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Abstract—In this paper, we address the problem of spectrum
estimation of multiple frequency-hopping (FH) signals in the
presence of random missing observations. The signals are an-
alyzed within the bilinear time-frequency (TF) representation
framework, where a TF kernel is designed by exploiting the
inherent FH signal structures. The designed kernel permits
effective suppression of cross-terms and artifacts due to missing
observations while preserving the FH signal auto-terms. The
kernelled results are represented in the instantaneous autocor-
relation function domain, which are then processed using a
re-designed structure-aware Bayesian compressive sensing algo-
rithm to accurately estimate the FH signal TF spectrum. The
proposed method achieves high-resolution FH signal spectrum
estimation even when a large portion of data observations
is missing. Simulation results verify the effectiveness of the
proposed method and its superiority over existing techniques.

Index Terms—Frequency hopping, spectrum estimation, miss-
ing observations, Bayesian compressive sensing, time-frequency
distribution, kernel design.

I. INTRODUCTION

FREQUENCY-HOPPING (FH) signals are generated by

varying the carrier frequencies according to a certain hop-

ping pattern, which is typically pseudo-random. Due to their

inherent capability of low probability of intercept, reduced

interference to/from other users, resistance to jamming and

multipath fading, and desirable ambiguity function property,

FH signals have become a favorable choice in a wide range of
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communication and radar applications, particularly in the con-

text of multiple-input multiple-output (MIMO) operations [3]–

[7]. For a variety of tasks ranging from interception of non-

cooperative emitters to exploitation of signals of opportunity

for passive sensing, estimating and tracking the instantaneous

spectrum of FH signals are an important yet challenging

task when the hopping patterns of the constituent signals are

unavailable. The problem becomes even more difficult when

the hopping period is time-varying [9].

In this paper, we consider the spectrum estimation of multi-

emitter FH signals with unknown and time-varying hopping

periods in the context of Bayesian compressive sensing (BCS).

In particular, we focus on the case where the received signal

waveform is subject to missing observations. The specific FH

signal structures are utilized to design time-frequency (TF)

kernels and BCS structure priors to achieve reliable and high-

resolution FH spectrum estimation.

The continuous-time noisy multi-emitter FH signal consid-

ered in this paper is expressed as [8]

s(t) =
H∑

h=1

Kh∑

k=1

Ah,kΠTh
(t− kTh)e

2πfh,k(t−kTh) + v(t),

(1)

where  =
√
−1, and ΠTh

(t) represents a normalized boxcar

function, which is equal to one for t ∈
(
−Th

2 ,
Th

2

]
and 0

otherwise. In addition, Th denotes the duration of each hop of

the h-th individual FH emitter, and H is the number of FH

emitters. Moreover, Ah,k and fh,k are the complex amplitude

and carrier frequency of the k-th tone in the h-th system-wise

dwell, respectively. The number of tones, Kh, may vary with

h because of emitter (de)activation or bandwidth mismatch

[9]. v(t) represents the additive circularly-symmetric complex

white Gaussian noise. Let fs and ∆t = 1/fs respectively

denote the sampling rate and the sampling interval. Then, the

sampled discrete-time FH signal can be derived from (1) as

s[n] =
H∑

h=1

Kh∑

k=1

Ah,ke
2πfh,kn∆t + v[n]. (2)

In practice, the measured data may experience missing

samples due to channel distortion/fading, line-of-sight obstruc-

tion, removal of samples contaminated by impulsive noise,

and collecting/storage equipment failures [10]. Denote x[n] as

signal s[n] with missing data, and Nm ⊂ {1, 2, . . . , N} as

the set of missing time instants with cardinality |Nm| = M ,

http://arxiv.org/abs/1802.00957v1
http://ieeexplore.ieee.org
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where N is the total length of signal x[n] and s[n], and

M/N represents the missing-sample ratio. Then, x[n] can be

interpreted as s[n] modulated by a sum of Dirac delta functions

(impulses) [11], i.e.,

x[n] = s[n]

(
1−

∑

nm∈Nm

δ [n− nm]

)
. (3)

Random missing observations induce noise-like artifacts in

the time-frequency distributions (TFD) [17], which makes the

problem even more intractable.

A. Related Work

Time-varying spectrum signatures of non-stationary signals,

such as FH signals, can be revealed in the joint TF domain

representations. As FH signals generally exhibit sparsity in

the joint TF domain, compressive sensing (CS) and sparse

reconstruction techniques [12]–[14] enable effective FH spec-

trum representation and parameter estimation. In [9], [15],

this problem is solved by formulating the problem as an

underdetermined linear regression with a dual sparsity penalty,

i.e., a penalty function that controls both the intrinsic sparsity

and smoothness of the estimation. However, this approach

requires appropriate tuning of the parameters, and obtaining

the optimum solution still requires considerable effort. Another

limitation of the approach proposed in [9], [15] is that they

do not provide robust estimation performance due to the sen-

sitivity of the differential operator used in fused least absolute

shrinkage and selection operator (LASSO). To improve the

parameter estimation performance, particularly in low signal-

to-noise ratio (SNR) conditions, a BCS method was adopted

in [16], where a logistic stick breaking process is employed to

encourage the temporal clustering over each hopping interval.

BCS algorithm enables, through the proper design of priors,

the incorporation of the contiguity property of typical TF

signatures and thus enhances sparse optimization solutions.

However, all the aforementioned approaches are based on

linear TF analyses, and do not account for the effect of missing

observations. Actually, linear approaches fail in the case of

missing samples, as we will show in Section IV.

As described in [10], [11], [17]–[19], the effect of artifacts

induced by random missing samples can be substantially

reduced by applying proper TF kernels, which involves de-

veloping FH spectrum estimation methods in the bilinear

time-frequency representation (TFR) framework. Sparse re-

construction of TFRs using different CS methods can also

be found therein. It is known that bilinear (quadratic) TFDs

provide high-resolution time-varying spectrum representations.

The Wigner-Ville distribution (WVD) is considered as a pro-

totype of bilinear TFDs, which offers highest TF energy con-

centration for single-component linear frequency modulated

signals. However, because of the bilinear nature, it causes

cross-terms between different components that constitute false

energy distributions. To resolve this problem, various reduced-

interference distributions have been developed for cross-term

reduction through the design of appropriate TF kernels in the

general Cohen’s class [20], [21]. Such TF kernels can be

signal-independent or signal-dependent. The latter performs

parameter tuning via optimization, and thus generally provides

better performance in trading off the cross-term suppression

and the auto-term preservation. In particular, the adaptive

optimal kernel (AOK), which is based on the optimization

of radial Gaussian functions in the ambiguity function (AF)

domain [22], [23], is a commonly used signal-dependent

kernel.

Recently, such approaches have been adopted to estimate

FH spectrum from data with missing observations, and an

orthogonal matching pursuit (OMP) algorithm based approach

was developed to achieve both artifact mitigation and high-

resolution FH signal spectrum estimation [1]. The filtering

capability of TF kernels offers bilinear TFR unique advantages

over its linear counterpart [9], [15], [16] to effectively suppress

the artifacts induced by missing observations. In the underly-

ing problem that deals with FH spectrum estimation, however,

separately reconstructing the TFR in each time instant as in [1]

does not utilize an important signal characteristic relevant to

the contiguous structure of the FH signatures. In particular, the

approach may likely generate isolated or sporadic entries in

the reconstructed TFR in the presence of missing data and/or

measurement noise. In [24], a novel continuous structure based

BCS approach [25] is proposed for the sparse reconstruction of

nonstationary signals with missing observations. On this basis,

a re-designed BCS-based scheme that exploits the contiguous

structure of the FH signal is applied in [2], [26] to provide ad-

ditional robustness in the FH spectrum estimation. Compared

with the FH spectrum estimation via OMP [1], the BCS-based

approach is proved capable to achieve an improved sparse

solution [25]. The BCS methods approach sparse solutions that

are close to ℓ0-norm optimization and support structure-aware

sparse problems through the use of adequate priors.

B. Contributions

The main novelty of this paper lies in the development of

a Comprehensive Structure-Aware Spectrum Estimation tech-

nique for FH signals which is more advantageous than existing

techniques. In particular, it is the first time to investigate the

spectrum estimation for FH signals in the presence of missing

observations. The concept of structure-awareness contains two

major components, namely, structure-aware TF kernel design

and structure-aware TFR reconstruction. (a) A structure-aware

TF kernel is first developed in the AF domain to perform ef-

fective suppression of cross-terms and artifacts due to missing

observations while preserving the FH signal auto-terms. In par-

ticular, we propose a new waveform-adaptive TF kernel design

which combines an automatically optimized pre-filtering win-

dow and the data-dependent AOK. The pre-filtering window

function exploits the prior information of the FH waveform

characteristics, whereas the AOK further optimizes the kernel

for effective cross-term and artifact reduction while preserving

the signal auto-terms. The kernelled AF is then transformed

to the instantaneous autocorrelation function (IAF) domain

through a one-dimensional (1-D) Fourier transform with re-

spect to (w.r.t.) the frequency difference (Doppler) domain.

The IAF results are then processed using sparse reconstruction

methods for high-resolution reconstruction of the FH signal
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TF spectrum. (b) In the sparse reconstruction process, a re-

designed BCS approach is developed to estimate the TFD of

the signal from the IAF. A novel structure prior for the TFD

is imposed to enforce the unique horizontal continuity of the

TFR, that characterize the underlying FH signals. Compared

with [24], [27], in addition to designing new structure-aware

patterns, we also propose nonlinear updating rules associating

the hyper-parameters with the TF patterns, rather than simply

select the hyper-parameters from fixed categories. As such, the

proposed approach can robustly estimate the FH spectrum in

the presence of a high number of missing samples and when

the a priori information of the hopping patterns is unavailable.

As we will show in Section IV, while existing methods

coping with the FH parameter estimation problem developed

in [9], [15], [16] deteriorate sharply when treating data with

missing observations, the proposed approach achieves superior

performance in such challenging scenarios.

Notations: Lower-case (upper-case) bold characters are used

to denote vectors (matrices). abs(·) returns the modulus of a

given complex number. ◦ denotes Hadamard product. diag{·}
represents a diagonal matrix that uses the entries of a vector

as its diagonal entries, and IN denotes an N × N identity

matrix. Fd and F
−1
d denote the 1-D discrete Fourier transform

(DFT) and inverse discrete Fourier transform (IDFT) matrices

w.r.t. the d dimension, respectively, and Fd1,d2 denotes a two-

dimensional (2-D) DFT w.r.t. the d1 and d2 dimensions. (·)∗,

(·)T and (·)H respectively denote complex conjugate, trans-

pose and Hermitian operations of a matrix. ‖·‖p represents

the ℓp-norm of a vector, and |·| denotes the cardinality of a

set. p(·) denotes the probability density function (PDF). B(·),
CN (·), Beta(·), and Gamma(·) denote Bernoulli, complex

Gaussian, Beta, and Gamma distributions, respectively.

II. STRUCTURE-AWARE ADAPTIVE KERNEL DESIGN

The main stages of the proposed structure-aware scheme

are summarized in the flowchart depicted in Fig. 1. In this

section, we first present a detailed description of the proposed

signal-dependent kernel design. A joint-variable representation

of the FH spectrum in the presence of missing samples is

first described in Section II-A, and the adaptive kernel design

is introduced in Section II-B. Section II-D discusses the

optimization of the pre-filtering parameters.

A. Joint-Variable Representations of Missing-Sample FH

Spectrum

The discrete-time IAF of signal x[n] is defined as [21]

Cxx[τ, n] , x[n+ τ ]x∗[n− τ ], (4)

where τ denotes the time-lag index. Stacking Cxx[τ, n] corre-

sponding to all values of τ and n results in an IAF matrix Cxx.

Then, the AF matrix of signal vector x[n], expressed w.r.t. lag

τ and Doppler frequency κ, can be obtained by performing

1-D IDFT on the IAF w.r.t. the time index n, i.e.,

Axx{τ, κ} = F
−1
n Cxx{τ, n} =

∑

n

Cxx{τ, n}e2πκn, (5)

where the notation {τ, κ} is used to emphasize that the matrix

Axx is constructed w.r.t. variables τ and κ. Similarly, the

WVD can be obtained by performing 1-D DFT on the IAF

w.r.t. the lag index τ , i.e.,

Wxx{f, n} = FτCxx{τ, n} =
∑

τ

Cxx{τ, n}e−4πfτ . (6)

Remarks: Note that we use −4πfτ in the above expression

to perform the DFT because integer lags are adopted. This is

a common practice in computing the discrete WVD.

Substituting (3) and (4) into (5), the AF of the observed FH

signal with missing samples can be obtained as follows

Axx[τ, κ] =
∑

n

Css[τ, n]

(
1−

∑

nm∈Nm

δ [n− nm + τ ]

)

·
(
1−

∑

nm∈Nm

δ [n− nm − τ ]

)
e2πκn

= Ass[τ, κ]−
∑

nm∈Nm

s[nm]s∗[nm − 2τ ] · e2πκ(nm−τ)

−
∑

nm∈Nm

s[nm + 2τ ]s∗[nm] · e2πκ(nm+τ)

+
∑

n

∑

nm∈Nm

(
(δ [n− nm + τ ] s[n+ τ ]

·
∑

nl 6=nm∈Nm

δ [n− nl − τ ] s∗[n− τ ]



e2πκn

+
∑

nm∈Nm

δ [−2τ ]s[nm]s∗[nm − 2τ ]e2πκ(nm−τ),

(7)

Fig. 1. Flowchart of the proposed signal processing scheme.
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Fig. 2. Illustration of undesired terms and kernel design. (a) A typical AF plane of an FH signal. (b) An illustrative example of revised ECSK.

where Css and Ass respectively denote the IAF and AF of the

original FH signal s[n] without missing samples. The term Ass

in (7) contains
∑H
h=1 hKh auto-terms and

(∑H
h=1 hKh

)2
−

∑H
h=1 hKh cross-terms.

It can be observed from (7) that, the missing-sample AF

consists of two parts, i.e., the full-data AF Ass of s[t] and the

artifacts due to missing samples. The latter contains the auto-

terms of the missing samples and the cross-terms between the

signal and the missing samples. The artifacts expressed in (7)

resemble noise in the sense that they spread over the entire

ambiguity domain. The noise pattern of the first two artifact

terms in the ambiguity domain depends on the values of the

missing observations and their positions, whereas the third

artifact term is only affected by the missing-sample positions.

As pointed out in references [10], [11], careful attention should

be paid to the last artifact term, which is always located at

τ = 0, i.e., along the Doppler frequency axis. This discourages

the use of conventional kernels which, due to the required

marginal properties, capture all values along the τ = 0 axis.

A typical AF magnitude plot of an FH signal is depicted in

Fig. 2(a).

B. Adaptive Kernel Design

With the use of the a priori information on the TF structure

of the FH signal, i.e., its piecewise constant frequency TF

signature, we can apply a proper pre-filtering window before

optimizing the AOK so as to prevent the artifacts from being

falsely identified as desired signal components and misguiding

the AOK optimization process. Generally, for signals whose

auto-terms are nearly parallel to either the lag or the Doppler

axis, which are exactly the case with the FH signals considered

in this paper, the extended compact support kernel (ECSK)

outperforms the other kernels in terms of artifact suppression

and auto-term preservation [21], [28], [29]. The ECSK also

provides flexibility to independently adjust the shape and the

size of the kernel. In this paper, we modify the ECSK such

that different shape control parameters are used for the two

branches, i.e., the lag and Doppler, to offer better flexibility.

The modified ECSK is formulated as

g̃[τ, κ] = g̃1[τ ] · G̃2[κ], (8)

where

g̃1[τ ] =





exp

(
ρ1 +

ρ1Ξ
2
1

τ2 − Ξ2
1

)
|τ | < Ξ1N,

0, otherwise,
(9)

and

G̃2[κ] =





exp

(
ρ2 +

ρ2Ξ
2
2

κ2 − Ξ2
2

)
|κ| < Ξ2N,

0, otherwise,
(10)

respectively represent lag/Doppler window branches. In the

above expressions, ρ1 and ρ2 denote the shape control pa-

rameters of the two branches, and Ξ1 and Ξ2 represent their

respective sizes. Larger values of ρ1 and ρ2 result in a steeper

kernel shape in the corresponding branch, whereas larger

values of Ξ1 and Ξ2 imply a larger kernel size.

In our proposed method, prior to the radial kernel optimiza-

tion procedure, the short-time AF is pre-filtered by utilizing

the modified ECSK in a time-localized, short-time manner, as

illustrated in Fig. 2(b), where the preserved support for the

auto-terms is a sufficiently small region where the Doppler

frequency is nearly zero. In doing so, the vertical TFD stripes

due to impulsive missing samples, whose AF components

spread in the Doppler domain, and noise-like artifacts, whose

AF components spread in the entire ambiguity domain, are

effectively eliminated.

C. Pre-filtering Parameter Optimization

Enhanced TFD concentration generally yields sharp TF

representations and reduced vicinal interference. To achieve

an optimal pre-filtering performance that simultaneously max-

imizes the TFD concentration and minimizes the TFD artifacts,

parameter pairs ρ1 and ρ2 as well as Ξ1 and Ξ2 should be

tuned to their optima based on a proper criterion. Several

optimization criteria are available in the literature for the eval-

uation of the concentration performance. Among these criteria,

distribution norm-based measures [30], [31] and entropy-based

measures [32], [33] are commonly used. However, norm-

based measures tend to discriminate poorly concentrated com-

ponents [34], whereas entropy-based measures are sensitive

to amplitude and phase variations [35]. In this context, an

efficient energy concentration measure is introduced in [34]

that overcomes the aforementioned drawbacks, and has been
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applied to automatic determination of the best window length

in the computation of spectrogram. In this paper, an automatic

parameter tuning method is proposed based on this energy

concentration measure. The discrete-time expression of this

energy concentration measure can be written as

M
(
Fτ,κÃxx{n; τ, κ}

)
=

(
∑

τ

∑

κ

∣∣∣Fτ,κÃxx{n; τ, κ}
∣∣∣
2
)2

.

(11)

We define the cost function in our pre-filtering parameter

optimization process as

min
ρ1,ρ2,Ξ1,Ξ2

M
(
Fτ,κÃxx{n; τ, κ}; ρ1, ρ2,Ξ1,Ξ2

)

s.t. 0.01 ≤ ρ1, ρ2 ≤ 10,
0.01 ≤ Ξ1,Ξ2 ≤ 0.5.

(12)

The constraints in (12) are set according to the domain of

definition and can are applicable to different types of FH

signals.

0 1 2 3 4 5 6
ρ1

0

0.2

0.4

0.6

0.8

1

ρ
2

Fig. 3. Illustrative scatter plot of optimized parameters.

To achieve a fully automated optimization of the kernel

parameters, an adaptive differential evolution algorithm [36] is

adopted. When the a priori knowledge about the distribution

of potential optima is available, we can further exploit it

to arrange the initial population settings. In the simulation

examples provided in Section IV, we assume that the potential

optima follow a uniform distribution. To better illustrate the

parameter optimization process, we provide a 128-point scatter

plot of the optimized parameters ρ1 and ρ2 in our numerical

trials. It can be observed that the optimal values of ρ2 vary

within a relatively narrower range than ρ1.

D. AOK After Pre-filtering

After applying the modified ECSK as a pre-filtering win-

dow, AOK is then employed to further mitigate the effect

of artifacts due to missing samples. As discussed in Section

II-A, such artifacts spread over the entire ambiguity domain.

The AOK is a well-known data-dependent kernel, which is

designed by solving the following optimization problem [23]:

Φopt(r, ψ) = argmax
Φ(r,ψ)

∫ 2π

0

∫ ∞

0

|A(r, ψ)Φ(r, ψ)|2rdrdψ

s.t. Φ(r, ψ) = exp

(
− r2

2σ2(ψ)

)
,

1

4π2

∫ 2π

0

σ2(ψ)dψ ≤ α,

(13)

where α denotes the kernel volume constraint, A(r, ψ) rep-

resents the AF of the signal in polar coordinates, and r and

ψ denote the radius and radial angle variables, respectively.

Equation (13) is optimized in the sense that the signal auto-

terms are preserved to the maximum extent within the low-

pass Gaussian filter, while the pass-band area of the filter is

limited to a total volume of α so as to filter out the cross-

terms which are located away from the origin, and to reduce

the artifacts and noise that spread over the entire ambiguity

domain. The desired resolution and the cross-term attenuation

are determined by a proper selection of α.

For signals with time-varying characteristics, AOK is usu-

ally implemented with a time-localized short-time AF. At

time instant t, a time-adaptive kernel Φopt(t; r, ψ) is produced

by substituting the short-time AF A(t; r, ψ) for A(r, ψ) in

(13) and then following the polar-coordinate Gaussian kernel

optimization procedure for each individual TFD slice [23]. De-

noting the rectangular-coordinate short-time AF as A[n; τ, κ],
the pre-filtered short-time AF can be expressed as

Ãxx[n; τ, κ] = g̃[n; τ, κ] ·Axx[n; τ, κ]
= g̃[n; τ, κ] ·

∫
x[u+ τ ]w[u − n+ τ ]

·x∗[u− τ ]w∗[u− n− τ ]eκudu,

(14)

where w[n] represents a rectangular short-time sliding window.

Stacking Ãxx[n; τ, κ] for all τ and κ results in the short-

time AF matrix Ãxx{n; τ, κ}. Then, the TFD corresponding

to the kernelled AF is obtained as its 2-D DFT w.r.t. τ and κ,

expressed as

W̃xx{f, n} = Fτ,κÃxx{n; τ, κ}Φopt{n; τ, κ}, (15)

where Φ{n; τ, κ} is the time-localized AOK matrix repre-

sented in the rectangular (τ, κ) coordinate system.

Remarks: It is worth emphasizing that, when compared

to references [9], [15], [16], which consider FH spectrum

estimation in the context of linear short-time Fourier transform

(STFT), the utilization of the bilinear TFR in this paper en-

ables us to better address the missing-sample problem because

kernel design and its capability to filter out undesired signal

components can be utilized only in bilinear TF analysis. This

is a key novel contribution of this paper since so far only

the linear TF analysis has been used in sparse FH spectrum

estimation, and no missing samples have been considered in

the literature.

III. BCS-BASED FH SPECTRUM ESTIMATION

A. CS Model for FH Spectrum Estimation

In this section, we consider a CS based approach which

yields a high-resolution TFR. The IAF matrix corresponding



6 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. X, XXX XXXX

to the kernelled AF is obtained as the 1-D IDFT of Ãxx{τ, κ}
w.r.t. κ, i.e.,

C̃xx{τ, n} = F
−1
κ Ãxx{τ, κ}. (16)

On the other hand, the bilinear TFR matrix is associated with

the IAF matrix by the following 1-D Fourier relationship:

C̃xx{τ, n} = F
−1
f W̃xx{f, n}. (17)

The CS approach obtains W̃xx{f, n} by exploiting the

above Fourier transform relationship but through a sparse

reconstruction operation. Denote c̃xx[n] as the n-th column of

the IAF matrix C̃xx{τ, n}, and w̃xx[n] as the n-th column of

the bilinear TFR matrix W̃xx{f, n}. Then, their relationship

conforms to the following standard linear model commonly

used in CS and sparse reconstruction:

c̃xx[n] = F
−1
f w̃xx[n]. (18)

Therefore, the TFR can be obtained from sparse reconstruc-

tion, in lieu of conventional Fourier transform, by repeating

the procedure for each time instant. Various CS algorithms

can be used for this purpose. In the following, we consider

this problem from a BCS perspective [25], and the structure

of the FH spectrum is utilized for improved spectrum estima-

tion. BCS methods are known for their capability to flexibly

model sparse signals that not only promote the sparsity of its

solution, but also exploit additionally known structures of the

sparse signal [37]. For notational convenience, we simplify the

notations c̃xx[n], F
−1
f and w̃xx[n] as c, Λ and w, respectively,

i.e.,

c = Λw. (19)

B. Sparsity Prior

The BCS is a nonparametric solver of sparse linear inverse

problems imposing a conditional Gaussian prior with its

precision (reciprocal of the variance) guided by a hyperprior

of Gamma distribution, i.e., α0 ∼ Gamma(c, 1/d). The BCS

assumes the following likelihood model [38]

p (c;w, γ0) = CN (c;Λw, γ0I), (20)

where γ0 = α−1
0 is the variance. To encourage sparsity of the

FH signal TFR, a Dirichlet process prior with a spike-and-

slab centering distribution [24], [39] is employed to wi, i.e.,

the i-th entry of w, which allows different predictors to have

identical coefficients while performing variable selection. That

is,

p(wi; γi, πi) = (1− πi)δ0 + πiCN (wi; 0, γi), (21)

where πi is a mixing weight standing for the prior probability

of a nonzero entry, and δ0 represents the delta function with

a unit point measure concentrated at zero. Also, we assign a

Gamma prior to the precision as γ−1
i = αi ∼ Gamma(a, 1/b).

To make the inference analytical, a product of two latent

variables zi and θi, i.e., wi = zi · θi, is introduced to

follow the PDF in (21), where θi ∼ CN (θi; 0, γi), and zi
is a binary variable that follows the Bernoulli distribution

B(πi). zi = 1 implies that the i-th entry is nonzero, whereas

zi = 0 implies a zero entry. Denote z = [z1, . . . , zN ]
T

and

θ = [θ1, . . . , θN ]T. The overall prior on θ w.r.t. a and b
can be evaluated analytically through the integration over α,

and it corresponds to the Student-t distribution [40]. With an

appropriate choice of a and b, the Student-t distribution is

strongly peaked about θ = 0, and thus the overall prior on

θ favors sparseness [39]. In practice, the hyper-parameters

a, b, c, d are usually assigned to small values to make the

corresponding priors flat.

C. Structure Prior

The FH spectrum shows sparse piecewise constant fre-

quencies. This structure characteristic can be exploited to

improve the accuracy and robustness of the sparse learning

performance. For the underlying FH signals, a continuous

structure prior that encourages the FH spectrum to have a

longer horizontally linear structure in the TFR is desired. With

a slightly increased computational complexity, we extend the

model to size 3 × 5, i.e., the neighborhood entries that are

within a Euclidean distance of 2, and the vertical pixels from

the proximate frequency rows are taken into consideration

when decision is made to the TF entry under test. It is evident

from Fig. 4 that the utilization of the structure model with

a higher dimension enables more comprehensive characteri-

zation and treatment of pixel patterns. In this case, simply

Fig. 4. Examples of different 3× 5 TF patterns.
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dividing various patterns into a fixed number of categories

does not adequately characterize the relationship between the

neighboring pixels. In addition, in the situations with a low

SNR, there will be more artifact residue and a higher level of

spectrum distortion. As a result, simply rejecting all entries

with vertical non-zero neighbors will degrade the robustness

of the algorithm.

(a) (b)

Fig. 5. Two patterns of vertical adjacent structure. (a) Indirectly adjacent. (b)
Directly adjacent.

In this context, we propose a new structure prior which

is related to each individual pattern with a proper nonlinear

relationship. We first define the neighborhood of index i as

J⊙i , {j |d (i, j) ≤ 2, j ∈ [1, N ]} , (22)

where d (i, j) is the Euclidean distance between i and j.
We then define the deleted neighborhood of index i, i.e., the

neighborhood of index i with i itself excluded, as

J⊗i , {j |d (i, j) ≤ 2, j ∈ [1, N ] , j 6= i} . (23)

The number of nonzero entries at a location i and its neigh-

borhood is denoted as zJ⊙i
. Note that during the pattern

classification process, three rows of z are investigated, and we

denote the location i in the [n+1]-th and [n− 1]-th rows of z

as i+ and i−, respectively. In Bayesian probability theory,

if the posterior distributions belong to the same family as

the prior probability distribution, then the prior and posterior

are termed conjugate distributions. The Beta distribution is

conjugate to Bernoulli likelihood, so πi is assumed to follow

the Beta distribution. For a certain structure prior, the posterior

distribution of πi is derived as

p(πi; e, f) = Beta
(
e+ zJ⊙i

, f + |J⊙i| − zJ⊙i

)
. (24)

The Beta(e, f) distribution tends to draw small values of

πi when e < f , and a large value when e > f , while it has

no tendency when e = f . By choosing proper values of e
and f , therefore, we can encourage or discourage the sparsity

of the pixel under test, depending on the sparsity support

in the neighboring pixels. The value of hyper-parameters e
and f should be decimal fractions between 0 and 1. In

the previous three-decision-category based method [24], [27],

these hyper-parameters are multiples of 1/N , and N is chosen

to be integer power of 2 for computation efficiency. Also,

as a rational nonlinear relationship associating the hyper-

parameters with the TF structure should encourage longer hor-

izontal structures while discourage high vertical-to-horizontal

non-zero neighborhood ratios, we choose a straightforward

formula
(
1−

(
1
2

)func(zver/zhor))+
(
1
2

)func(zhor)
to express the

nonlinear relationship between hyper-parameter f and the TF

structure patterns, and let e = 1− f . On the other hand, some

modifications should be made to the formula to ensure that

the value of f corresponds to the boundary values of zhor,
whereas zver is constrained to a reasonable range and to avoid

zero denominator. As a result, the hyper-parameter f can be

derived as

f =





1/N, ̟ < 1/N,
̟, 1/N ≤ ̟ < 1,
1− 1/N, ̟ ≥ 1,

(25)

where the value of ̟ is determined in (26)-(28).

Remarks: The statistical properties of Beta distribution, such

as mode, mean, and variance are closely related to the weight

of each shape parameters in their summation. We set these

parameters e and f in order to encode the structure prior

beliefs. For example, the mean of the Beta distribution in this

paper is set to (1−̟ + zJ⊙i
)/ |J⊙i|. A similar parameter

setting has also been adopted in several existing references

(c.f., e.g., [24], [27]). We set e = 1 − f and keep both

hyperparameters for better interpretation and consistency with

the existing references.

In the above expressions, the vertical structure factor zver is

assigned different weights 1/2 and 1 respectively to indirectly

and directly adjacent structures as shown in Fig. 5. The rea-

son we discriminate between indirectly and directly adjacent

structures is that directly adjacent structures tend to broaden

zver, zhor → ̟ : ̟ ,


1−

(
1

2

)(

1
2

(√

(1+4×2) 1+2zver
1+zhor

−1
))4

+

(
1

2

)z2hor
, (26)

with

zver ,
1

2


zJ⊗i+

+ zJ⊗i−
+

2∑

j=1

zi+j
(
z(i+j)+ + z(i+j)−

)

 , (27)

zhor ,






0,
2∏
j=1

zi+j +
2∏
j=1

zi−j = 0,

2∑

j=1

(
(zi+1 + zi−1)+ (zi+1zi+2 + zi−1zi−2)+ . . .

+(zi+1zi+2 . . . zi+j + zi−1zi−2 . . . zi−j)
)
, otherwise.

(28)
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the signal bandwidth. This is contradictory to the fact that

the underlying FH signals are instantaneously narrowband. In

contrast, indirectly adjacent structures may be formed by the

distortion of the desired signal component, noise, or artifact

residue, so the weight should be relatively smaller. On the

other hand, the horizontal structure factor zhor is obtained

by counting the number of continuous adjacent entries. Note

that, if the entry under test is located in an isolated line, i.e.,

both the left and right edge pixels are 0, the value of zhor
in (28) will be set to 0. Because the codomain of zver and

zhor can be derived as [0, 4] and [0, 8], respectively, according

to (27) and (28), we can further obtain the domain of ̟ as

̟ ∈
[
(1/2)

16
, 2− (1/2)

256
]
.

Assume that N = 128. According to the proposed structure

prior formation method, the hyper-parameter pairs (e, f) for all

the patterns are listed under each case in Fig. 4. These hyper-

parameters better reflect the corresponding cluttering situation,

by automatically assigning a moderate value to the pattern

where a long straight line is present whereas the vertical

pixels in the nearby rows take a small value. For those cases

where nonzero entries extend in the frequency domain or occur

isolatedly, a discouraging value will be asserted to prevent or

restrain the structure.

D. Bayesian Inference

Since no closed-form expressions of the Bayesian estimators

can be derived, Markov-chain Monte Carlo sampling is used to

implement the inference. The maximum likelihood estimation

of wi and γi from (21) will generally lead to severe overfitting.

To obviate the overfitting problem, a smoother inference model

is formulated by defining an automatic relevance determination

Gaussian prior over the weights [40]:

p (w;γ,π) =

N∏

i=1

[(1− πi)δ0 + πiCN (wi; 0, γi)] , (29)

where γ = [γ1, . . . , γN ]
T

is a vector consisting of N hyper-

parameters that independently control the prior variance of

each weight. We can then acquire the posterior distribution

of w by combining (29) with the observation likelihood

p (c;w, γ0) in (20), i.e.,

p (w |γ,π, c, α0 ) ∝ p (w;γ,π) p (c;w, α0) . (30)

A Gibbs sampler is adopted to implement the Bayesian

inference as following. Let λi be the i-th column of Λ. Then,

the paired Gibbs sampler iteratively samples the observations

from the following conditional PDF [24], [39]

p
(
wi
∣∣w\i, c

)
= p

(
θi, zi

∣∣θ\i, z\i, c
)

= p
(
θi
∣∣zi, θ\i, z\i, c

)
p
(
zi
∣∣θ\i, z\i, c

)
,

(31)

where the notation (·)\i denotes the subvector excluding the

i-th entry. The probability p
(
zi = 1

∣∣θ\i, z\i, c
)

is acquired

as

p
(
zi = 1

∣∣θ\i, z\i, c
)
=

αi
1− αi

CN (0, γi)

CN (µ̃i, γi)
, (32)

where µ̃i and γ̃i are respectively updated as

µ̃i = α−1
i α0λ

H
i c\i, (33)

γ̃−1
i = α̃i =

(
α0λ

H
i λi + αi

)
. (34)

The conditional distribution of p
(
θi
∣∣zi = 1, θ\i, z\i, c

)
can

be expressed as

p
(
θi
∣∣zi = 1, θ\i, z\i, c

)
= CN (wi; µ̃i, γi) . (35)

For the zi = 0 case, as the value of θi does not affect the

result of wi, we directly draw the value of θi from its prior.

Subsequently, the Gibbs sampler updates the mixing weight

πi according to (24).

Next, we update the precision variable αi. By utilizing the

conjugate property of the Gaussian and Gamma distributions,

we analytically acquire the posterior distribution of αi as

p
(
αi; a, b, zJ⊙i

)
= Gamma



a+
zJ⊙i

2
,

1

b+
‖zJ⊙i‖2

2

2



 .

(36)

After completing all the i iterations, the posterior distribution

of the noise precision α0 is updated as

p (α0; c, d, c,Λ, θ, z)

= Gamma

(
c+

rank{Λ}
2

,
1

d+
‖c−Λ(θ◦z)‖2

2

2

)
.

(37)

The maximum a posteriori (MAP) estimator is adopted to

infer the estimation of w as

ŵ = argmax
w

p (w |c) , (38)

where marginal distribution p (w |c) can be obtained by

integrating out the hyper-parameters γ, π, and α0 in (30), as

expressed in (39) [39], where Γ (u) ,
∫∞

0 tu−1e−tdt denotes

a Gamma function.

This completes the sparse reconstruction result of (18) for

one time instant. The estimation of the entire FH spectrum

is rendered by repeating the BCS-based estimation for each

column of W̃xx{f, n}.

Remarks: The proposed method in this paper differs from

that of [2] in two aspects: (a) In [2] a threshold-based post-

AOK window was adopted, whereas in this paper we pre-filter

the running AF with a new ECSK. ECSK is known as the

p (w |c) ∝
∫
p (w |γ,π, c, α0 ) dγdπdα0

∝
(
d+

1

2
‖c−Λw‖22

)−c−N
2

N∏

i=1




Γ
(
a+

zJ⊙i

2

)

(
b+

‖zJ⊙i‖2

2

2

)a+ zJ⊙i
2

· Beta
(
e+ zJ⊙i

, f + |J⊙i| − zJ⊙i

)



.

(39)
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best TF kernel for signals with axially distributed auto-terms

[21], [28], [29], and it facilitates independent controlling of the

shape and size according to the a priori knowledge on the sig-

nal structure. An automatic parameter optimization approach

for the pre-filtering ECSK kernel is also proposed in this paper.

As a result, the cleanest possible running AF is delivered to

the AOK optimization process, so that the resultant adaptive

kernel design significantly improves the desired TF filtering

performance. (b) Unlike in [2] where the structure priors for

BCS-based TF reconstruction were designed based on a fixed

three-category pattern, in this paper we associate the hyper-

parameters with a nonlinear relationship of the TF structure.

The modified structure prior is designed to more adequately

model the diversified relationship with neighboring TF entries.

E. Computational Complexity

In this subsection, we analyze the computational complexity

of the proposed scheme and compare it with the existing

approaches for FH spectrum estimation. Three methods are

compared, namely, the STFT, sparse linear regression (SLR)

[9], [15], and sparse Bayesian learning (SBL) [16] based

approaches. Note that, although the terms SBL and BCS are

used interchangeably for the same algorithm in the literature,

we use SBL and BCS in the sequel to respectively refer to the

algorithms developed in the linear and bilinear TF frameworks

for convenience.

Let ζ be the length of the short-time slide window.

The computational complexity of the STFT-based method

is O(N log2 ζ), which is the least among all the existing

approaches. In comparison, the complexity of the SLR-based

method is O(N2L2) [9], where L is the number of frequency

bins. Similar to the STFT-based method, the SBL approach

[16] also partitions the input signals into P overlapped seg-

ments through a sliding window. The computational complex-

ity of the SBL approach is then O(Pζ3+Kg3)) [16], where K
is the number of latent parameters, which is normally truncated

to a value close to P for a tractable Bayesian inference,

and g denotes the cardinality of the sampled time set in the

temporal kernel basis vector, which is typically smaller than

P . As stated in [16], the computational complexities of both

linear TF based methods [9], [15], [16] are actually in a very

similar order. In our proposed scheme, the complexities of the

pre-filtering parameter optimization, pre-filtering plus AOK

processing, as well as BCS reconstruction stages are O(GQ2)
[41], O(NL log2 L) [23], and O(N3) [40], respectively, where

G is the total number of generations, and Q is the dimension

of the problem, i.e., the number of the parameters to be

optimized. When considering the overall computational com-

plexity, which includes multiple terms, its order is determined

by that of the fastest growing term (with the highest order of

N ). As such, the overall asymptotic computational complexity

of the proposed scheme is O(N3). As such, the computational

complexity of the proposed method is much higher than the

STFT-based method, but is only slightly higher than the SLR

and SBL approaches. This is the price we pay in order to

achieve robust and accurate spectrum estimation with missing

observations, as we will demonstrate in the next Section.

IV. NUMERICAL EXPERIMENTS AND ANALYSIS

In this section, numerical experiments are conducted to eval-

uate the performance of the proposed algorithm in comparison

with those reported in the literature. In this section, the input

SNR is defined as [9], [16]

SNR , 10 log10

(
‖x‖22
Nσ2

)
, (40)

where x is the signal vector, and σ2 denotes the power of

additive white Gaussian noise.

In particular, two performance measures are defined for the

evaluation of the hopping time and the instantaneous frequency

(IF) detection performance, respectively. The ratio of correct

hopping time detection is defined as [16]

Pt ,
1

Mc

Mc∑

i=1

Dt(i) (41)

where Mc is the number of Monte Carlo trails and Dt(i) is

the ratio of correct detections in the i-th Monte Carlo trial.

A correct hopping time detection is declared if the estimated

hopping instant is less than 3 observations away from the

associated true hopping instant. The hopping time statistic is

defined as ∆n , ‖xn+1 − xn‖22. The same definition is used

in references [9], [16]. The ratio of incorrect IF detection is

defined as [16]

Ef , 1− 1

Mc

Mc∑

i=1

Df (i) (42)

where Df (i) is the ratio of correct frequency detections in the

i-th Monte Carlo trial.
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Fig. 6. Simulated FH signals. (a) True TF trajectories of the FH signals; (b)
Spectrogram of FH signals with missing samples.
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Fig. 7. Joint-variable representations of FH signal with missing observations and kernel processed results. (a) AF; (b) IAF; (c) WVD; (d) AF after applying
AOK; (e) IAF after applying AOK; (f) TFR after applying AOK; (g) AF after applying the proposed kernels; (h) IAF after applying the proposed kernels. (i)
TFR after applying the proposed kernels.

Simulation results are provided to demonstrate the effective-

ness of the proposed approach. First, an illustrative example is

given in Fig. 6(a), where the FH signals are identical to those

used in reference [16]. The signals are generated as follows:

The first FH component is active with a carrier frequency of

13 KHz within the range of time index [0 : 15] and the carrier

frequency hops to 18 KHz within the range of time index

[16 : 63]. The second hopping component is active with a

carrier frequency of 28 KHz within the range of time index

[0 : 31] and the carrier frequency hops to 23 KHz within the

range of time index [32 : 63]. The third hopping component

is active with a carrier frequency of 35 KHz within the range

of time index [0 : 47] and the carrier frequency hops to 6
KHz within the range of time index [48 : 63]. The sampling

frequency fs is 64 KHz. The model hyper-parameters for the

priors are set as follows: a = b = c = d = 10−6, the value of

f is assigned as in (25), and e = 1− f . The initial conditions

are set as αi(0) = 1, πi(0) = 0, and α0(0) = 102/var(c),
where var(·) yields the scalar variance of a vector. Fig. 6(a)

shows the true TF trajectories of the generated FH signals. The

TF analysis of such multi-component FH signals, particularly

at a low input SNR, is a challenging problem. Fig. 6(b) shows

the spectrogram with 10% missing samples and input SNR

of 30 dB. It is evident that the TF signatures can be hardly

recognized with linear approach even in the case where the

missing-sample rate is low and the input SNR is high.

In the following, we show the superior performance

achieved by the proposed method for the situation where the

SNR is set to 0 dB, and the missing-sample rate is 25%.

The joint-variable representations of the missing-sample FH

spectrum and their kernelled versions are presented in Fig.

7. In Figs. 7(a) through 7(c), no kernel is adopted. The

impact of missing samples can be clearly observed from the

IAF showing in Fig. 7(b), and the auto-terms can hardly be

identified from both AF and WVD in Figs. 7(a) and 7(c).

Figs. 7(d) through 7(f) show the corresponding joint-variable

representations when the AOK is applied.

In this case, because of the low SNR and the missing



LIU et al.: STRUCTURE-AWARE BCS FOR FH SPECTRUM ESTIMATION WITH MISSING SAMPLES 11

samples as well as the required marginal properties, the

optimization process in the AOK is severely distorted. As the

result, although the AF plane is much cleaner compared with

Fig. 7(a), a satisfactory kernelled result cannot be achieved.

Rather, the estimated TFR in Fig. 7(f) shows strong vertical

strips. In Figs. 7(g) to 7(i), the proposed revised ECSK plus

AOK scheme is adopted. It can be observed from Fig. 7(g) that

the auto-term energy in the AF is integrally preserved, while

nearly all the undesired terms are suppressed. Nevertheless,

direct estimation of the instantaneous frequencies from this

plot is still difficult because of the low TF resolution. There-

fore, we use the structure-aware BCS to obtain an improved

FH spectrum estimation with a finer resolution. The yielding

result and the comparison between true and estimated hopping

time statistics are respectively depicted in Figs. 8 (a) and (b),

which showcase a significant improvement as compared to all

the above results depicted in Fig. 7.
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Fig. 8. Estimation results: (a) Estimated TFR; (b) Hopping time statistics.

To better demonstrate the effectiveness of the proposed

method with statistical results, 1000 Monte Carlo trials are

conducted with the input SNRs varying from 0 dB to 15 dB.

In Fig. 9, comparisons are drawn among different existing

approaches. It can be summarized from Fig. 9 that an improved

performance is obtained by using the proposed method, and

the advantage is more remarkable in the low SNR cases.

Regarding the influence of missing samples and SNR on the

algorithm performance, the statistical results are provided in

Fig. 10. Note that the detection performance of the other

methods are very poor and thus are not included in Fig.

10 when we compare the performance in the presence of

missing observations. As stated above, existing linear TF

analysis based approaches cannot robustly perform spectrum

estimation with missing observations. Hence, in the presence

of missing samples as studied in this paper, these methods

yield a detection ratio which is very close to 0 for all SNR

values being investigated.

To explore the possibility to skip the pre-filtering parameter

optimization process by adopting the average values after

collecting sufficient estimations, we conduct numerical trials

using the above simulation settings. As the simulation results

shown in Fig. 11 indicate, this inevitably affect the pre-

filtering performance and consequently slightly degrade the

reconstruction accuracy.

Remarks: Unlike the method proposed in [16] which consid-

ers FH signal recovery using linear TF analysis (i.e., STFT),

the proposed work utilizes the bilinear TF methods. As the

bilinear TF methods can use kernel designs to filter out

undesired signal components, the proposed method can better

utilize the known properties of FH signatures to design the

kernels, thus enhancing the FH signal before applying BCS-

based sparse reconstruction. This is particularly important

in the presence of strong artifacts and noise. Note that the

design of such kernels in the structure-aware context is a core

contribution of this paper. Such kernel design is not offered

in the linear STFT-based approaches. As such, the proposed

work is very different to that in [16] and its advantages can

be easily understood in concept and are clearly demonstrated

through the above simulation results.

V. CONCLUSION

In this paper, a novel structure-aware FH spectrum estima-

tion approach with the consideration of missing observations

was proposed in the sparse reconstruction framework. In

particular, a TF kernel was designed to effectively utilize

the inherent FH signal structure. The kernelled joint-variable

representation over time and lag was used to provide the

TF signal representation through sparse reconstruction. In the

sparsity-based spectrum estimation process, the structure of the

entry under test and its neighborhood is exploited to impose

a structure prior on the Bayesian inference. It was shown that

this approach significantly outperforms existing approaches

devised for the same problem.
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Fig. 9. Statistic comparisons among different methods without missing observations. (a) Comparison of the correct hopping time detection ratio; (b) Comparison
of the incorrect IF detection ratio.
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Fig. 10. Statistic comparisons of the proposed method with different missing-sample rates. (a) Comparison of the correct hopping time detection ratio; (b)
Comparison of the incorrect IF detection ratio.
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Fig. 11. Impact of adopting average optimized parameters in the pre-filtering process: (a) TFR after applying the proposed kernels; (b) Estimated TFR; (c)
Hopping time statistics.



LIU et al.: STRUCTURE-AWARE BCS FOR FH SPECTRUM ESTIMATION WITH MISSING SAMPLES 13

[5] C. Y. Chen and P. P. Vaidyanathan, “MIMO radar ambiguity properties
and optimization using frequency-hopping waveforms,” IEEE Trans.

Signal Process., vol. 56, no. 12, pp. 5926–5936, Dec. 2008.
[6] A. R. Hunt, “Use of a frequency-hopping radar for imaging and motion

detection through walls,” IEEE Trans. Geosci. Remote Sens., vol. 47, no.
5, pp. 1402–1408, May 2009.

[7] S. Gogineni, A. Nehorai, “Frequency-hopping code design for MIMO
radar estimation using sparse modeling,” IEEE Trans. Signal Process.,
vol. 60, no. 6, pp. 3022–3035, June 2012.

[8] M. K. Simon, U. Cheng, L. Aydin, A. Polydoros, and B. K. Levitt, “Hop
timing estimation for noncoherent frequency-hopped M-FSK intercept
receivers,” IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 1144–1154,
Feb./Mar./April 1995.

[9] D. Angelosante , G. B. Giannakis, and N. D. Sidiropoulos, “Estimating
multiple frequency-hopping signal parameters via sparse linear regres-
sion,” IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5044–5056, Oct.
2010.
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[11] B. Jokanović and M. G. Amin, “Reduced interference sparse time-

frequency distributions for compressed observations,” IEEE Trans. Signal
Process., vol. 63, no. 24, pp. 6698–6709, Dec. 2015.

[12] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol.
52, no. 4, pp. 1289–1306, Apr. 2006.

[13] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Commun. Pur. Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, Aug. 2006.

[14] P. Flandrin and P. Borgnat, “Time-frequency energy distributions meet
compressed sensing,” IEEE Trans. Signal Process., vol. 58, no. 6, pp.
2974-2982, June 2010.

[15] D. Angelosante, G. Giannakis, and N. Sidiropoulos, “Sparse parametric
models for robust nonstationary signal analysis: Leveraging the power of
sparse regression,” IEEE Signal Process. Mag., vol. 30, no. 6, pp. 64–73,
Nov. 2013.

[16] L. Zhao, L. Wang, G. Bi, L. Zhang, and H. Zhang, “Robust frequency-
hopping spectrum estimation based on sparse Bayesian method,” IEEE

Trans. Wireless Commun., vol. 14, no. 2, pp. 781–793, Feb. 2015.
[17] Y. D. Zhang, M. G. Amin, and B. Himed, “Reduced interference

time-frequency representations and sparse reconstruction of undersam-
pled data,” in Proc. 21st European Signal Process. Conf. (EUSIPCO),
Marrakech, Morocco, pp. 1–5, Sep. 2013.
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[34] L. J. Stanković, “A measure of some time-frequency distributions
concentration,” Signal Process., vol. 81, no. 3, pp. 621–631, Mar. 2001.

[35] O. Michel, R. G. Baraniuk, and P. Flandrin, “Time-frequency based
distance and divergence measures,” in Proc. IEEE-SP Int. Symp. Time-

Freq. Time-Scale Anal., Philadelphia, PA, USA, pp. 64–67, Oct. 1994.
[36] J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution

with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no.
5, pp. 945–958, Oct. 2009.

[37] Y. Zai, L. Xie, and C. Zhang, “Variational Bayesian algorithm for
quantized compressed sensing,” IEEE Trans. Signal Process., vol. 61,
no. 11, pp. 2815–2824, June 2013.

[38] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,”
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, Aug. 2004.

[39] L. Yu, J. P. Barbot, G. Zheng, and H. Sun, “Compressive
sensing for cluster structured sparse signals: Variational
Bayes approach,” Technical Report, 2011. Available at
http://hal.archives-ouvertes.fr/docs/00/57/39/53/PDF/clussvb.pdf.

[40] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, Sept. 2001.

[41] J.-Q. Zhang and A. C. Sanderson, Adaptive Differential Evolution: A

Robust Approach to Multimodal Problem Optimization. Springer Berlin
Heidelberg, 2009.

Shengheng Liu (S’14-M’17) is currently a Postdoc-
toral Fellow at the Institute for Digital Communi-
cations, School of Engineering, The University of
Edinburgh, UK. Prior to joining UoE, he received the
B.Eng. and Ph.D. degrees in Electronics Engineering
from the School of Information and Electronics,
Beijing Institute of Technology, China, in 2010 and
2017 respectively. He also worked as a Visiting
Research Associate from 2015 to 2016 at the De-
partment of Electrical and Computer Engineering,
Temple University, Philadelphia, PA, USA, under

the support of the China Scholarship Council. His research interests include
compressive sensing and time-frequency analyses for non-stationary signals,
interference cancellation and coherent integration for passive bistatic radars, as
well as image reconstruction in electrical impedance tomography. He is a fre-
quent reviewer for several top-tier journals, including IEEE TRANSACTIONS

ON SIGNAL PROCESSING, IEEE TRANSACTIONS ON AUDIO, SPEECH, AND

LANGUAGE PROCESSING, and IEEE TRANSACTIONS ON INSTRUMENTA-
TION AND MEASUREMENT.

http://hal.archives-ouvertes.fr/docs/00/57/39/53/PDF/cluss vb.pdf


14 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. X, XXX XXXX

Yimin D. Zhang (SM’01) received his Ph.D. degree
from the University of Tsukuba, Tsukuba, Japan, in
1988.

He joined the faculty of the Department of Radio
Engineering, Southeast University, Nanjing, China,
in 1988. He served as a Director and Technical Man-
ager at the Oriental Science Laboratory, Yokohama,
Japan, from 1989 to 1995, and a Senior Technical
Manager at the Communication Laboratory Japan,
Kawasaki, Japan, from 1995 to 1997. He was a
Visiting Researcher at the ATR Adaptive Communi-

cations Research Laboratories, Kyoto, Japan, from 1997 to 1998. From 1998
to 2015, he was with the Villanova University, Villanova, PA, where he was
a Research Professor at the Center for Advanced Communications, and was
the Director of the Wireless Communications and Positioning Laboratory and
the Director of the Radio Frequency Identification (RFID) Laboratory. Since
August 2015, he has been with the Department of Electrical and Computer
Engineering, College of Engineering, Temple University, Philadelphia, PA,
where is an Associate Professor. His general research interests lie in the
areas of statistical signal and array processing for radar, communications,
and satellite navigation applications, including compressive sensing, convex
optimization, nonstationary signal and time-frequency analysis, MIMO sys-
tems, radar imaging, target localization and tracking, wireless and cooperative
networks, and jammer suppression.

He has 12 book chapters and more than 300 journal articles and peer-
reviewed conference papers. Dr. Zhang is an Associate Editor for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING, and an Editor for the Signal

Processing journal. He was an Associate Editor for the IEEE SIGNAL

PROCESSING LETTERS during 2006–2010, and an Associate Editor for the
Journal of the Franklin Institute during 2007–2013. Dr. Zhang is a member
of the Sensor Array and Multichannel (SAM) Technical Committee of the
IEEE Signal Processing Society, and a Technical Co-chair of the 2018 IEEE
Sensor Array and Multichannel Signal Processing Workshop.

Tao Shan (M’15) received his B.S. degree from
Xidian University, Xi’an, in 1991 and Ph.D. degree
from Beijing Institute of Technology in 2004. Cur-
rently, he is an Associate Professor with the School
of Information and Electronics, Beijing Institute of
Technology. From 2014 to 2015, he was a Senior
Visiting Scholar at the Center for Advanced Com-
munications, Villanova University, PA. He was a
recipient of the first prize of science and technology
progress awarded by the Ministry of Education in
2006 and 2007 respectively. His research interests

include radar signal processing and time-frequency analysis for non-stationary
signals.

Ran Tao (M’00-SM’04) received the B.S. degree
from Electronic Engineering Institute of PLA, Hefei,
in 1985 and the M.S. and Ph.D. degrees from Harbin
Institute of Technology, Harbin, in 1990 and 1993,
respectively. He has been a senior visiting scholar
at the University of Michigan, Ann Arbor, MI, and
the University of Delaware, DE, in 2001 and 2016,
respectively. He is currently a Professor with the
School of Information and Electronics, Beijing Insti-
tute of Technology, Beijing, China. He is a Fellow of
the Institute of Engineering and Technology (IET),

and a Fellow of the Chinese Institute of Electronics (CIE).
Dr. Tao was a recipient of National Science Foundation of China for

Distinguished Young Scholars in 2006, and a Distinguished Professor of
Changjiang Scholars Program in 2009. He has been a Chief Professor of
the Creative Research Groups of the National Natural Science Foundation of
China since 2014, and he was a Chief Professor of the Program for Changjiang
Scholars and Innovative Research Team in University during 2010 to 2012.
He is currently the Vice Chair of IEEE China Council. He is also the Vice
Chair of the International Union of Radio Science (URSI) China Council and
a Member of Wireless Communication and Signal Processing Commission of
URSI. He was a recipient of the first prize of science and technology progress
in 2006, 2007, respectively, and the first prize of natural science in 2013, both
awarded by the Ministry of Education. His current research interests include
fractional Fourier transform and its applications, theory and technology for
radar and communication systems. He has 3 books and more than 100 peer-
reviewed journal articles.


	I Introduction
	I-A Related Work
	I-B Contributions

	II Structure-Aware Adaptive Kernel Design
	II-A Joint-Variable Representations of Missing-Sample FH Spectrum
	II-B Adaptive Kernel Design
	II-C Pre-filtering Parameter Optimization
	II-D AOK After Pre-filtering

	III BCS-Based FH Spectrum Estimation
	III-A CS Model for FH Spectrum Estimation
	III-B Sparsity Prior
	III-C Structure Prior
	III-D Bayesian Inference
	III-E Computational Complexity

	IV Numerical Experiments and Analysis
	V Conclusion
	References
	Biographies
	Shengheng Liu
	Yimin D. Zhang
	Tao Shan
	Ran Tao


