percentages of labeled source data on different window
dimensions to three alternative learning types SKNNO, MLP, and kNNO, based
on AUROC metric. Performances improve with more labeled data added to the
source. Results are consistent and show that LoclT, always performs better with
limited labels used. This experiment was conducted based on a temporal split.

2.7.3 Transfer Learning vs. Baseline Anomaly Detectors

Table 2.4 compares the proposed transfer learning algorithm, LocIT to baseline
algorithms with different learning types based upon the best performing length of time
windows (i.e., 2-seconds) with only 2% of labeled data used to challenge the event
detection task based on Temporal Split and PMUs Split of the data. In both experiments,
transfer learning outperformed unsupervised, semi-supervised, and fully supervised
algorithms. Results were consistent among all experiments conducted on all datasets. With
sufficient amounts of labeled data available, supervised algorithms perform well. However,
when limited or no labels are available, unsupervised algorithms, semi-supervised, and
transfer learning with semi-supervised, outperform supervised learning algorithms.

Additionally, Table IV shows consistency of results where LoclIT outperforms other
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models with limited labeled data and shows significant improvement over supervised
algorithms (MLP, LR, KNN, SVM). Experiments conducted provide evidence that
Transfer Learning and Semi-supervised algorithms are more feasible than supervised

algorithms for event detection tasks when labels are scarce.

Table 2.4: Performance of various models trained using only 20 labeled
events based on Temporal and PMUs Split

Experiment | Model |AUROC] Precision | Recall |F1-score] MCC
LocIT 0.93 0.93 0.93 10.93 0.86
SSKNNO |0.90 0.92 0.92 10.92 0.83
SSDO 0.82 0.84 0.84 |0.84 0.67
2-sec. MLP 0.77 0.89 0.77 10.79 0.64
Temporal |LR 0.68 0.86 0.68 10.69 0.52
Split KNN 0.67 0.85 0.67 0.68 0.50
SVM 0.66 0.85 0.66 |0.66 0.48
kNNO 0.82 0.84 0.84 |0.84 0.67
iINNE 0.81 0.86 0.85 |0.84 0.69
LocIT 0.94 0.95 0.95 0.95 0.89
SSKNNO [0.90 0.93 0.92 10.92 0.84
SSDO 0.80 0.85 0.84 |0.84 0.68
S i T
PMUs Split e 1076 [0.85 0.82 081 0.6
SVM 0.72 0.87 0.72 |0.74 0.57
kNNO 0.76 0.83 0.82 |0.80 0.62
iNNE 0.86 0.90 0.89 10.89 0.84
Transfer Learning: LoclIT; Semi-supervised: SKNNO, SSDO;
Supervised: MLP, LR, KNN, SVM; Unsupervised: KNNO, iNNE

2.7.4 The Effect of Varying Time Window Sizes

In order to explore how the window size affects the performance of the models, a
variety of window sizes were analyzed, including 2-seconds, 5-seconds, 10-seconds, 30-
seconds, and 1-minute window sizes. Figure 2.4 shows that the AUROC improves with

shorter window sizes among both experiments Temporal Split and PMUs Split. Applying
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transfer learning algorithm on 2-seconds window size yields an approximately 7% increase
compared with 1-minute windows based on Temporal Split of the data, and 5% increase
based on PMUs Split of the data. The increase in AUROC is due to the nature of the
distance-based classifier. Each time window was manually inspected to make sure that the
start of the anomalous event fell within of the selected time window. Anomalous events
result in fluctuations (i.e., abnormal behavior) in the signal. As such, when detecting
events, distance metrics in shorter time windows highlight the deviation from normal
operation more than when longer time windows are used, since the anomalous event
corresponds to a shorter timeframe, whereas the rest of the signal corresponds to normal
operation. Hence, having a longer time window can dilute the event effect in the window.
Fluctuations impact the RA feature values owing to the difference between the minimum
and maximum values of positive sequence voltage magnitude and frequency. There was
no significant increase in AUROC between the 2-second and 5-second windows. There
was a significant improvement in AUROC when detecting events based on 2-second
windows compared to 1-minute windows. The increase in AUROC observed when
comparing 1-minute labels to 2-second labels can be explained by the smaller fluctuation
of normal operation within a shorter time window. Experiments conducted show that
shorter time windows result in a higher AUROC. Thus, the size of the time windows was
determined based upon the size that exhibited the best performances formed on the results

obtained from the conducted experiments.
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Figure 2.4: LoclIT’s performance based on AUROC by varying
window sizes based on temporal and PMUs data split.

Figure 2.5 demonstrates the fluctuations caused by longer time windows based upon
two normal operation instances captured in a 2-second and 1-minute time windows. 1-
minute time window shows more fluctuations occurred during the normal operation, and
the 2-second time window showed slight fluctuations occurred during the normal
operation. Thus, the use of a shorter time window exhibits less fluctuation resulting in a

better performance.
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Figure 2.5: The top figure shows 1-minute time window of normal operation,
and the bottom figure shows 2-seconds time window of normal operation. Each
colored line corresponds to a certain PMU. Shorter time windows produce less

fluctuations, resulting in better performance in detecting events.

2.7.5 Leveraging Knowledge on Temporal and PMU Splits

Two experiments were conducted based on different ways of leveraging the data from
source to target to test and ensure the model’s robustness. Different data splits are
introduced in Section V-D and Section V-E. Figure 2.4 shows the performance of transfer
learning algorithm, LoclIT, based on Temporal Split and PMUs Split of the data. As can be
seen, leveraging limited knowledge temporally, from the year of 2016 and transfer to 2017
results in a slight decrease in AUROC, which can be explained by the randomness of

occurrence of events depending on the circumstances that might differ from a year to
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another. Leveraging knowledge from a set of PMUs to another set of PMUs shows an
increase in AUROC, but the difference is not significant. Splitting the source and target
datasets temporally yields a decrease of approximately 1.5% compared with the PMUs split
of the data. Thus, this shows that it is feasible to transfer knowledge from historical data
and apply it on time windows from the future, and/or time windows from a specific set of

PMU s to another set of PMU .

2.7.6 Misclassified Time Windows

We examined the time windows that were misclassified by the transfer learning
approach to event detection to develop a better understanding of the nature of events that
led to errors in detecting events. Both false positives (FPs) and false negatives (FNs) were
observed. FPs are events that were misclassified as anomalous operation, but in fact, they
were normal operations. FNs are the events that were misclassified as normal operation,
but in fact, they were anomalous events. A pattern was observed based upon visually
inspecting the misclassified events. These events were local events, meaning that they were
not observed by most of the PMUs in the interconnect. Moreover, their impact on local
PMUs in terms of prominent changes in voltage or in frequency is weak as compared to
major events that might precede them. Recall that the input to the algorithm is a vector of
RA features from all the PMUs. The difference between the maximum and minimum
voltage and frequency in these instances was not as substantial, resulting in a smaller value
of RA. Thus, since most PMUs did not observe these changes, false classification (i.e.,
errors) occurred. Additionally, since the employed semi-supervised detector is distance-
based, the weak changes in voltage or in frequency affected the distance metric due to

fluctuations in the time window, hence, the detector misclassified these instances.
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Furthermore, upon visual inspection of the misclassified events, we observed
unrealistic values of frequency in the order of thousands of Hz or sudden drops to zero in
the value of voltage and frequency, since no data cleansing was performed prior to the
extraction of the RA features. Hence, this led to false classifications as well.

Figure 2.6 provides two 2-second time windows that contain events. The top figure
shows an apparent event with a significant drop in voltage and was observed by most
PMUs, hence, it was classified correctly as anomalous event. The bottom figure shows a
misclassified time window since there was a very minor drop in voltage and did not affect

most of the PMU s (i.e., local event).
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Figure 2.6: Both the top and bottom figures show 2-second time windows that
contain events. The top figure shows an obvious event that was observed by most
PMUs and was classified correctly as anomalous event. The bottom figure shows
a very minor dip in voltage that did not affect most of the PMUs; hence, it was not
classified correctly. The bottom time window was classified as normal event.

42



2.7.7 Statistical Significance Analysis

Statistical analysis was performed to assess the significance and stability of the
proposed method’s performance. To address how frequently we can expect the proposed
algorithm LoclT to obtain the same performance measured based upon the AUROC metric
under different conditions, we randomly selected 19 PMUs for the source data and the
remaining 19 PMUs were the target data. For consistency with experiments conducted in
this study, we leveraged only 20 labeled time windows from the source data to predict the
target domain. We repeated the random selection of PMUs 10 times and obtained results
from all algorithms used in this study. Then, we employed a t-test with a significance level
of 0.1 to obtain confidence intervals with 90% confidence level for the average AUROC
for each algorithm individually. Table 2.5 summarizes the average AUROCSs and their
corresponding two-sided confidence intervals. In general, confidence intervals obtained for
the algorithms are very small (< 0.05), hence, it is possible to rely on these algorithms to
obtain a similar AUROC with 90% confidence level. LoclT obtained an average AUROC
of 0.94 with a confidence interval width of 0.0032, meaning that the average may vary up
to £0.0032 outperforming baselines with high confidence.

Moreover, an additional analysis was performed to assess how statistically more
significant the performance of LoclT is, compared to the other algorithms. We calculated
the differences between LocIT’s AUROC and baseline methods and employed a t-test. The
p-values obtained were very small (< 0.05). The p-value obtained by comparing LocIT to
the second best-performing method SSKNNO was 1.4e~8, indicating that LocIT’s

performance is significantly better than other baselines.
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Table 2.5: Summarizes the average AUROC and their corresponding
two-sided confidence interval, calculated at 90% confidence level.

Learning Type Model Average AUROC and
Confidence Interval

Transfer Learning LocIT 0.94 £+ 0.0032
Semi-supervised | SSKNNO 0.90 £ 0.0036
SSDO 0.81 £0.0078
Supervised MLP 0.74 £ 0.0058
LR 0.72 £ 0.0074
KNN 0.76 £ 0.0042
SVM 0.72 £ 0.0199
Unsupervised kNNO 0.75 £ 0.0037
iNNE 0.85+0.0113

2.8 Extension and Enhancement to Perform Transfer Learning on PMU

Data from a Power System to Detect Events in Another System

The experiments conducted show that the proposed transfer learning approach is
capable of detecting events by leveraging minimal labeled time windows from a related
task within PMU data of the Western Interconnection of the U.S.A. Upon promising results
reported in the previous study, the proposed technique could be extended to leverage
labeled time windows from the Western Interconnection of the U.S.A. and transfer learning
to the Eastern Interconnection of the U.S.A. for event classification task. The challenge of
this task revolves around different number of PMUs at two interconnections, resulting in
different dimensions of feature vectors. Moreover, the distance metric used in the semi-
supervised detector (SSKNNO) might be less effective for the Eastern Interconnection

where a much larger number of PMUs were observed. Hence, implementation of an
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appropriate distance measure that is suitable for high dimensional feature vectors might be
required to enhance the event detection task.

Therefore, we extended and enhanced the transfer learning method to leverage related
labeled instances from one power system to detect events from another. Set of experiments
conducted show that events in one power system can be accurately detected by reusing a
small number of carefully selected labeled PMU data from another without the need for
additional labeling. We demonstrate this approach with a use of detecting events from
historical PMU data recorded in the Eastern Interconnection in the USA by using similar
labeled PMU data from the Western Interconnection. This technique may be propagated to
other situations where some of the events’ data from one power system may be applied to
enhance learning in another. This enhancement addresses the nonunified dimensions of
feature vectors when leveraging data from a power system to detect events from another,
and enhanced the semi-supervised detector by using a distance metric that is more
applicable for the dimensions of PMU data. Our approach demonstrates superior
performance over various state-of-the-art machine learning algorithms (i.e, unsupervised,

semi-supervised, and supervised).

2.8.1 Related Work

In [2], TL was applied to detect events using PMU measurements by transferring
relevant labeled data from a power system collected in one year (2016) to detect events
from future instances (2017) in the same power system. In [39] TL technique in conjunction
with deep learning model was utilized to enhance the detection of events in one power
system using a model pre-trained on another. The use case of using PMU recorded data

from the Western and Eastern Interconnections (WI and EI) in the US demonstrates that
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the use of TL enhances the performance by leveraging labeled data from both WI and EI
to enhance the detection on WI. This model transfers parameters of the pre-trained model,
trained on EI to be used as the initial parameters of the model trained on the data of the WI.
As illustrated in Sec. IV, the quality of data of the EI is poor compared to data from the
WI, so detecting events from WI based on EI only might be insufficient. There are some
limitations of the study reported in [39]: a) its proposed model does not detect events from
one power system based on another without utilizing labeled data from both power
systems, b) it utilizes a fully supervised learning estimator and considers only line,

generator, oscillation events, and normal/healthy signals.

2.8.2 New Event Detection Approach

To address the mentioned gaps, our paper extends and enhances studies reported in [2,
39] by exploring the benefits of knowledge transfer between two independent power
systems, such as the WI and EI in the USA using a transfer function combined with a semi-
supervised detector to identify events based on minimal labeled data of the source task
only, and it downgrades to unsupervised mode if no related labeled data instances were
available in the source power system.

To address the mentioned issues, we propose the following two methods based on TL

techniques:

1) Spatial transfer, sLocITR (spatial localized instance transfer reduced), which
leverages labeled data from one power system to detect events in another system.
Our approach does not require target labels, since it relies only on related instances

from the source power system to detect events from the target power system, while
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the study reported in [39] requires target labels since it leverages labeled data from
both power systems (source and target) to detect events from the target power
system.

2) Spatiotemporal transfer, stLocITR, based on leveraging labeled data from one
power system integrated with a small number of labeled data from another power
system to detect future events. Table 2.6 summarizes the major differences between

the proposed approach and studies reported in [2, 39].

Table 2.6: Comparing the proposed method to transfer learning

alternatives.
Target
Study Source |Target |[Transfers |Detector Labels
Temporally |Semi- Not
(2] Whhast | Wluwre \p o1ated data supervised |Required
[39] EI & WI|WI Parameters |Supervised |Required
Spatially Semi- Not
sLocITR \W1 El Related data |supervised |Required
Spatio- .
stLocITR ]\;I &EIfumre Temporally Seml-i d EOt ired
past Related data Supervise equire

2.8.3 Compression and Unification of Data Dimension

To transfer labeled instances from one power system to another, we project time
windows (7Ws) from the source and target datasets of the two power systems with different
numbers of PMUs to latent spaces of unified dimensions while preserving the properties
of the original data. This is achieved by an Autoencoder, i.e., an unsupervised Neural
Network (NN) for dimensionality reduction. Autoencoders utilize multiple neural
computing layers to learn non-linear transformations of data to a latent space [40]. Other
dimensionality reduction techniques such as Principal Component Analysis (PCA) were
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also considered but failed to learn a representation that preserves the properties of the
original data since such techniques are limited to linear transformations only [12]. The
feature vectors (7Ws) from both datasets were extended to 200 dimensions by padding with
zeros, thus standardizing the number of dimensions in the two datasets. In the use case with
the data from WI and EI, two fully connected layers with batch normalization were used
to learn how to unify the 35-dimensional feature vectors from both WI and EI datasets. To
enhance the performance of the ML models, the unified data were scaled to a standard

range using Standard Scaler [2], defined as z = %

2.8.4 Data Processing

PMU Data. We utilize historical field measurements collected over two years, 2016-
2017 from 38 PMUs placed in the WI, and from 178 PMUs placed in the EI in the U.S.
electric power system. The measurements from EI are collected at 30 frames per second
(fps), while measurements from WI are collected at 30 fps or 60 fps. Locations of PMUs
and the system topology are not provided to us. Some outliers, data duplicates and missing
data are observed in both datasets but do not affect our method significantly [41]. Non-
uniform number of PMUs and data quality issues make this event detection task complex.
WI dataset contained higher quality measurements than the EI dataset, since EI contains
missing data ranging from ~1% to ~70%, whereas missing data of WI ranges from ~1% to
~30%. Thus, we utilize labeled data from WI to detect events from EI, without using any
labeled data from EI.

Event Log. Similarly, both WI and EI datasets contain phasor measurements associated

with line outages, transformer outages, and fundamental frequency deviations that are
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labeled in the event log. Visual inspection of these events revealed that some events evolve
from one type to another, hence, they were considered “complex” events. Complex events
include events labeled generator, capacitor, bus, and oscillation. The provided event log
most likely was obtained from the SCADA data, and therefore it contains temporally
imprecise event labels (start time with a precision of 1-minute). In addition, due to the
sparsity of PMU locations in the network, log events did not necessarily occur in the
vicinity of the PMUs used in this study. To improve the temporal precision of the log
events, visual inspection was performed by the domain expert on our team. Then, we used
a more precise start time of the events confirmed through visual inspection. The study
reported in [2] experimented various dimensions of 7Ws, 2-second TWs resulted in
performant classification results; hence, the dimension of 2-seconds was used. Table 2.7
presents the number of labels used for each proposed method.

Feature Extraction for EI and WI data was performed as described in Section 2.5.3.

Table 2.7: Number of labels per category from both WI and EI datasets.

# Event # Normal # Event # Normal
Method Labels from |Labels from |Labels Labels from
WI WI from EI El
sLocITR 1038 1846 0 0
stLocITR 1038 1846 849 762

2.8.5 Experimental Setup

We propose two TL methods based on different splits of the source and target datasets.

1) Spatial transfer, sLocITR, where labeled TWs were selected from D, which

consisted of 7Ws from WI and were used to detect events in D; which consisted of
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unlabeled 7Ws from EI. In this experiment, D contained the entire data of the WI,
while D; contained the entire data of the EI.

2) Spatiotemporal, stLocITR, where Dy = WI U Elzg6; D:= El2017; where WI denotes
the entire TWs of the WI, El>;6 denotes the TWs of the EI collected from 2016,

used to detect events in El»9;7 which denotes the TWs of the EI from 2017.

We answer the following empirical questions:

1) How does the proposed TL method perform compared to alternative baselines?
2) How does the number of labeled source data selected from D, affect the

classification accuracy for events in the target domain D;?

The results validate our hypothesis and illustrate the benefits of employing TL
techniques in conjunction with a semi-supervised detector to leverage knowledge and
detect events based on minimal labeled data. To address question 2, we selected the top p
related instances excluding redundant/similar instances to experiment how the proportion
of labeled data affects the performance; where p € {20, 51, 103, 259, 415, 570, 726}
corresponding to 1% to 25% of labeled source data instances.

The performance of the TL algorithm was evaluated by comparing it to common
conventional ML algorithms of varying learning types described in Sec. III (i.e.,
unsupervised, supervised, and semi-supervised). The following metrics were used to
evaluate the algorithms: The area under the receiver operating characteristic (AUROC),

Precision, Recall, and F-1 score [35].
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2.8.6 Results and Discussion

WI and EI Distribution Comparison. To validate the applicability of the TL on PMU
data, we utilized Kolmogorov-Smirnov (KS) metric to test if the cumulative distribution
functions of the source WI and target EI datasets are similar. KS metric was applied to
compare two independent samples on the source and target system, where the source is
represented as a 1-dimensional array that contains features from the WI and the target is a
I-dimensional array that contains features from the EI. We obtained p-values by iteratively
computing similarities between two independent samples. The maximum p-value was
2.7e713, thus, since the obtained p-value is very small, we can safely reject the null

hypothesis, implying distributions of WI and EI are different.

2.8.7 Transfer Learning versus Baseline Event Detection

Table 2.8 presents and compares the performance of the proposed TL methods stLocITR
and sLocITR to alternative baselines of various learning types. Consistent results demonstrate
the effectiveness of the proposed methods and show that both methods outperformed fully
supervised, semi-supervised, and unsupervised algorithms. The sLocITR method selected
and transferred 570 (out of 2,884) related data instances (543 abnormal events + 27 normal)
excluding redundant instances from WI to detect events from EI. stLocITR transferred
additional 362 (out of 1,611) temporally disjoint related cases from EI, resulting in
increased AUROC by 11% when compared to the best performing supervised and
unsupervised learning algorithms, and a 5% improvement when compared to the best
performing semi-supervised learning algorithms. sLocITR increases the AUROC by 12%

when compared with the best supervised learning algorithm, 10% improvement when
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compared with the best unsupervised learning algorithm, and 3% improvement when
compared with the best semi-supervised learning algorithm. Unsupervised learning
algorithm, kKNNO outperformed supervised variant using the Spatial split, indicating that
the source and target label sets differ significantly. In other words, there are many input-
output relationships in the target domain that do not have similar counterparts in the source.
However, the underlying anomaly patterns remain similar. Unsupervised learning is based
on detecting anomaly patterns only from the input signals, whereas supervised algorithms
attempt to learn the relationship between the input signals and the output labels, which
might be misinforming for some cases due to the distributional difference (label sets) of

both interconnections.

Table 2.8: Comparative analysis of the utilized transfer learning
methods to various baselines using the selected labeled tws from d;.

Method |Learning Type |Model AUC |Precision [Recall |F1
Transfer

) stLocITR (0.90 [0.90 0.90 10.90
Learning

Semi- SSKNNO [0.85 [0.86 0.86 ]0.86

supervised SSDO 0.84 [0.86 0.85 |0.85

Spatio- RF 0.79 [0.79 0.79 [0.79

temporal S g [KNN 0.79 0.80 0.78 10.79

UPEIVISEE  INVLP 0.74_0.82 0.73  [0.77

SVM 0.72 10.81 0.70 10.75

Unsupervised kNNO 0.79 10.80 0.79 10.79

iNNE 0.74 10.75 0.73 10.74

Transfer =1, oITR [0.87 087 [0.87 [0.87
Learning

Semi- SSKNNO [0.84 [0.84 0.84 10.84

supervised SSDO 0.83 ]0.85 0.84 0.84

Spatial RF 0.75 10.77 0.74 10.75

Supervised KNN 0.72 10.75 0.71 ]0.73

MLP 0.68 10.77 0.66 ]0.71

SVM 0.65 |0.77 0.63 10.69

Unsupervised kNNO 0.77 10.79 0.76 10.77

iNNE 0.74 (0.76 0.73 10.74
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Experiments provide evidence that TL-based methods are more accurate than
unsupervised, supervised, and semi-supervised alternatives for detecting events from one

power system based on labeled data of another.

2.8.8 The Effect of Using Various Quantities of Labeled Data

Often, obtaining event logs or labeled data for event detection tasks is non-trivial or
costly. Thus, we studied the effect of using various amounts of labeled source data to assess
what number of labeled data is adequate to detect events from the EI of the U.S.A. based
on minimal labeled data from the WI of the U.S.A. (Spatial Split). We selected from D 20,
51, 103,259,415, 570, and 726 events to detect events from the target data D,. We repeated
the experiments 10 times and reported AUROCsSs, and their corresponding two-sided
confidence interval calculated at 95% confidence level, presented in the shaded area of
Figure 2.7 We selected the best methods from various learning types (i.e., fully supervised,
semi-supervised, and unsupervised) and compared them with the proposed TL method
stLocITR.

Figure 2.7 shows that the TL method outperforms supervised learning on a large
benchmark since there is a distributional difference between the D; and D;. Results show
that the TL method outperforms baselines with varying quantities of labeled data
incorporated. The straight line of the unsupervised learning algorithm kNNO with no labels
incorporated is included for comparison. When sufficient labeled data are incorporated,
semi-supervised SSKNNO outperforms unsupervised learning. The increase in labeled
source data is not found to increase the performance of the supervised algorithm, since the
source and target label sets differ greatly. This study demonstrates that transferring 570

labeled data instances from the WI are sufficient to detect events from the 3,085 instances
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of the EI PMU data. We randomly select a proportion of labeled data from Dy to train
supervised and semi-supervised learning algorithms, whereas the TL algorithm uses the
most relevant instances from Ds. When comparing sLocITR with a supervised learning
algorithm, Figure 2.7 shows that selecting the top relevant instances results in not only
better performance, but a more stable model since sLocITR has a significantly lower two-
sided confidence interval than RF. Table 2.9 illustrates event types when transferring the

top selected 100, 300, and 500 instances.

1.00
—d— sLocITR
0.95 4 --@+ SSKNNO
—&- RF
0901 — kNNO
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S 0851
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o
<
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Number of labeled instances from WI

Figure 2.7: Comparing the performance of the proposed method
sLocITR to baselines based on varying number of labeled source
data evaluated using AUROC and their corresponding two-sided
confidence interval calculated at 95% confidence level.

This experiment shows that supervised learning algorithms are infeasible when
leveraging knowledge from one interconnection to another due to covariate and concept

shift assumptions and when labels are scarce and difficult to obtain.
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Table 2.9: Events transferred per category among Top 100, 300, and

500.

# Labeled|, .

Events Line  |Frequency |Transformer |Complex |Normal
100 68 |15 3 3 3

300 165 |71 3 45 16

500 269 103 3 103 R

2.8.9 Misclassified Events

To further comprehend the errors made by the TL method, a domain expert visually
inspected the misclassified 7Ws. The most common occurrence of these 7W:s is the presence
of low-frequency oscillations that the algorithm was unreliable in detecting as only 0.3% of
all events in WI were labeled as oscillations even though these events are more common.
Low-frequency oscillation events are difficult to capture because their impact is most

obvious after performing modal analysis.

2.9 Conclusion

Since obtaining extensively labeled data can be labor intensive, and requires domain
knowledge, it may be too costly, especially, when working with big datasets. The results
of our study show several benefits of the transfer learning approach utilized for event

detection tasks:

e [t yields an average increase in AUROC of approximately 13% compared to the
best performing supervised learning algorithm, and 5% compared to the best
performing unsupervised learning algorithm based on Temporal Split experiment.

The significant accuracy improvements were evident when relying on only 2% of
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labeled data corresponding to 20 characteristic events. Further, it yields an 8%
increase in AUROC compared with alternative state-of-the-art algorithms based on
leveraging data from WI to detect events from EI, sLocITR.

The performance is less affected by the decrease in the number of available labels,
and algorithm provides high performance even with only 20 representative labeled
events used. In comparison, the supervised learning algorithms are infeasible for
event detection in this domain when labels are very limited.

The proposed approach is robust to temporal and locational options for splitting the
PMU data. Consequently, it is feasible to leverage and transfer knowledge from
historical PMU data to improve learning on future unlabeled instances, and to
transfer selected labeled events from a specific set of PMUs to another set of PMU .
The reported results provide evidence that identifying a variety of event types,
including line faults, transformer outage, and frequency events by a model that can
be deployed to detect events in future PMU data while avoiding challenges faced
by online learning. Furthermore, reported results show that the proposed transfer
learning method is more applicable than alternative baselines when reusing labeled

instances from one power system to detect events from another.

2.10 Disclaimer

This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government nor any agency thereof, nor any

of their employees, makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any information,
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apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency

thereof.
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CHAPTER 3

DEEP LEARNING VS TRADITIONAL MODELS FOR
PREDICTING HOSPITAL READMISSION AMONG

PATIENTS WITH DIABETES

3.1 Introduction

Hospital readmission is an undesirable, costly outcome for both patients and hospitals
[42]. Patients with diabetes are at higher risk of readmission within 30 days of hospital
discharge (30-day readmission) than patients without diabetes [43-45]. Of the nearly 9
million discharges of diabetes patients annually in the US, [46] almost 2 million are 30-
day readmissions, corresponding to at least $20 billion in hospital costs [47-48]. Identifying
higher risk patients with diabetes would enable the targeting of interventions to those at
greatest need, optimizing the cost-benefit ratio.

We previously published on the development and validation of the Diabetes Early
Readmission Risk Indicator (DERRI™), a logistic regression (LR) model that predicts the
risk of all-cause 30-day readmission among patients with diabetes [49]. The DERRI™ was
designed for use at the point of care based on user input of 10 factors. In split-sample
internal validation, performance was modest (Area Under the Receiver Operating
Characteristic Curve, AUROC 0.69). In external validation studies, the DERRI™ AUROC

was 0.63 and 0.80 [50,51]. In addition to variable predictive performance, application of
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the DERRI™ requires manual data collection and entry, which are major barriers to its use
in clinical practice.

In other published work, we showed that adding variables to the DERRI™ substantially
improves predictive accuracy to an AUROC of 0.82 [52]. This expanded model
(DERRIplus), however, is not feasible for use at the point of care and included employment
status, which is not routinely documented in Electronic Health Records (EHRs). Therefore,
this model cannot be directly translated to an automated, EHR-integrated tool. There is an
unmet need for a readmission risk prediction tool for patients with diabetes that is both
accurate and easy to use.

Over the past few years, multiple machine learning (ML) models for predicting 30-day
readmission risk of diabetes patients have been published. Several traditional ML modeling
approaches have been explored, including random forest (RF), k-nearest nearest neighbor,
naive Bayes, support vector machine (SVM), AdaBoost, and multilayer perceptron (MLP),
with a wide range of performance (AUROC 0.53-0.99, accuracy 0.54-0.99) [52-63]. Deep
learning (DL) models have also been developed for predicting readmission risk of diabetes
patients, also with variable performance (AUROC 0.61-0.97, accuracy 0.69-0.95), none of
which exceeded that of the best traditional ML models [64-68]. Two of these studies
demonstrated a clear advantage of DL approaches over traditional ML models [64,65], and
two studies found marginal benefit with DL approaches [66,68]. Comparisons of model
performance across all these studies, however, is limited by the lack of standardized
reporting of performance characteristics and variable approaches to testing. Therefore, it
remains unclear if DL models outperform traditional ML models at predicting readmission

risk for patients with diabetes.
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Interestingly, all these prior models were developed on the same dataset [69], except
for the DERRI™ and DERRIplus. This publicly available dataset contains hospital
encounters with a diagnosis of diabetes and a length of stay between 1 and 14 days at one
of 130 US hospitals between 1999 and 2008. Only 3 International Classification of
Diseases, Ninth Revision (ICD-9) diagnostic codes per encounter, and only 2 laboratory
values (blood glucose and HbAlc) were recorded. Lastly, there is no distinction made
between planned and unplanned readmissions. Thus, even the best of these models may
not perform as well in patients today. More current, generalizable models are needed.

Therefore, to address these gaps, the aims of the current study were as follows: 1) To
develop DL models for the prediction of unplanned, all-cause 30-day readmission, 2) To
compare performance of the DL models to traditional ML models, 3) To explore model
performance across a range of prior EHR encounters from 1 to 100 being included in model
development, and 4) To compare a DL model developed using a subset of laboratory tests
selected by domain knowledge with a DL model developed using all available laboratory
tests. All models were developed and tested in a dataset of 2,836,569 encounters of 36,641
patients with diabetes using demographics, vital signs, diagnostic and procedure codes,
medications, laboratory tests, and administrative data as defined by the National Patient-
Centered Clinical Research Network (PCORnet) Common Data Model (CDM) [70]. This

study esablishes the foundational framework and baseline for the subsequent chapters.
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3.2 Materials and Methods

3.2.1 Definition of Patient Cohort

Inclusion criteria were patients with at least one discharge from any of the three Temple
University Health System hospitals in Philadelphia, PA, between July 1%, 2010, and
December 31, 2020, and diabetes defined by at least one of the following: a diagnosis of
diabetes (ICD-9: 249.xx or 250.xx or ICD-10: E08.xxx through E13.xxx); a Hemoglobin
Alc (HbAlc) level >6.5%, or an order for a diabetes specific medication. Encounters were
excluded for patient age <18 years, discharge by transfer to another hospital, inpatient
death, a diagnosis of gestational diabetes (ICD-9: 648.0x or ICD-10: 024.4x), a diagnosis
of prediabetes (ICD-9: 790.29 or ICD-10: R73.03), or pregnancy (positive beta human
chorionic gonadotropin laboratory test within 90 days before or after the encounter).

Patients were sorted into one of 2 groups by readmission status: those who had at least
one 30-day readmission and those who did not. Among the patients who had a readmission,
one admission-readmission pair was randomly selected for analysis. Among the patients

who did not have a readmission, one admission was selected randomly for analysis.

3.2.2 Definition of Variables and Data Processing

Tables were extracted from the CDM for each of the following domains: encounters,
demographics, diagnoses, laboratory tests, medication orders, procedures, and vital signs.
Because features of a given encounter existed in multiple tables, tables were merged by a
unique identifier. Merging extracted tables resulted in a sample containing all records for

a given encounter. This resulted in substantial missingness. Thus, missingness was used as
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a separate feature. For continuous features, missing data were replaced with 0, while
categorical features were replaced with a unique category.

A total of 23 features were used as input to the models: 14 were extracted from the
CDM and 9 were aggregated. Extracted features were: 1) Encounter type (Inpatient,
Emergency Department, Observation Stay, Ambulatory Visit, Other Ambulatory Visit,
Telehealth and Other; 2) Discharge Status (Assisted Living Facility, Against Medical
Advice, Expired, Home Health, Home/Self Care, Hospice, Nursing Home, Rehabilitation
Facility, Skilled Nursing Facility; 3) Sex; 4) Hispanic; 5) Race (American Indian/Alaska
Native, Asian, Black, Pacific Islander, White, other/no information); 6) Tobacco (Current
user, never user, former user, passive exposure, other/no information); 7) age; 8) Diagnosis
Clinical Classification System (CCS) codes [70]; 9) Procedure CCS codes [70]; 10)
Laboratory results; 11) Medication orders within 1 year before each encounter; 12)
Diastolic blood pressure; 13) Systolic blood pressure; and 14) Body mass index (BMI).
Aggregated features were: 1) Elixhauser conditions: a binary feature indicating the
presence or absence of each condition [71]; 2) Duration of admission (length of stay in
days); 3) number of procedure codes before conversion to CCS code; 4) number of
diagnosis codes before conversion to CCS code; 5) number of days since the prior
encounter regardless of encounter type; 6) number of days since the prior inpatient,
observation or emergency department encounter; 7) number of days since the prior
encounter of other (non-hospital) encounter types; 8) number of inpatient, observation and
emergency department encounters before the current encounter; and 9) number of other
(non-hospital) encounters before the current encounter. ICD-9 codes were converted to

ICD-10 codes to unify the code format. ICD-10 codes and procedure codes were converted
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to CCS codes. Based on domain knowledge, medications relevant to diabetes were
categorized as follows: diabetes medications by class, cholesterol, corticosteroids, renin-
angiotensin system (RAAS) blood pressure agents, and non-RAS blood pressure agents.
Other medications were ignored. Features found not to be reliable, mostly missing, or
correlated were removed. Outliers in features such as dates, results, height, weight, BMI,
and blood pressure (systolic and diastolic) were removed by observing the data
distributions, percentiles, and domain knowledge. Missing values were treated as another
category that indicates that a parameter was not collected in relation to the encounter. The
primary outcome for model prediction (y) was unplanned, all-cause inpatient readmission
within 30 days of an inpatient encounter discharge as defined by the Centers for Medicare
& Medicaid Services (CMS) [72]. Based on the CMS definition, only the first readmission
within 30 days was analyzed.

To prepare the data for machine learning models the following data preprocessing
techniques were performed. Categorical features were one hot encoded; continuous and
discrete features were normalized using min-max normalization techniques [73], defined

as:

_ x—min(x) 3.1
"~ max(x) — min(x)

!

There were different numbers of recordings in each encounter for each of the following
features. Thus, the following statistical values were computed instead. For diastolic and
systolic blood pressures, we calculated minimum, maximum, and mean values. For BMI,
minimum, maximum, mean, and coefficient of variance were used. These statistical values

where normalized and used as features. Morcover, the number of features differed at
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encounters due to the different number of laboratory tests, diagnoses, and procedures
because an encounter could have multiple diagnosis and/or procedure codes, or none. To
remedy this and unify the dimensionality of feature vectors, the following data
representation techniques were used to enhance the learning of the models. For diagnosis
and procedure codes, we used the representation of one-hot encodings, where each value
was set to 0 or 1, indicating whether a diagnosis/procedure code existed or not for each
encounter. We modified this data representation technique slightly for laboratory tests
because each test had an associated result. Hence, we replaced 1, which indicated a code
exists, with the laboratory result. Laboratory results were normalized using Equation 1.
Because results were of different units and measures, when normalizing laboratory results,
we considered the minimum and maximum for each laboratory code separately. This
technique created a high dimensional sparse array due to the many unique codes. Then, we
utilized Singular Value Decomposition (SVD) algorithm to learn an embedding and
reduced dimensionality. SVD was used since it does not assume a square matrix as an input
and better for sparse data [74]. Laboratory tests were reduced to 50 components, procedure
codes were reduced to 45 components, and diagnosis codes were reduced to 25
components. Different numbers of components were explored, and the sum of variance
ratio was observed to determine the optimal number of components to reduce
dimensionality. All features were concatenated in a feature vector for each encounter. SVD
was applied on each encounter separately to reduce and unify dimensions; dimension of
encounters was reduced to 50 features per encounter. Then, we concatenated all encounters

for a given patient in a feature vector ordered sequentially by admission date. The class
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distribution was 27,511 patients without readmission (negative class) and 9,130 patients

who were readmitted (positive class).

3.2.3 Experimental Approaches

We conducted extensive experiments using the EHR data to address the following

objectives:

e Predict whether patients with diabetes will be readmitted within 30 days.

e Compare the performance of the utilized DL methods with several traditional
models.

e Analyze how many prior encounters (i.e., historical data) within 2 years is optimal
to predict readmission.

e Evaluate the effects of incorporating all laboratory tests in the data versus learning

from a subset of tests chosen by a domain expert.

In this study, DL models take as an input a 3-dimensional tensor p x e X f to represent
[ features for each of e encounters for p patients. In contrast, in traditional models, data is
typically represented as a 2-dimensional matrix, with all features of all encounters
corresponding to a single patient concatenated in a long feature vector. The dimensionality
of each encounter was reduced and unified to 50 features, hence, in a deep model f is of
size 50. In a traditional model feature vector consists of all encounters and therefore is of
size e x50. Patients have different numbers of encounters resulting in a nonuniform
dimensions; hence, feature vectors were padded with Os to achieve a unified form. Data
representation used as input for DL and traditional models is illustrated at the left and right

panels of Figure 3.1, respectively.
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Figure 3.1: Representation of data input to the deep learning models (left),
and traditional models (right).

To model heterogenous sequential data, we developed 2 variants of DL models and
compared both versus several traditional models used as baselines. DL models used in our
study were: 1) 1-way Long Short-Term Memory (LSTM) networks, which are a variant of
Recurrent Neural Network (RNN) that is capable of learning order dependence in
sequential data [73]; and 2) Bidirectional Gated Recurrent Unit (GRU), which is another
variant of RNN. Traditional models used as baselines were: 1) Random Forest (RF), an
ensemble method for classification and regression; during training, it constructs multiple
decision trees [71]; RF frequently achieves the state-of-the-art performance in existing
literature on predictions using medical data. 2) Multi-layer Perceptron (MLP), a simple
neural network model that does not account for temporal information. MLP consists of
multiple layers of perceptron and performs backpropagation learning and utilizes a non-

linear activation function [72]. 3) Logistic Regression (LR), an interpretable model used
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frequently in existing literature of readmission predictions and applied on medical data;
and 4) AdaBoost, which is less prone to overfitting as its input parameters are not jointly
optimized. The DL models were implemented using “Keras” Python libraries, a high-level
API of “TensorFlow”. “Scikit-learn” library was utilized to implement traditional models
in Python.

The architecture of the proposed model, LSTM, comprises 128 neurons, a sequential
layer, a reshape layer that was used to reshape the input to 3-dimensional tensor, and a
masking layer with a mask value of 0 used to skip the timesteps for which the data were
missing. Since padding with Os was performed to unify dimensions, the masking layer was
utilized to avoid any computation with the missing values in all layers following the
masking layer, hence, missing values were not accounted for during learning. Additionally,
a dropout was added between hidden and output layers. Utilizing this technique to
randomly select a given percentage to drop, which is a common regularization technique
that assist the model learn general pattern in data.

RNN is a variant of neural networks, which consist of hidden neurons that are capable
of analyzing temporal EHR data [73]. RNN comprises of the same structure as the basic
neural network, but neurons in the same layer are connected, allowing a neuron to learn
from the same neighboring layers, in addition to learning from outputs of the previous
layers and the input data. Thus, RNN neurons include two sources of inputs, the present

and the recent past. The process of learning is defined as:
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bt = ReLU (b + Wht~1 + Ux?) (3.2)

(3.3)
y = sigmoid (b + Z Vbt>.

t

To compute value b® of a hidden neuron, ¢, a non-linear transformation function, ReL U,
is applied to weighted W value of its left hidden neuron b*~! and the weighted U value of
its input x*. Predictions are computed using a sigmoid function of weighted V sum of all
hidden neurons with added bias b. The drawback of RNN is that it suffers from the
vanishing gradient problem, meaning that weights remain unchanged making it difficult
for the model to convergence, hence, the model struggles to learn. To solve this, an LSTM
layer was introduced in which sigmoid neurons of RNN are replaced with more complex
short-term memory structure. LSTM shares the same weights across layers, which reduces
the numbers of parameters that the network compute. The GRU is an alternate solution for
a vanishing gradient problem. It substitutes the simple neuron with a gated unit, which has
fewer parameters than the LSTM neurons, because it lacks an output gate [74].

In this study, extensive experiments were conducted to determine how many prior
encounters is optimal to predict readmission. We conducted experiments by considering x
encounters within the prior 2 years, where x € {1, 2,4,8, 15,30, 60,80,100}. The average
number of encounters per patient in this period was 21, and the 90'" percentile was 56. The
variation in encounter number resulted in a non-unified length of feature vectors. Thus, in
an experiment that considers up to 60 encounters, feature vectors lacking data were padded
with Os to ensure that feature vectors for all patients represent 60 encounters. The

hypothesis of this study was that DL models outperform traditional models on a large
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benchmark, hence, a comparative analysis with a variety of evaluation metrics was
performed to evaluate and compare the DL algorithms to the baseline traditional models.
Moreover, to examine the importance of domain knowledge, we trained and tested the
models on data with all laboratory studies included in the EHR dataset and compared with
models trained and tested with a subset of laboratory studies based on prior papers
reporting association with readmission (serum albumin, anion gap, arterial pH, bilirubin,
blood urea nitrogen, carbon dioxide, serum creatinine, blood glucose, hematocrit, lactate,
PaCO2, Pa02, serum sodium, troponin-I, venous pH, and white blood cell count) [52,75].
Using only a subset of laboratory studies may be beneficial by reducing dimensionality.
Patients were sorted randomly into 3 nonoverlapping subsets, where 70% were used
for training, 10% for validation, and 20% for testing. We employed cross-validation
techniques to find the hyperparameters that yield the best performances. For LSTM and
GRU, we varied the number of neurons, dropout, batch size, and the number of epochs
using a grid search. Following the literature, in conducted experiments dropout percentage
varied from 0 to 50, and the number of neurons varied from 32, to 512. We selected a
dropout of 0.1, 128 neurons, a batch size of 512, and 16 epochs for LSTM, and 12 epochs
for GRU, since bidirectional GRU converges faster than 1-way LSTM. Sigmoid activation
function and Adam optimizer were used. Traditional models were fine-tuned as well and

the hyperparameters that yielded best performances were chosen.

3.2.4 Performance Metrics and Analysis

The performance of the methods used in our study was evaluated by five common

metrics: Area Under the Receiver Operating Characteristic Curve (AUROC), Recall (also
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known as Sensitivity), Specificity, F1-score, and Accuracy. The formal definitions of these
evaluation metrics are common and can be easily found [75].

Statistical significance analysis was performed to evaluate the stability and significance
of the proposed model’s performance. We randomly selected different patients for training
and testing and repeated the random selection 10 times to generate mean performance
measures and 95% confidence intervals. LSTM was compared to the best performing
traditional model (RF) by t-test. A p-value <0.05 was considered statistically significant.

The Temple University Institutional Review Board approved the protocol.

3.3 Results

A total of 36,641 patients with 2,836,569 encounters were analyzed. There were 9,130
patients with at least one readmission and 27,511 without a readmission. Influence of the
number of encounters within the prior 2 years was evaluated for five prediction models
where x encounters were considered for each model, and experiments were repeated for
x € {1,2,4,8,15,30,60,80,100}. Figure 3.2 presents the AUROC of the proposed model,
LSTM, versus traditional models across various numbers of encounters. Bidirectional GRU
was also performed but omitted because it achieved an identical AUROC to LSTM. LSTM
outperformed traditional models on a large benchmark across all experiments with different
number of encounters. On average, the LSTM models yielded an increase in AUROC of
0.06 when compared to the best performing traditional models, RF. Experiments show that
predicting readmission based on a single prior encounter is not sufficient and yielded much
lower performance (0.7 using the DL models and 0.68 using the best performing traditional

model). DL models reached a plateau when trained using data from 30 encounters with
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minimal improvement thereafter. The DL algorithm yielded 0.07 increase in AUROC
versus best performing traditional model RF when using the optimal number of encounters,
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Figure 3.2: The proposed Deep Learning (DL) method’s performance compared
to baselines evaluated using the area under receiver operating characteristic
(AUROC) metric across varying numbers of prior encounters. Results show that
DL methods outperform traditional methods on a large benchmark, and
improvement in AUROC reaches a plateau at 80 encounters. Results show that
using historical data of up to 30 encounters might be sufficient, 80 is optimal,
and <15 yields poor performance.

LSTM - Long Short-Term Memory; RF - Random Forest; LR - Logistic
Regression; MLP - Multi-Layer Perceptron.

Table 3.1 shows the performance of LSTM and traditional models using all laboratory
tests from up to 80 of the most recent encounters in the prior 2 years. Overall, the
confidence intervals were very small (<0.02), indicating a high degree of precision around
the means. The proposed method, LSTM, obtained an average AUROC of 0.79 with a 95%

CI of 0.001. The p-value obtained by comparing the LSTM AUROC to the second best-
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performing model (RF) was <0.0001, hence, LSTM performance was significantly greater

than the traditional models.

Table 3.1: Performance of LSTM and traditional models using all laboratory tests from up
to 80 of the most recent encounters in testing cohort of 7,329 patients with diabetes mean

+/- 95% confidence interval (CI) are based on 10 runs.

Model AUROC

Recall Specificity F1-score Accuracy
N=7,329 +/-CI

LSTM 0.79 £0.001  0.81 +£0.002 0.94 £0.010  0.80 £0.003  0.81 +£0.002
RF 0.72 £0.004  0.76 +£0.001 0.97+£0.019  0.71 £0.002 0.76 £0.001
AdaBoost  0.70 £0.000  0.76 £0.000  0.94 £0.000  0.73 £0.000  0.77 £0.000
LR 0.69 £0.000  0.77 £0.000  0.91 £0.000  0.75+£0.000  0.77 +0.000
MLP 0.69 £0.006  0.75 +0.009 0.87 +0.018  0.74 +£0.006  0.75 +£0.009

LSTM - Long Short-Term Memory,; RF - Random Forest; LR - Logistic Regression;, MLP
- Multi-Layer Perceptron.

LSTM models achieved a Recall/Sensitivity of 0.81, indicating that performance was
fairly strong at predicting true positives, (i.e., correctly classifying patients with
readmissions). All models used in our study achieved a very good specificity, (i.e., the true
negative rate). Thus, the trained models performed well at predicting patients who are not
likely to be readmitted. LSTM achieved an F1-score of 0.80, indicating very good ability
to distinguish between patients who will be readmitted or not.

To determine whether domain knowledge about laboratory studies is helpful, we
conducted two different experiments where we trained and tested the model based on a
subset of 16 unique laboratory studies selected by domain knowledge versus using all 981
unique laboratory studies included in the data. One Hot encoding techniques were utilized
and modified to associate the laboratory result with each laboratory code. A long unique

array of laboratory codes unique_lab_codes was created. For each encounter, an array of
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zeros | of the same length as unique_lab_codes was created. [ consisted of the result at
the same index of each laboratory test in unique_lab_results, to associate the result to a
given laboratory code. An encounter without laboratory results would have an [ of zeros,
indicating that no laboratory test was conducted for a given encounter. Since most
encounters contained <3 laboratory codes, this resulted in a sparse array. SVD was
therefore utilized to learn an embedding of a sparse feature vector and reduce
dimensionality. The Receiver Operating Characteristic (ROC) Curves of the LSTM models

based on all laboratory studies or selected laboratory studies were identical (0.79, Figure
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Figure 3.3: Receiver Operating Characteristic (ROC)
curves of the LSTM models using all laboratory studies or
16 selected laboratory studies.
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3.4 Discussion

In this retrospective cohort of 36,563 patients with diabetes, DL models outperformed
RF, MLP, AdaBoost, and LR models at predicting unplanned, all-cause 30-day
readmission. The optimal LSTM model yielded an AUROC of 0.79 and accuracy of 0.81,
indicating very good performance. Experiments designed to reveal the relationship
between the number of prior encounters and model performance show that AUROC of the
LSTM models increased as encounter number increased and plateaued at 30 encounters.
Performance of the traditional models increased to a lesser extent up to prior encounter
numbers of 15 or 30, then either plateaued (RF) or declined (MLP, AdaBoost, LR) as
encounter number increased. Finally, an LSTM model that included a set of 16 laboratory
tests selected by domain knowledge yielded equivalent performance to an LSTM model
that included all available laboratory tests.

In our study, the DL models performed better than the traditional models. We are aware
of 4 studies that compared DL models to traditional models for predicting readmission risk
of patients with diabetes. Two of these studies demonstrated a clear advantage of DL
approaches over traditional ML models [64,65], while two studies found marginal benefit
with DL approaches [66,68]. Performance of these DL models was variable with AUROC
0.61-0.97 and accuracy 0.69-0.95, none of which exceeded that of the best traditional ML
models, which reported AUROC as high as 0.99 and accuracy of 0.99 [64,68].
Comparisons of model performance across all these studies, however, is limited by the lack
of standardized reporting of performance characteristics and variable approaches to testing.
Our study considered with the prior studies that directly compared DL to traditional ML

models, suggests that DL approaches usually yield better performance in this population.
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We are unaware of other papers that have explored the relationship between the number
of prior encounters and readmission risk model performance in patients with diabetes. In
related work, however, one paper examined how the performance of models for predicting
readmission risk in morbidly obese patients varied as the number of hospitalizations
increased from a minimum of 2 up to 5 [76]. AUROC increased from 2 to 3 hospitalizations
then plateaued. In another broadly related study, we found that the performance of LR
models for predicting readmission risk of patients with diabetes tended to increase as
sample size increased from 2,000 up to 6,000, then plateaued [77]. This body of research
suggests that experimentation across a range of encounter number and sample size may
reveal thresholds that could optimize data analysis, balancing information quantity with
dimensionality.

We are also unaware of other studies that have compared readmission risk models using
laboratory data selected by domain knowledge with all laboratory data available in patients
with diabetes. There is a tradeoff between including all laboratory data, which results in
higher dimensionality and more computationally expensive models and involving a domain
expert to select a subset of laboratory data, which can be costly and less feasible. Like the
number of prior encounters beyond which model performance did not improve, the finding
that performance of the model with the laboratory data subset was equivalent to the model
with all laboratory data suggests that there is a similar plateau for this domain. Whether or
not this phenomenon generalizes to other patient populations should be investigated.

The presented LSTM models, which we are calling eDERRI™, are an extension of our
prior models, the DERRI™ and DERRIplus [49,52]. In terms of AUROC, the eDERRI™

model performed better than the DERRI™ but worse than the DERRIplus. Unfortunately,
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the performance of 3 models cannot be directly compared in the current study because the
dataset does not include zip code, employment status, or payer information. Unlike the
DERRI™ and DERRIplus, the eDERRI™ models are developed with generally available
EHR data such as demographics, vital signs, diagnostic and procedure codes, medications,
laboratory tests, and administrative data as defined by the PCORnet CDM [70]. The CDM
standardizes the abstraction of EHR data, enhancing the generalizability and scalability of

models utilizing it. We plan to translate the eDERRI™

into an application embedded in an
EHR system that will automatically generate readmission risk predictions for hospitalized
patients with diabetes.

In addition to the generalizability of the CDM-based dataset, the current study has other
notable strengths. The dataset is sampled from patients with a hospitalization between
7/1/2010 and 12/31/2020, which is much more recent than the datasets used for other
currently published readmission risk models in diabetes patients. Also, in contrast to the
most used dataset, which only included hospital encounters with an associated diagnosis
of diabetes and a length of stay less than 15 days, the current dataset included all encounter
types regardless of the associated diagnosis, capturing both inpatient and outpatient data.
Lastly, the sample size of 36,563 patients with 2,836,569 encounters provided ample data
to develop DL models and conduct experiments up to 100 prior encounters.

There are some limitations worth acknowledging. The data were sampled from a single
urban, academic health system. Therefore, generalizability of the models to other

populations is unknown and requires testing. The lack of both patient and hospital zip code

precludes estimating the distance between a patient’s home zip code and the hospital,
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which is known to be associated with readmission risk [49,52]. Lastly, readmissions to

other hospitals were not captured.

3.5 Conclusion

An LSTM model with very good performance predicting unplanned, all-cause 30-day
readmission among patients with diabetes was developed and internally tested. LSTM
models outperform traditional models at predicting readmission in this population. LSTM
model performance initially increases as the number of prior encounters increases then
plateaus. Carefully selected laboratory features can yield predictive models with
performance equal to that of models based all available laboratory studies. Additional study
is needed to externally validate the model.

This chapter establishes the foundational framework for the subsequent chapters. The
primary metric employed was the AUROC, known for its effectiveness in datasets with
balanced class distribution. However, given its limitations in scenarios of significant class

imbalance, the focus is redirected towards the F1 score in the later chapters of the study.
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CHAPTER 4

KNOWLEDGE TRANSFER WITH DEEP ADAPTATION

NETWORK FOR PREDICTING HOSPITAL

READMISSION

4.1 Introduction

Previously, we published a risk deep learning (DL) model based on electronic health
records (EHR) data collected from an urban academic hospital that predicts the risk of
unplanned, 30-day readmission among patients with diabetes. We used a sequential model,
long short-term memory (LSTM). Performance was adequate (F-1 Score 0.80), and results
showed that this LSTM model can capture temporal dependencies of the EHR data [1].

Performant readmission models based on DL techniques require large, high-quality
training data to perform optimally. Utilizing EHR data from a source hospital system to
enhance prediction on a target hospital using traditional approaches enlarge dataset bias
which might deteriorate performance due to distributional difference of the source and
target datasets, resulting in statistically unbounded risk for the target tasks [79]. Traditional
approaches are designed for a specific data type, and not capable of generalizing to other
temporal data.

Transfer learning approaches have been explored for hospital readmission with the

objective to improve learning at the target population by exploiting information from a
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related source population. In [80, 81], classical transfer learning was employed to address
data scarcity using a relevant source dataset. In [82], classical transfer learning techniques
were explored as to what extent can transfer learning benefit learning on target tasks by
fine-tuning pre-trained models in the healthcare domain. However, there is still a need for
an end-to-end model to perform cross-domain spatial knowledge transfer and predictive
learning in a unified learning framework while capturing temporal dependencies for
hospital readmissions.

In this paper, we propose an early readmission risk temporal deep adaptation network,
ERR-TDAN, to perform cross-domain spatial knowledge transfer from EHR data of
different sites and perform predictive learning. Deep Adaption Network (DAN) utilizes
deep convolutional neural network (CNN) and generalizes it to the domain adaptation
setting through learning transferable latent features between source and target domains for
computer vision tasks [79]. Motivated by the success of DAN in numerous transfer learning
tasks in computer vision, we employed the idea of learning transferable features of
temporal data by matching the source and target domain distributions in the latent feature
space. We tailored it for hospital readmission using EHR data and optimized for the target
task.

The aims of this study were as follows: 1) To develop a hospital readmission
framework using EHR data that transfers knowledge between a rural academic hospital and
an urban academic hospital to enhance predictions on the urban academic hospital. 2) To
study the optimal amount of retrospective EHR data needed for future predictions. 3) To
study the duration of optimal performance. Experiments conducted show that ERR-TDAN

can enhance hospital readmission prediction.
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4.2 Deep Adaptation Network

Domain adaptation is a form of transfer learning commonly used in computer vision to
address the problem of learning using data from two related domains but under different
distributions [79, 83]. Domain adaptation can help improve the performance of a model by
learning transferable features to minimize the gap between the source and target domains
in an isomorphic latent feature space. DAN generalizes deep CNN for computer vision
applications to utilize domain adaptation techniques to learn transferable feature
representation in the latent embedding space [79]. Motivated by the success of DAN in
various computer vision tasks [84-86], we utilized the idea of DAN for transferring cross-
domain spatial knowledge tailored for predicting hospital readmission on EHR data and
optimized to enhance predictions on the target, rather than generalizing on both domains.
A direct comparison to DAN is not applicable since DAN is modified for computer vision
tasks using CNN. CNNs capture spatial correlations and are unable to capture temporal
correlations of EHR data [79]. Thus, we employed the idea of DAN and tailored it for
hospital readmission on EHR data to capture temporal dependencies using LSTM layers,
establish cross-domain knowledge transfer, and optimized it for the target task using a

customized loss function.

4.3 The Proposed ERR-TDAN Framework

An early readmission risk framework based on temporal deep adaptation network was
developed to enhance prediction on the target data collected from Temple University
Hospital System (TUHS) by establishing spatial knowledge transfer from a source data

with higher quality features collected from Penn State University Hospital System
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(PSUHS). The model was developed using data as defined by the National Patient-
Centered Clinical Research Network (PCORnet) Common Data Model (CDM) [70].

We applied a hospital readmission LSTM model that we previously published using
EHR data collected from TUHS [1]. When trained on TUHS data and tested on the
following year TUHS data this model F-1 score was 0.80. We trained and tested the same
method on EHR data collected from PSUHS, where performance was better (F1-score
0.91). The 11% increase in F-1 score was achieved since EHR data from PSUHS contained
fewer missing data, denser features, and less erroneous data. However, training and
evaluating the same method on data from both domains affected the performance (F-1 score
0.79) since the model struggled to generalize and converge due to training data drawn from
different distributions. To address this limitation, we employed the idea of DAN, tailored
for hospital readmission on EHR data that captures temporal correlations and enhances
target prediction through learning transferable features via domain-specific fully connected
linear layers to explicitly reduce the domain discrepancy. DAN generalizes on both
domains for computer vision tasks, whereas in our study we tailored this technique for
hospital readmission using EHR data and optimized on the target task, instead of
generalizing on both domains. To accomplish this, the hidden embeddings of the domain-
specific layers are embedded to a reproducing kernel Hilbert space through maximum
mean discrepancy (MMD), to match the mean embeddings of two domain distributions.

The model was optimized via a customized loss function.
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Figure 4.1 presents the proposed framework, ERR-TDAN which consists of the

following main processes:

1)

2)

3)

LSTM’s input was data from both source and target to learn hidden representation
to map source and target data to a common embedding while capturing temporal
dependencies of the EHR data.

To match the embedding distributions of the source and target domains, deep
adaptation network scenario is established through fully connected linear layers
constructed to match the mean embeddings of different domain distributions. The
hidden representation is embedded through a reproducing kernel Hilbert space to
transfer knowledge and bridge the gap between two distributions via MMD to
reduce domain discrepancy.

The matched embeddings are then passed to a fully connected layer with a sigmoid
function to classify if a patient is likely to be readmitted or not. In backpropagation,
we optimize the model on the target domain using a customized loss function that
combines the domain discrepancy loss and binary cross entropy loss. The following

sections illustrate the framework in more detail.
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Figure 4.1: The proposed method framework, ERR-TDAN. It comprises of
three main processes. 1) LSTM layers learn hidden representation of the input
of both source and target domains. 2) Deep adaption network structure with
fully connected layers is constructed to match the mean embeddings of
different domains drawn from different distributions. 3) The matched
embeddings are then passed to a fully connected layer with sigmoid function
for binary classifications. The model is optimized through a customized loss
function that penalizes on domain discrepancy of both source and target, and
task loss to optimize for the target task.

4.3.1 Representation Learning of Temporal EHR Data with LSTM

Initially, we utilized LSTM with two recurrent layers to form a stacked LSTM to learn
hidden data representation embedded to a common latent feature space of the temporal
EHR data of the source and target domains. LSTM, a sequential model capable of capturing
temporal correlations, is commonly used for sequential tasks and is proven to be effective
for hospital readmission using EHR data [1, 87]. LSTM takes as an input a 3-dimensional
tensor of stacked source and target data. LSTM is structured based on basic neural network,
but neurons of the same layer are connected, enabling a neuron to learn from adjacent
layers, in addition to learning from outputs of the previous layers and the input data. Hence,

neurons include two sources of inputs, the recent past and the present. A dropout of 0.1
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was applied between the first and second LSTM layers. To add nonlinearity, we utilized

ReLU activation function on the output of LSTM (embeddings), formulated as follows:

bt = ReLU (b + Wht™1 + Ux*) 4.1)

4.3.2 Learning Transferable Features and Predictions

The output bt is then fed to domain-specific fully connected linear layers with deep
adaptation network setting. Domain discrepancy is reduced by matching the mean
embeddings of the source and target distributions. Hidden representation of the linear
layers embedded through a reproducing kernel Hilbert space to bridge the gap between two
distributions and transfer knowledge via MMD. MMD measures the distance of the source
and target distributions in the embedding space. MMD distance measure was originally
used to determine whether two samples are drawn from the same distribution and measures
how distant the samples are [88]. In this study, we utilized MMD to learn transferable
features between source and target domains to enhance prediction on the target. MMD was
utilized as one of the two components of the loss function to minimize the domain

discrepancy. The loss function is explained in more detail in the next section. MMD is

defined as:
1% 1+ ’
MMD,,, (D%, D7) = =" ¢(af) - — " ¢(a])| | (42)
i=1 j=1 o

where D% and D7 denote source and target data respectively, ¢ denotes the Gaussian kernel

function, H denotes the Hilbert space, and n and m denote the number of observations of
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the source and target sets, respectively. The temporal embeddings of the LSTM are then
fed into fully connected layers with MMD loss to measure the distance between two
distributions and reduce domain discrepancy.

Prediction. The matched embeddings are then fed into a linear layer with output of 1

with sigmoid activation function for predictions ¥ [1].
4.3.3 Model Optimization via a Customized Loss Function

We tailored the loss function for hospital readmission on the target domain by
combining Binary Cross Entropy (BCE) loss to measure the error of reconstruction, applied
on the target task only, and MMD loss applied on both source and target to reduce domain
discrepancy. Since the aim of this study is to enhance prediction on the target domain using
higher-quality source data, we reduced the weight of the MMD loss via the penalty
parameter ¥ and optimized the loss on the target domain. Loss function used in the

proposed ERR-TDAN model is defined as follows:

BCElOSS = (x'y) =L= {ll) '"th}T; ln
=Wy [yn ' lOg Xp t (1 - yn) : lOg(l - xn)]; (43)

1 N
TOTALloss = L_NZ%=1 (BCEloss(x' y) + Y MMDloss(dS' dT))a

where x and y are the predictions and ground truth for a given batch respectively. L denotes
loss. N is the batch size, w is a rescaling weight given to the loss of each batch element, y
is the penalty parameter of domain discrepancy. To optimize for the target task, we

determined empirically that 0.5 value of y is appropriate.
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4.4 Data

We collected data from an urban academic hospital, TUHS, and a rural academic
hospital, PSUHS, between July 1%, 2010, and December 31, 2020. We extracted data on
encounters, demographics, diagnosis, laboratory tests, medication orders, procedures, and
vital signs. in the cohort of patients with diabetes was defined as previously described [1].
Data preprocessing, handling of missingness of data, different number of recordings per
encounter, learning embeddings to reduce dimensionality, address sparse feature vectors,
and data representation were performed as [1] and as presented in Chapter 3. Additional
features were aggregated to assist with learning temporal dependencies, including duration
of stay in days, and number of days since the prior encounter. In addition to the 23 features
outlined in Section 3.2.2, two more features were derived and incorporated into the model,
bringing the total number of features utilized to 25. The two features are income quintile,
and distance between the hospital and patient address.

We obtained a total of 1,421,992 encounters corresponding to 20,471 patients for
PSUHS, and a total of 3,023,267 encounters corresponding to 37,091 patients for TUHS.
The class distributions were as follows. TUHS: 28,107 for the negative class (no
readmission), and 8,984 for the positive class (readmitted within 30-days); PSUHS: 18,775
for the negative class and 1,696 for the positive class.

The characteristics of the samples from the two sites were different. For instance, 4.9%
of patients were Hispanic at PSUHS, whereas TUHS contained large Hispanic population
of 22%. Other differences included race and tobacco use. The numbers of unique ICD-9

and ICD-10 codes, and vital recordings at PSUHS were larger than that at TUHS.
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Patient encounters were sequentially ordered by admission date and represented in a 3-
dimensional tensor for the LSTM model, where each patient’s data is represented as a 2-
dimensional matrix in which features of each encounter are represented in a 1-dimensional
array while a second dimension represents different hospitalizations of that patient. The

third dimension is used to encode hospitalization information of different patients.

4.5 Experimental Setup and Results

We hypothesize that it is feasible to enhance readmission predictions on target data of
TUHS using a source data from a relevant domain under different distribution. In this
section, we conduct extensive experiments to evaluate the performance of the proposed
model, ERR-TDAN and compare it to baselines. F-1 score, precision, recall (sensitivity),
specificity, and accuracy were used to evaluate the model’s performance [75]. We
randomly selected different patients for training and testing. Experiments were iterated 10
times; results were presented based on the mean and two-sided 95% confidence interval
(CI). Moreover, we address the following research questions to evaluate optimal

performance of the model.

4.5.1 Can we enhance readmission risk prediction for a target hospital by utilizing data

Jfrom another hospital?

We randomly split TUHS and PSUHS data to 70% training, 10% validation, and 20%
testing. Then, we concatenated training data of both domains, and fed to the ERR-TDAN.
We tested the model on TUHS using 7,418 patients, of whom 1,557 had a readmission.

Table 1 presents a comparative analysis to evaluate the proposed method, ERR-TDAN

compared to alternative baselines. Table 1 shows that ERR-TDAN yielded a 5% increase
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in F1-score when compared to a model we previously published for hospital readmission
on EHR data collected from TUHS, and 3% increase using a generalized version of ERR-
TDAN (G-ERR-TDAN) of the domain adaptation framework with MMD loss without
optimizing on the target task. G-ERR-TDAN results provide evidence that optimizing on

the target task enhances target’s predictions is superior to generalizing on both domains.

Table 4.1: Performance of the proposed method, ERR-TDAN and three alternatives tested
on the target domain (TUHS) enhanced by a related source data (PSUHS). The average F1,
recall/sensitivity, specificity, and accuracy and their corresponding two-sides 95%
confidence interval (CI) on 10 experiments on training and testing patients’ data selected
completely at random.
Model Train F1-score Recall Specificity Accuracy
[1] TUHS 0.80+0.003 0.81 +£0.002 0.94 +£0.010 0.81 +0.002
LSTM TUHS + PSUH 0.79 £0.007 0.81 £0.006 0.95 +0.008 0.81 +0.005
G-ERR-TDAN TUHS +PSUH 0.82+0.001 0.81+0.001 0.92+0.002 0.81 +0.001
ERR-TDAN TUHS +PSUH 0.85+0.002 0.84 +0.002 0.91 +0.003 0.84 +0.001

4.5.2 What is the retrospective optimal amount of EHR data needed for future

predictions?

We conducted extensive experiments to find the optimal amounts of patient’s historical
data needed for the model to perform optimally. Our objective was to determine a size of
training data so that further enlargements do not improve predictions of hospitalization
risk. The model was trained on varying t and tested on t + x, where t denotes a period in
the past and t + x denotes a period in the future. For a fair comparison, t + x was a fixed
test dataset of 2020, and trained on varying training sets of ¢, including 6 months (July-
December of 2019), 1 year (2019), 2 years (2018-2019), 3 years (2017-2019), 4 years

(2016-2019), and 5 years (2015-2019) look-back time. For instance, training on 2019, and
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testing on 2020 (1 year look-back) to test if learning on 1 year of historical EHR data from
the past is sufficient to perform optimally.
Figure 2 (left) shows that 1 year of historical data are optimal to predict readmission

since it yielded the highest F1-score with least amounts of data required.

4.5.3 How often do we need to retrain the model to achieve optimal performance?

Concept and covariate shifts are one of the major reasons model performances degrade
overtime. Monitoring data drift helps avoid performance degradation. Thus, we conducted
experiments to study the lifetime of the proposed model. Based on the optimal look-back
time of question 2, we trained the model on EHR data collected in 2015 and tested it with
1,2, 3,4, and 5 future gaps. For instance, training on data collected in 2015 and testing in
2020 to experiment if the model’s performance would degrade after 5 years. We iterated
this over various models trained on 1 year of data collected in 2015, 2016, and 2017 and
tested for readmissions on future instances.

Figure 2 (right) shows that F1-score decreased over time due to data drift. Performance
was relatively stable when tested on 1 and 2 years in the future. There was a significant
decrease in F1-score when used to predict readmissions with 3 years gap between training
and testing. On overage, F1-score degraded 0.6% when used 3 years later, 3.5% when used
4 years later, and 7% when used 5 years later. Therefore, to maintain optimal performance
of hospital readmission models on EHR data, retraining the model every 3 years may avoid

model degradation and maintain optimal performance.
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Figure 4.2: (left) presents the retrospective optimal amount of EHR data needed
for future predictions. Results show that 1 year of historical data are sufficient to
predict hospital readmission from the leading year. (right) presents the lifetime of
the model to maintain and achieve optimal performance. Three different models
were developed on data collected from 2015, 2016, and 2017 to predict future
instances with 1 to 5 years gap. Results show that to maintain optimal
performance, the proposed framework may benefit from retraining every three

years.

4.6 Discussion and Conclusion

We examined the hypothesis that it is feasible to enhance hospital readmission risk
predictions on EHR data using data collected from a related source domain. ERR-TDAN
model trained on joint TUHS, and PSUHS data yielded a 5% increase in F1-score when
compared to an LSTM model trained on TUHS only, 6% increase in Fl-score when
compared to LSTM model trained on both TUHS and PUSH, and 3% increase when
compared to a generalized version of ERR-TDAN (G-ERR-TDAN) aimed to generalize
on both domains. Furthermore, conducted experiments showed that one year of historical
data is sufficient to predict readmission. We studied the lifetime of the model to avoid

performance degradation due to data drift over time. Experiments suggest that retraining

the ERR-TDAN framework every three years avoids performance degradation.
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We propose a framework, ERR-TDAN that establishes spatial knowledge transfer
based on a temporal deep adaptation network tailored for hospital readmission on EHR
data and optimized for the target task. ERR-TDAN can enhance readmission predictions
of the target task using higher quality data from a related source domain under different
distributions by matching the mean embeddings to reduce domain discrepancy. This is the
first end-to-end transfer learning framework based on domain adaptation for hospital
readmission. A deployment challenge for the proposed framework is that it requires
training data from both source and target domains which might be difficult to obtain. In a
planned follow up study we will evaluate applicability of the proposed method for
prospective applications. In addition, we will compare the proposed hospital readmission
method to alternatives aimed to learn from integrated data with explanatory variables of

various quality.
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CHAPTER 5

DOMAIN GENERALIZATION FOR ENHANCED

PREDICTIONS OF HOSPITAL READMISSION ON

UNSEEN DOMAINS

5.1 Introduction

We previously published multiple early readmission risk prediction models based on
deep learning (DL) among people with diabetes. Our long short-term memory (LSTM)
model was trained on data collected from an urban hospital to identify patients at high risk
of readmission within the same hospital, presented in Chapter 3. This model exhibited good
performance with an F-1 Score of 0.8, indicating that this LSTM model can recognize
temporal dependencies [1]. We also developed a novel temporal deep adaptation network-
based model for early readmission risk, called ERR-TDAN, to enhance predictions on the
target task by transferring knowledge from high-quality source data, presented in Chapter
4 [6]. Baseline results of this study provided evidence that traditional approaches fail to
generalize on unseen target domains when source and target data have different
distributions. Utilizing domain adaptation techniques to enhance predictions on a seen
target domain was shown to be effective in reducing domain discrepancy of data drawn

from different distributions collected from different hospitals. ERR-TDAN is designed to
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accept source and target data in training as input, thus, it is not capable of generalizing on
unseen target domains.

Collecting data from multiple hospitals and developing performant readmission models
for every site may not be feasible for many institutions. Another potential limitation is
having sufficient historical data. Developing a readmission risk model based on data from
source hospitals to predict readmission on an unseen test hospital using our previous and
other conventional approaches is not effective because these methods are not capable of
generalizing well to unseen test domains when training and testing distributions are
different [6, 79].

Transfer learning methodologies have been investigated in the context of hospital
readmission, aiming to enhance the learning of the target population by leveraging insights
from a related source population. The studies reported in [80, 81], transfer learning is
successfully applied to mitigate the challenges of limited data by utilizing a relevant source
dataset. Conversely, the study reported in [82], potential benefits of transfer learning are
investigated by assessing the fine-tuning capabilities of pre-trained models within the
healthcare domain. Nonetheless, none of the aforementioned methods are capable of
generalizing to unseen data collected from multiple hospital systems drawn from different
distributions. Therefore, there remains a demand for an end-to-end model that performs
cross-domain knowledge transfer that is capable of generalizing on previously
unencountered domains in a unified framework, while capturing and maintaining long-
term temporal dependencies for hospital readmissions.

In this paper, we propose an early readmission risk domain generalization network,

ERR-DGN, to perform cross-domain knowledge transfer from electronic health record
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(EHR) data of different health systems to facilitate predictive learning. Motivated by the
success of our previous study reported [6] that leverages Deep Adaptation Network (DAN)
techniques to enhance readmission risk predictions on a target hospital by leveraging high-
quality source data and matching mean embeddings of source and target distributions, we
employed the idea of learning transferable features of the EHR data by matching multiple
source distributions in the latent space to generalize and enhance predictions on an unseen
target task. ERR-TDAN [6] takes as an input two sites (i.e., source and target) and requires
historical training data from both. In contrast, we tailored ERR-TDAN to learn transferable
features of multiple source datasets to predict rehospitalization risk on an unseen target
hospital where data distribution might be significantly different from data at all previously
observed hospitals. We hypothesized that this novel approach would improve hospital
readmission risk predictions among people with diabetes for a previously unobserved target

domain.

5.2 Methods

5.2.1 Domain Generalization

Domain generalization (DG) is a form of knowledge transfer (i.e., transfer learning)
commonly used in computer vision tasks to address the problem of learning from related
source domains but under different distributions. DG pertains to the ability of models to
generalize knowledge from multiple source domains to a previously unobserved target
domain. The main goal is to transfer knowledge from the known source domains to be
effective on the unknown target domains. The challenge is to ensure that the learned model

does not overfit to the idiosyncrasies of the source domains but captures more general
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patterns or invariants that are effective across all domains. Unlike traditional transfer
learning, which typically focuses on adapting a model trained on a source domain to a
specific known target domain, domain generalization aims to equip the model with the
capability to perform effectively across any potential target domain without prior exposure
to the model. This is achieved by emphasizing the learning of transferable and domain-
invariant features from the source domains. By training on multiple source domains, the
model ideally internalizes the shared patterns and characteristics that are consistent across
those domains, making it more robust and adaptable when confronted with data from a new
domain. While domain adaptation focuses on adjusting a model trained on one domain to
perform well on a specific different domain using target domain data, domain
generalization aims to train a model on multiple domains to perform well on any new
domain without accessing data from the unseen new domain. Both are types of transfer
learning, but their objectives can differ. DG thus addresses the challenges of domain shift
and dataset bias, making it especially valuable in fields where collecting data for every
possible domain is infeasible or costly. DG can be effective for hospital readmission risk
estimation since the process of collecting EHR data may be infeasible in some settings.
Furthermore, DG can be effective in hospital systems where historical data is not available

and a readmission risk model is needed [6, 79, 89, 83].

5.2.2 Formalization

1) Domain. Let X denote an input space and Y an output space. A domain is composed
from a data sampled from a distribution, denoted as § = {(x;, ¥;)}/=; ~ Pxy, Where
X € X € R%, y € Y c R denotes the label, and Py, denotes the joint distribution

of the input sample and output label.
95



2) Domain Generalization. An input that consists of M source domains (training set)
—fci|i— i (i iV :
we denote as Sy, = {S‘ [i=1, ---,M}, where §t = {(xj,yj )}j=1 denotes the i —

th domain. The joint distributions between each pair of domains are different,
PLy, # ijy, 1 <i#j <M. The aim of DG is to learn a robust and generalizable
predictive function from the M training source domains to achieve a minimum
prediction error on an unseen test domain S, ; that cannot be seen during training

of the model and Pi' # P}, fori € {1,---,M}.

5.3 Methodology

5.3.1 Distributional Difference and Selection of Unseen Target Domain

This section details the methodology employed to validate the applicability of utilizing
domain generalization on EHR data and identify a particularly challenging site to evaluate
the proposed ERR-DGN method. We conducted pairwise comparisons, analyzing the data
distributions from the five sites, to select the test site that exhibited the most divergence
from the others. We utilized Kolmogorov-Smirnov (KS) statistic test for pairwise
comparisons of similarity between two probability distributions functions G and F to check
if two distributions from M domains are identical. This is achieved by comparing the
underlying distributions F(x) and G(x) of two intendent samples [38], where x denotes a
sample consisting of patient data. The null hypothesis was F= G, indicating that the
distributions are identical. We applied KS test on two independent samples from different
domains, with each sample being a 1-dimensional array representing a patient’s data. From
each domain, we randomly selected 2000 patients/sample in which 1000 patients had

readmission (positive class) and 1000 patients are without readmission (negative class).
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Each sample was then compared with every sample from the other domain. This was
reiterated to assess the underlying distributions between every pair of domains. We

obtained p-values for each pairwise comparison and computed the mean p-value.

5.3.2 The proposed ERR-DGN Framework

An early readmission risk framework based on domain generalization techniques was
developed to generalize and enhance predictions on an unseen target academic hospital
system by establishing cross-domain knowledge transfer from four different academic
hospital systems based on EHR data. Motivated by the success of ERR-TDAN on EHR
data [6], we employed the concept of DAN for transferring cross-domain knowledge
tailored for predicting hospital readmission on EHR data through learning transferable
features via domain-specific fully connected linear layers to reduce domain discrepancy
and optimized to generalize on several domains to enhance predictions on an unseen target
domain. To accomplish this, the hidden embeddings of the domain-specific layers are
embedded to a reproducing kernel Hilbert space through maximum mean discrepancy
(MMD), to match the mean embeddings of domain distributions. We customized the loss
function to optimize ERR-DGN to learn general patterns and characteristics from several
source domains.

Fig. 5.1 shows the proposed ERR-DGN framework, encompassing the following main

Processes:

1) ERR-DGN accepts EHR data from multiple source domains as input. These
datasets are then channeled through domain-specific LSTM layers, aiming to learn

hidden representations that map source data to a common embedding while
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2)

3)

capturing the temporal dependencies of the EHR data. Then, attention mechanism
is applied to weigh the importance of different parts of the sequence differently,
allowing the network to decide which parts of the input sequence to focus on.

In order to match the embedding distributions of the source domains, deep
adaptation network setting is formulated through domain-specific fully connected
linear layers designed to match the mean embeddings across varying distributions.
The hidden representations subsequently embedded through a reproducing kernel
Hilbert space, utilizing pairwise computations to compare embedding
distributions among all pairs. This process aids in transferring knowledge and
mitigating the differences between distinct distributions by employing MMD to
reduce domain variance.

The matched embeddings are then concatenated and passed to a fully connected
linear layer with a sigmoid activation function for binary classification to pinpoint
patients that are likely to be readmitted. In evaluating the framework’s
performance, a sample is processed via a singular domain-specific layer set, rather
than all four. In backpropagation, we optimize the model to generalize on multiple
source domains via a customized loss function that combines the sum of pairwise
MMD loss calculations leveraged for domain discrepancy and binary cross
entropy loss. The following sections elucidate the main processes of the

framework in more detail.
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Figure 5.1. The proposed ERR-DGN framework. ERR-DGN consists of three
primary processes. Firstly, domain-specific LSTM layers derive hidden
representations from the input of source domains, subsequently Attention
mechanism is applied to extract relevant information. Secondly, a domain
generalization network techniques utilized with fully connected layers designed to
match the mean embeddings from domains drawn from different distributions.
Lastly, the matched embeddings are then concatenated and passed through a fully
connected layer with sigmoid activation function for binary classification. The
optimization of this model is facilitated through a customized loss function that
penalizes on domain discrepancy of source domains to aid in learning general
patterns and characteristics that are shared across source domains.
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5.3.2.1 Learning Representations of Temporal EHR Data via LSTM and

Attention. Initially, we employed a stacked LSTM consisting of two recurrent layers. This

aimed to learn hidden data representations embedded to a common latent feature space of

the temporal EHR data of source domains. LSTM, a sequence-based model capable of

capturing temporal dependencies, has been widely employed for sequential tasks and has

demonstrated efficacy in predicting hospital readmission using the sequential and temporal
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EHR data [1, 6, 87]. LSTM layers accept 3-dimensional tensors of source data as input. It
is built upon the foundation of neural networks, in LSTM, neurons within the same layer
are interconnected. This allows a neuron to learn not only from the outputs of preceding
layers and the current input but also from its neighboring layers. Consequently, each neuron
has dual input sources, the immediate past and the present. A dropout rate of 0.1 was
applied between the first and second LSTM layers. To introduce nonlinearity, the ReLU

activation function was applied to the LSTM output (embeddings), formulated as follows:

bt = ReLU(b + Wht=1 + Ux?). (5.1)

Here, bt the output, is then fed to domain-specific attention layer which serves to
weigh the importance of different of certain features in the sequence differently, allowing
the network to focus on relevant features of the sequence. The attention mechanism
computes a weighted sum of all the hidden states of the LSTM, based on their relevance to
the current timestep of the output sequence. The weights for this weighted sum are
dynamically computed for each output timestep. Adding attention mechanism enhances
LSTM layers by allowing the network to decide which features to focus on, leading to
improved performance. This process is illustrated at a high level as the “base net” process

in Fig. 5.1.

5.3.2.2 Learning Transferable Features and Enhancing Predictive Performance.
The hidden embeddings are subsequently passed to domain-specific fully connected layers
within a deep adaptation network framework. To minimize domain discrepancy, the mean
embeddings from multiple source distributions are matched. The representations from

these linear layers are projected into a reproducing kernel Hilbert space, facilitating the
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bridging of gaps distributions by utilizing pairwise computations to compare embedding
distributions among all pairs, then the sum is computed quantifying the distance between
distributions within the embedded space. and enabling knowledge transfer using MMD.
The MMD distance metric was originally employed to determine if two samples originate
from identical distributions, gauging the extent of their divergence [93]. In this study,
MMD was utilized to generalize on multiple source domains by learning shared patterns
and characteristics that are consistent across source domains, making it more robust and
adaptable when applied with data from a new unseen domain. MMD served as the key
component of the loss function, aiming to minimize domain discrepancies. A
comprehensive explanation of the loss function is provided in the subsequent section.

MMD can be defined as:

MMD[OSS(Sl 52 ) = (5.2)

—Z o(st) ——Z ¢<s2)

i=1

where S and S%denote two distinct source domains data, ¢p denotes the Gaussian kernel
function, £ denotes the Hilbert space, and n denote the number of samples in S'and m
denote the number of samples in S2. MMD is iteratively applied utilizing pairwise
calculation setting to compare distributions of all source domains among all pairs, where
St ={i =1,---, M} and the joint distributions between each pair of domains are different,
PLy, # ijy, 1 < i # j < M. The temporal embeddings of the LSTM are then fed into fully

connected layers with MMD loss to measure the distance between every pair of
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distributions and minimize domain discrepancy. This process is illustrated at a high level
as the “transfer net” process in Fig. 5.1.

Output. The matched embeddings are subsequently inputted into a linear layer with a
single output, coupled with a sigmoid activation function, to derive probabilities for
pinpointing patients at high risk of readmission. Utilizing the default threshold of 0.5, high

risk patients are distinguished, and predictions are generated § [1].

5.3.2.3 Customized Loss Function for Model Optimization. To achieve
generalization across multiple source domains, we modified the loss function by
integrating MMD loss and Binary Cross Entropy (BCE) loss. MMD was utilized using
pairwise calculations to assess the discrepancies among distributions, thereby internalizing
patterns and characteristics that are consistent across source domains. BCE was utilized to
measure the error of reconstruction, applied on each source domain. The sum of BCE on
each source domain and MMD loss among source distributions was computed as the loss.

Loss function used in the proposed ERR-DGN model is defined as follows:

BCE ;s = (x' y) =L= {ll; ey lN}T; ln
L =—Wy [yn : lOg Xn + (1 - yn) : lOg(l - xn)]; (5 3)
N .
TOTALloss = L_NZ£=1 ((levil BCEloss(xi' yl)) + (Zf=1 yMMDloss(s}'szz)))’

where x and y are the predictions and ground truth for a given batch respectively. L denotes
loss. N is the batch size, M is the number of source domains, P is the number of pairwise
calculations among distributions, w is a rescaling weight given to the loss of each batch

element, y is the penalty parameter of domain discrepancy.
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5.3.3 Experimental Setup

This section outlines various research questions formulated to evaluate the performance
of the framework. The primary measure of model performance was F1-score. Secondary
measures of model performance were precision, recall (sensitivity), and accuracy [75]. The
AUROC (C-statistic) was not employed as an evaluation metric in this study due to
unreliability in the context of class imbalance, rendering the metric less indicative of actual
performance [96]. Experiments were conducted 10 times, with results presented as the
mean along with a two-sided 95% confidence interval (CI).

Upper Bound Results. We developed several hospital readmission LSTM models
based on a model that we previously published using EHR data collected from an urban
academic hospital [1], To determine the maximal prediction capabilities of readmission
risk models, we trained and tested the published LSTM model on each hospital site
individually. Two different experiments were conducted. Experiment 1 was conducted by
training the model on training samples of the same size (15,966 patients) and experiment
2 was conducted by adopting a data split of 70% for training, 10% for validation, and for
20% testing.

Generalization on Unseen Target Domain. To evaluate the generalization capabilities
of the proposed framework, ERR-DGN, experiments were conducted by leveraging
knowledge from multiple source domains for training (Sites A-D) and tested on the unseen
target domain with the most different data distributions (Site E), encompassing 67,066
patients, of whom 9,553 had a readmission. Several baseline methods were developed for
comparison. The baseline LSTM model was trained using data from Sites A-D by

concatenating data from these multiple sites, since this baseline model is designed to accept
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data from a single source. It was then tested on the unseen target domain, Site E. Additional
experiments were conducted where the baseline LSTM model was trained on each source
site to assess the performance of each source domain when applied to the unseen target. Of
note, a direct comparison to ERR-TDAN is not applicable because ERR-TDAN requires
source and target data in training, whereas our objective is to generalize a model and apply
it on an unseen hospital that has not been seen in training.

Exploring the Number of Source Sites. We studied the optimal number of source sites
needed to enhance predictions on an unseen target domain, Site E, using a greedy approach.
We trained the proposed method, ERR-DGN, using all combinations of 2, 3, and 4 sites.
We methodically iterated this process, each time selecting the site that most enhanced
predictions on the target site, and subsequently evaluating it in conjunction with other sites.
The proposed domain Generalization method was evaluated and compared to the baseline
LSTM to assess the effectiveness of domain generalization on EHR data collected from
multiple hospital systems.

Model Performance Over Time. To investigate the longevity of our proposed model,
we conducted experiments by training the model on EHR data from 2016 and subsequently
testing it with time gaps of 1, 2, 3, and 4 years into the future. For example, we trained on
data from 2016 and tested its performance in 2020 to determine if there would be a decline
in accuracy after a span of 4 years. The same process was conducted using training data
from 2017 and testing data from 1, 2, and 3 years in the future. Data were not available
from all sites before 2016, therefore data from 2016 — 2020 were used for these

experiments.
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5.4 Data Description and Study Design

This is a retrospective cohort study that used EHR data from five academic health
systems, encompassing urban, suburban, and rural areas in Pennsylvania or Maryland,
spanning from July 1%, 2010, to December 31%, 2020. All 5 sites are members of the PaTH
Network, itself a member of the National Patient-Centered Clinical Research Network
(PCORnet). Models were developed using EHR data defined by and standardized
according to the PCORnet Common Data Model (CDM) [70]. We extracted data on
encounters, demographics, diagnoses, procedures, laboratory tests, medication orders, and
vital signs. Eligibility criteria included patients who had at least one hospital discharge and
a diabetes diagnosis, based on an International Classification of Diseases (ICD) diagnostic
code for diabetes (ICD-9: 249.xx or 250.xx or ICD-10: E08.xxx through E13.xxx), a
Hemoglobin Alc (HbAlc) level >6.5%, or a prescription for a diabetes-specific
medication. We excluded encounters for patients aged <18 years, those transferred to
another hospital upon discharge, cases of inpatient mortality, instances of gestational
diabetes (ICD-9: 648.0x or ICD-10: 0O24.4x), prediabetes diagnoses (ICD-9: 790.29 or
ICD-10: R73.03), or pregnancy (indicated by a positive beta human chorionic gonadotropin
lab test within 90 days before or after the encounter) [1]. A total of 25 features extracted
from CDM derived were incorporated into the models as presented in Sections 3.2.2 and
4.4.

Patients were categorized based on their hospital readmission status into two groups:
those with at least one readmission within 30 days of discharge and those without any 30-
day readmissions, as performed in the previously developed readmission models, presented

in Chapters 3 and 4. For the readmission group, a random admission-readmission pair was
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selected for predictive modeling. Similarly, for patients without readmissions, a single
random admission was selected for the same purpose.

To model heterogenous sequential data, we concatenated all encounters for a given
patient in a feature vector ordered sequentially by admission date. The primary outcome
for modeling was unplanned, all-cause readmission within 30 days after an inpatient
discharge, as defined by the Centers for Medicare & Medicaid Services (CMS) [72]. In line
with the CMS guidelines, only the first readmission within the 30-day period was
considered for modeling. Data were represented in 3-dimensional tensors p x e x f that
represent f features for each e encounters for p patients. Data preprocessing, managing
missing data, accommodating the challenge of handling varying numbers of recordings per
encounter, learning embeddings for dimensionality reduction, addressing sparse feature
vectors, and data representations were performed as presented in [1]. Added features, such
as length of hospital stay (in days) and the number of days since the previous encounter,
were aggregated to aid in learning temporal dependencies. [1] We previously conducted
experiments to determine how many prior encounters are optimal to predict readmission,
finding that 80 or 100 most recent encounters in the prior 2 years yielded the best
performance. Thus, we utilized up to 100 most recent encounters in the prior 2 years for
each patient. For patients who had less than 100 encounters in the 2-year window, feature
vectors were padded with 0’s to unify dimensions. Singular Value Decomposition (SVD)
was utilized to learn embeddings and reduce dimensionality of encounters to 150 features
per encounter, while preserving explained variance of >0.95. This yielded high-
dimensional feature vectors, consisting of 15,000 features per patient’s sample (150

features per encounter X 100 encounters).

106



The study protocol was approved by the Johns Hopkins Medicine (JHM) and PennState
Health Institutional Review Boards (IRB). The other three participating institutions ceded

oversight to the JHM single IRB.

5.5 Results

5.5.1 Data Characteristics

Table 5.1 presents data collected from the 268,754 eligible patients within the five
hospital systems, detailing the number of encounters (any EHR interaction: visit, call,
medication, or lab order, et al.), number of patients, and class distributions.

Table 5.1. Key site characteristics of 268,754 patients with diabetes by site. Any EHR

interaction (ambulatory visit, hospitalization, phone call, order, et al), and 30-day
readmission (positive class).

Site No. Encounters  No. Patients Positive Class Area
Site A 4,599,933 54,316 11,442 (21%) Urban
Site B 2,934,532 37,091 9,014 (24%) Urban
Site C 12,804,784 90,323 11,172 (12%) Mixed
Site D 1,363,413 19,958 1,585 (8%)  Suburban
Site E 13,396,308 67,066 9,553 (14%) Rural

Table 5.2 illustrates key characteristics of the data and shows that each site was
statistically different from Site E for every pair-wise comparison except the proportion of
females at Site A. Statistical Significance. Chi-square and t-test were used to test the
statistical significance between variables of the unseen target domain, Site E, and other
source sites. T-test was utilized for continuous variables to compare if the means of two
groups are statistically different. Chi-square test of independence was employed to test the

association between categorical variables [94, 95]. P-values obtained show that there is a
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significant difference between variables (p<0.001) of the unseen target domain, Site E, and

source sites, with the exception of sex between Site A and Site E.

Table 5.2. Key characteristics of 268,754 patients with diabetes by site. p denotes the p-
value, u denotes the mean, and o denotes the standard deviation.

Variable Site A Site B Site C Site D Site E
N=54,316 N=37,091 N=90,323 N=19,958 N=67,066
Age (vears), 6184149 603136 [ 643149 [ 61.0£153 ] .
(L & ) p<0.001 | p<0.001 | p<0.00I | p<0.00I D
26,988 18,789 45,844 9,268 33.004
Sex (Female) (50%) (51%) (51%) (46%) 49%)
p=024 | p<0.001 | p<0.001 | p<0.001 °
White 28,319 8,707 77,432 17,305 64,330
(52%) (23%) (86%) (87%) (96%)
0
Black 5420/1? 1(18705’? 8.388 (9%) | 170 (6%) | | 285 (304)
0 0
Race "\ an 1,977 3%) | 569 2%) | 630 (<1%) | 160 (<1%) | 336 (<1%)
V)
Other (51,33805) 1(3795';’ 3.873 (4%) | 32 U%) | 518 (<19)
» <0.001 | p<0.001 | p<0.00 | p<0.001 _
8,495 965 (5%)
N 2,058 (4%) 534 (<1%)
Hispanic (Yes) (23%) p<0.001 | 1,833 (3%)
p<0.001 | 2o, | p<0.001
8,010 17,147 2,440 8,432
0 s ) s s
Current [ 738 (19%) | 759, (19%) (12%) (13%)
12,798 49,594 10,490 18,256
0 s ) ) )
Never | 2837 (5%) | (3404 (55%) (53%) 27%)
Tobacco | — . . 12,199 16,795 5,543 20,359
Quit | 1,561G3%) | 330/ (19%) (28%) (30%)
0
Other ‘gllofg) (41’?(% 6.787 (1%) | 148> (7%0) %262/13
» 2<0.001 | p<0.001 | p<0.00I | p<0.001 _
No. diagnostic 25427 | 19.1+11.0 | 153475 | 18.1 £13.5 10.0 £5.1
codes, (L & G) p<0.001 | p<0.001 | p<0.00I | p<0.00I V.
No. procedure 6.3 +4.5 18.7+11.8 | 2.4+2.84 | 22.34+23.2 18.6 £15.1
codes, (L & G) p<0.001 | p<0.001 | p<0.00I | p<0.00I O+,
Admission 6.4 £9.7
, 68495 | 62498 | 55+7.1
El;n(‘gz:t:))n (days), p<0.001 p<0.001 2=0.001 p<0.001 3.5+53
Prior encounters, 114.1 97941117 222.6 88.9 £108.5 199.6
(1 & o) +126.5 Zo00f | #2006 | p<o.001 | 0
p<0.001 | P° p<0.001 '
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Table 5.2. (Continued)

Prior IP, OS, ED 3.9+6.9

3.1 +6.8 34475 7.5+15.4
Zl)lcounters, (n& 2<0.001 p<0.001 2<0.001 p<0.001 4.6 +9.4

Days since prior 25.3+90.4

11.4+£54.5 | 25.5492.1 | 12.2+£54.9
encounter, (1 & p<0.001 <0.001 2<0.001 p<0.001 | 12.3+£51.8

o)

Days since prior 151.8 218.8 218.8 328.5 333.7
IP, OS, ED enc., +247.4 +390.2 +390.2 +518.9 1526 3
(L & o) p<0.001 p<0.001 p<0.001 p<0.001 '

5.5.2 Upper Bound Results

This section presents results obtained from baseline methods training and testing the
models internally at each site. Table 5.3 shows that F-1 scores range from 0.80 to 0.91 in
experiment 1 and from 0.80 to 0.92 in experiment 2. The performance differs across sites
since data quality of EHR data varied. Certain sites contained fewer missing data, denser

features, and less erroneous data than others.

Table 5.3. Performance of the baseline LSTM method based on EHR data collected from
five academic hospital systems evaluated using average F-1 score and accuracy metrics.
Two experiments were conducted to assess the capabilities of the model on each site and
obtain upper bound results. Experiment 1 was conducted by learning from EHR data of
15,966 patients randomly selected from » patients and tested on the remaining patients
from the same site. Experiment 2 was conducted by adopting a data split of each site to
70% for training, 10% for validation, and 20% for testing.

Experiment 1 Experiment 2
Site N F1-score Accuracy Fl-score Accuracy
Site A 54,316 0.80 0.81 0.80 0.81
Site B 37,091 0.80 0.81 0.81 0.82
Site C 90,323 0.86 0.88 0.88 0.89
Site D 19,958 0.91 0.92 0.91 0.92
Site E 67,066 0.85 0.86 0.87 0.88
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5.5.3 Distributional Difference and Selection of Unseen Target Domain

This section presents results obtained from analyzing distributional differences to
validate the applicability of applying domain generalization techniques on EHR data and
identify a particularly challenging unseen target domain.

To highlight the applicability of applying domain generalization techniques to EHR
data sourced from various academic hospital systems, we provide evidence that EHR
datasets collected from multiple hospital systems violate conventional machine learning
modeling assumptions. This is evident as either the marginal distributions of source and
target data diverge, indicating a covariate shift, or the conditional distributions vary due to
contextual modifications, suggesting a concept shift. Obtained mean p-values ranges from
0.008 to 0.07, indicating that some distributions are statistically different (p-value < 0.05),
and others are marginal. Thus, Py fori € {1,--,M} # P){Y forj € {1,:-,M},wherei #
j, we can safely reject the null hypothesis, indicating distributions of data collected from
five different hospital systems are different.

Fig. 5.2 presents the mean p-values quantifying the distance between pairs of data
distributions. As can be seen, distributions are not identical, validating the applicability of
leveraging domain generalization on EHR data collected from multiple hospital systems.
Table 5.2 presents descriptive statistics of selected variables from varying hospital sites to
exemplify main factors that entail distributional difference by testing if there are significant
marginal differences between source sites and the unseen target site.

The experiment was leveraged to identify a particularly challenging unseen target site
to evaluate the proposed ERR-DGN method by analyzing the data distributions from the

five sites, in order to select the site that exhibited the most divergence from the others. Fig.
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5.2 shows that site E is the least similar site to others with minimum p-value of 0.008 and

maximum p-value of 0.02. Hence, site E was selected as the unseen target domain.

0.10

Site A
Site B
Site C -JOAE] 0.03 - 0.02 0.008

0.04
Site D 0.02 - )

Site E -JOA 0.02 0.008

R O

Figure 5.2. Presents the mean p-values
quantifying the distance between two data
distributions of EHR data collected from five
different hospital systems. Results show that
Site E exhibits the most divergence from
others (p-value range: 0.008 — 0.02).
Furthermore, due to small mean p-values, we
safely reject the null hypothesis of the KS test
indicating that distributions are statistically
different.

Distributional difference was further confirmed by applying the baseline LSTM model
trained and tested on site C and E respectively representing the sites that exhibit the greatest
divergence; F1 score was 0.73, yielding a 15% deterioration in model performance when
compared to the baseline model trained and tested on data collected from the same site.
Additionally, we applied the baseline LSTM model trained and tested on site A and site B
respectively, exhibiting the least divergence in F1 score (0.71), a 9% deterioration relative
to the baseline model. Performances were significantly affected since the model struggled

to generalize effectively and converge due to training data drawn from different
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distributions. To overcome this limitation and the absence of a comprehensive model
capable of generalizing on multiple source domains for hospital readmission on EHR data
in literature, we adapted the concept of DAN, specifically tailored for domain
generalization on several source domains, aiming to enhance prediction on an unseen target

hospital.

5.5.4 Generalization on Unseen Target Domain

This section presents results obtained to assess the generalization capabilities of the
proposed framework, ERR-DGN. Results obtained aided in validating the assumption that
training on EHR data from one source domain and testing it on target data from a different
hospital system violates conventional machine learning modeling assumptions.

Table 5.4 illustrates the baseline LSTM model when trained on combined data from
Sites A-D and tested on the unseen Site E. This baseline model yielded 0.73 in Fl-score,
demonstrating no further improvement to a baseline model trained on a single source
domain (Site A). The F1 score varied between 0.61 (indicating suboptimal performance
when trained on Site B) and 0.73 (indicating satisfactory performance when trained on Site
A). The proposed framework, ERR-DGN, yielded a 6% increase in the F1-score compared
to the baseline model trained on Sites A-D, and on average, a 10% increase when compared
to the baseline LSTM model trained on a single source. The confidence intervals were very

small (<0.01), indicating a high degree of precision around the means.
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Table 5.4. Performance of the proposed method, ERR-DGN and baselines. The average
F1-Scores and their corresponding two-sided 95% confidence interval on 10 experiments.

Model Source Target Precision Recall F1 Specificity Accuracy
(unseen)

Site B Site E 0.75 0.52  0.61 +0.009 0.53 0.52
Baseline S@te C S%te E 0.75 0.67 0.70+0.005 0.74 0.67
LSTM S}te D S%te E 0.76 0.70  0.72 +0.006 0.77 0.70
Site A Site E 0.76 0.70  0.73 +£0.002 0.78 0.70
Sites A-D  Site E 0.75 0.71  0.73 £0.007 0.78 0.70
ERR-DGN Sites A-D  Site E 0.79 0.80 0.79 +£0.006 0.94 0.80

5.5.5 Exploring Number of Source Sites

This section presents results obtained from extensive experiments conducted using a
greedy approach to determine the optimal number of source sites needed to enhance
predictions on an unseen target domain, Site E. Table 5 illustrates this greedy approach
taken to find the number of sites that are most effective on Site E. Results from ERR-DGN
for 1 site are not displayed, since ERR-DGN is designed to generalize over data from
multiple sources. In contrast, the baseline LSTM model is constructed to handle data
exclusively from a single source.

Table 5.5 shows that performance plateaued at three source sites, and adding more
source sites was not found to increase performance. By testing and comparing different
numbers of sites in combination, we observed a 3% boost in F1-score compared to when
using two sites and a 6% improvement in comparison to using just one site with the baseline

approach.
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Table 5.5. Presents a comparative analysis using a greedy approach to find the optimal
number of source sites needed to enhance predictions on unseen target domain. Presented
results are evaluated using F1-Score.

# Sites Source (E:::eg:;) ERR-DGN Bf;?rlll\l/}e
Site B - 0.61
1 Site C - 0.70
Site D - 0.72
Site A - 0.73
Site A + Site B 0.72 0.69
2 Site A + Site C Site F 0.75 0.72
Site A + Site D 0.76 0.73
Site A + Site D + Site
3 B 0.76 0.72
Site A + Site D + Site
C 0.79 0.73
4 Sites A-D 0.79 0.73

5.5.6 Model Performance Over Time

This section illustrates the longevity of the proposed model to avoid a decline in model
performance over time. Fig. 5.3 illustrates a gradual decline in Fl-score over time. The
model's performance remained relatively consistent when tested for predictions 1 and 2
years into the future. However, a noticeable dip in the F1-score was observed with a 4-year
gap between training and testing data. On average, there was a 1% decline in Fl-score

when predictions were made 3 years post-training and a 4% drop after 4 years.
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Figure 5.3. The model's longevity and its ability on
sustain optimal performance are showcased here. We
developed two distinct models using data acquired in
2016 and 2017, aiming to forecast outcomes with a
time gap ranging from 1 to 4 years. The findings
suggest that for preserving peak efficiency, it might be
advantageous to retrain the proposed framework
approximately every three years.

5.6 Discussion

We propose a framework, ERR-DGN, that is capable of generalizing on EHR data from
distinct hospital systems with different distributions. ERR-DGN is designed to enhance
hospital readmission prediction when applied on an unseen target data relative to
conventional approaches. Its strength lies in its ability to capture and internalize patterns
and characteristics consistent across multiple source domains. ERR-DGN vyielded a 6%
increase in Fl-score compared to the baseline. Baseline models struggled to generalize
effectively when tested on an unseen target data, likely because concatenating data from
varied different sources introduced bias. Several factors could lead to a distributional
difference, including but not limited to sociodemographic, diagnosis and procedure codes,

and capture of such codes. In addition, we studied the number of source sites needed to
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enhance predictions on an unseen target domain, finding that three source hospital systems

from varied area types were found to be sufficient to predict readmission on an unseen

domain. Lastly, we examined model performance over time, showing that performance

was stable for 3 years then declined in year 4. This suggests that periodic retraining at least

every 3 years may mitigate model degradation over time.

This study is a substantial extension of our paper published at AIME-2023 [6], as it

includes the following contributions:

1)

2)

3)

4)

We enhanced the framework proposed in AIME-2023 [3] to learn the model on
EHR data observed at multiple hospital systems and subsequently apply the
rehospitalization prediction model to a novel site, rather than leveraging historic
data from a single source and a target domain to enhance readmission risk
predictions on the target domain. In other words, the proposed method ERR-DGN
has no access to the data of the target hospital in training, unlike the framework
in [6] that requires both source and target data in training.

We broadened the scope by incorporating three additional hospital systems,
bringing the total to five sites encompassing 268,754 patients.

We validated the applicability of utilizing domain generalization techniques on
EHR data collected from five different hospital systems by comparing the
underlying distributions to check whether source and target distributions are
identical.

In a forward search-based optimization we analyzed benefits of learning from
multiple hospital sites for deploying a readmission risk prediction model to a

previously unencountered site.
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5) We determined the duration of the optimal performance of the model.

In present study, we explored an often-overlooked feature of datasets collected from
multiple sites: differences among sites. Indeed, we found that distributions of the variables
and many characteristics of the samples drawn from each site were statistically
significantly different. Furthermore, we confirmed that a conventional LSTM model
trained on 4 sites and tested on the unseen fifth site performed rather poorly relative to
models trained and tested internally on each site. It is impractical for most hospitals to train
existing models on their own data, much less to develop new models. Existing methods
lack the ability to generalize across varied hospital system data distributions without access
to target training data. Hence, there is a need for modeling approaches that maximize
performance on unseen domains like ERR-DGN described here. ERR-DGN is the first end-
to-end domain generalization framework for hospital readmission.

The ERR-DGN approach performs well relative to most previously published 30-day
readmission risk models, which reported F1-scores 0f 0.386 to 0.58 [97-99] and 0.812 [25].
Of note, these previously reported models were all trained and tested internally on samples
drawn from the same source, unlike the ERR-DGN which was tested on data from an
unseen source. In addition, most papers on readmission risk models do not report F1-score,
so opportunities for comparison are limited [101]. Transfer learning has been explored for
hospital readmission to address data scarcity using relevant source datasets.

The key strengths of this study include the use of a relatively large dataset, the
incorporation of multiple sites with varied characteristics collected over 10 years, and the
use of data curated according to the PCORnet CDM, which standardized data across sites.

Some limitations should be acknowledged as well. Data were drawn from sites in 2 states
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(PA and MD) and may not be nationally representative. Although data curated by PaTH in
the CDM format is a strength in terms of data quality, our results might not generalize to
institutions outside of PCORnet. To mitigate this risk, only variables that are commonly
and routinely collected in EHRs were used for modeling. In addition, a deployment
challenge for ERR-DGN is that it requires training data from at least two source domains.
In a subsequent study, we aim to assess the feasibility of applying the proposed method
prospectively as well as to further explore how Site E is different and what characteristics
need to be considered to optimize performance across sites.

We proposed a framework to be applied on sites where historical EHR data is not
available or the development of a new readmission model on a certain site might be
infeasible. We conducted extensive experiments to evaluate our hypothesis and compared
to baseline methods. The proposed method outperformed baseline methods and results
show that ERR-DGN can be an effective tool to enhance hospital readmission on an unseen
target hospital. We further supplemented our findings by exploring the number of hospital
sites needed and longevity of the model. This approach might be propagated to other

scenarios where training occurs on relevant EHR data from different distributions.
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CHAPTER 6

CONCLUSION

In closing, the studies discussed introduced several transfer learning approaches to
mitigate challenges faced with real-world, field-recorded data in different high-impact
domain applications, including healthcare and power systems. Data drift, labels scarcity,
and data quality are one of the primary reasons that impact the performance of traditional
machine learning and deep learning methods. Hence, this dissertation introduces methods
that can mitigate the labor-intensive manual labeling to address labels scarcity and data
drift to aid stabilize electrical grids. Additionally, we proposed frameworks designed for
hospital readmission that address data quality issues, learning from different distributions
to enhance predictions in the target domain, and generalize to unseen target domains,
aiming to improve patient care and reduce the significant costs associated with 30-day
readmissions.

We examined the hypothesis that it is feasible to enhance hospital readmission risk
predictions on EHR data using data collected from a related source domain. The proposed
model yielded a 5% increase in F-1 score when compared to baselines. Furthermore, we
conducted studies to address concerns and research questions related to this domain
application to avoid performance degradation due to data drift over time. We proposed and
validated a framework that establishes spatial knowledge transfer based on a temporal deep
adaptation network tailored for hospital readmission predictions of the target task using

higher quality data from a related source domain under different distributions by matching
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the mean embeddings to reduce domain discrepancy. This approach is the first end-to-end
transfer learning framework based on domain adaptation for hospital readmission.
Conducted experiments show that the proposed early readmission risk temporal domain
adaptation network method can enhance hospital readmission and improve patients’
healthcare.

We further proposed a framework, ERR-DGN, that is capable of generalizing on EHR
data from distinct hospital systems with different distributions to enhance hospital
readmission prediction when applied on an unseen target data relative to conventional
approaches. Its strength lies in its ability to capture and internalize patterns and
characteristics consistent across multiple source domains. ERR-DGN yielded a 6%
increase in Fl-score compared to the baseline. Baseline models struggled to generalize
effectively when tested on unseen target data, likely because concatenating data from
varied different sources introduced bias. In addition, we studied the number of source sites
needed to enhance predictions on an unseen target domain, finding that three source
hospital systems from varied area types were found to be sufficient to predict readmission
on an unseen domain. Lastly, we examined model performance over time, showing that
future performance was stable for 3 years then declined in year 4. This suggests that
periodic retraining at least every 3 years may mitigate model degradation over time.

Proposed transfer learning in conjunction with a semi-supervised detectors that detect
events based on minimal, well-defined labeled data instances from a related source task to
mitigate the labor-intensive manual labeling efforts. This study shows that the proposed
transfer learning method yields a substantial increase in AUROC compared with alternative

state-of-the-art baselines (fully supervised, semi-supervised, and unsupervised).
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Experiments conducted show that this method is more feasible than alternative baselines
when conventional machine learning modeling assumptions are violated and outperforms
the baselines when reusing labeled data instances from one power system to detect events
from another. Furthermore, this method can detect events based on a small amount of

transferred relevant labeled data from another power system.
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