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ABSTRACT

NON-PARASITIC WARLORDS AND GEOGRAPHICAL DISTANCE

by

Jerry Hionis, Jr.

Chair: Dimitrios Diamantaras

This dissertation presents an extension of the warlord competition models found in

Skaperdas (2002) and Konrad and Skaperdas (2012). I consider two non-parasitic

warlords located on a line. Each warlord allocates resources for the extraction of

natural resources, the production of goods and services, and conflict with the opposing

warlord. Within the symmetric rates of seizure model, I use three different forms of

the contest success function, a primary tool in the conflict theory literature, in my

analysis. I show that the warlord closer to the point of conflict will invest less into the

hiring of warriors and more into the production of goods and services, yet wins a larger

proportion of total goods and services produced within the economy. Under certain

conditions, the placement of the point of conflict at the midpoint between the two

warlords maximizes the total resources toward war and minimizes total production.

Under the asymmetric rates of seizure model, I find that the warlord closer to the

point of conflict invests more in warfare and less in production; that is, results that

counter what is found in the symmetric model.
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CHAPTER 1

Introduction and Statement of the Problem

1.1 Introduction and Statement of Problem

One of the goals within the conflict theory literature is to understand the factors

that influence the decisions of people, groups, nations and so on to participate in wars

of appropriation. Of course, not all conflicts are identical in terms of scope, structure

and method. There exist within the literature a number of distinct conflict types:

State-to-State Two or more distinct states engaging in acts of war.

Insurgency Within a single state, two or more groups battling against an established

ruler.

Civil War Within a single state, two or more groups battling against each other

where no established ruler exists.

While state-to-state and insurgency style conflicts have been studied heavily within

the literature, the role and effects of civil wars has begun to be empirically studied on

a much larger scale to go beyond “anecdotal” results and relationships (See Sambanis

(2002) for a review).

In two seminal studies, Fearon and Laitin (2003) and Collier and Hoeffer (2004)

show that, against the conventional wisdom, areas with high risk of civil conflict

1



are not ethnically/religiously diverse or suffer from “political shocks”, but conflicts

occur when certain factors that favor insurgency and war are found; factors such as

poverty, political instability, terrain and geography, high population densities and

abundance of natural resources. In a similar study, Buhaug and Rød (2006) find two

sets of results in relationship to geography. First, conflict is more likely to erupt in

rural areas and along national borders. Second, there exists a positive relationship

between distance to the “capital”, or the area with the highest population density,

and the likelihood of conflict. These two results emphasize the difference between civil

wars waged as an insurgency of a group against an established government presence

and territorial conflicts amongst warlords. Buhaug and Gates (2002) and Buhaug

et al (2009) study the determinants of conflict points within a geographic area and

highlight the importance of ethnic identity, geography and ideology. These studies

focus on the determinants of the location of conflicts and not the effects that the

locations of conflicts have on the wars themselves.

While empirical studies show the important relationship between geography and

civil war, less has been done within a theoretical framework. Early models of in-

surgency have focused on territorial expansion (Findlay (1996) and Wittman (2000))

and the effect that conflict has on geographic location of insurgency (Brito and Intrili-

gator (1990,1992)), but not on the effects that geographic locations of conflict have

on wartime decision making. To the author’s knowledge, the only serious study on

the geographical effects on decision making within a conflict is Gates (2002). Gates

creates a principal-agent model which studies how an insurgent leader and an estab-

lished ruler each construct a system of rewards and punishments for possible supports.

The model is built upon a geographical framework in that both the insurgent leader

and the established ruler are located at distinct areas with varying distances from

possible supporters. In general, the model shows that the more distant supporters

are rewarded more than those closer to the associated leader.
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As opposed to Gates (2002), this dissertation specifically aims to explicitly explore

the theoretical implications that geographical distance has on the decisions made by

two warlords partaking in civil war. The models I present, and their results, show that

the geographical location of conflict with respect to the location of the two warlords

affects both the expenditure on conflict and the production of goods and services as

well as the level of success each warlord gains from conflict. These models and results

can, in the future, be tested with empirical data.

1.2 Model Overview

I present a guns-and-butter economy based upon the structure found in Skaperdas

(2002) and Konrad and Skaperdas (2012). The economy modeled is one where no

central government authority exists to enforce law and offer security for its populace;

such as Yemen, Somalia, Afghanistan, Libya and, to an extent, Iraq, Nigeria, Mali

and Pakistan. In lieu of such a government, two warlords, A and B, exist that offer

protection and leadership for those within the economy. The models presented by

Skaperdas and Konrad view warlords as kleptocratic, or parasitic, leaders who only

offer protection to those willing to pay tribute and, hence, do not directly influence

production within an economy. The model developed here allows warlords to offer

protection as well as invest within the production of goods and services within the

economy. In addition, each warlord is in control of a specific territory, known as a

stronghold. The strongholds of warlord A and warlord B are separated by a linear

distance.

Within his own territory, each warlord is endowed with certain exogenous re-

sources. First, each warlord rules over a population group which dedicates its time

to the economic activities dictated by the warlord. Second, each warlord has a cache

of un-extracted natural resources that can be extracted and sold to some external

purchaser for a fixed and exogenous price. To extract these natural resources, a war-
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lord must both dedicate members of his population for the extraction as well as pay

each extractor a fixed and exogenous wage. It is assumed within the model that the

extraction wage per unit is less than the price paid per unit of a natural resource.

Third, a pre-game budget exists for each warlord that can be interpreted as spoils

earned in previous conflicts, foreign aid and so on. From his own set of resources, each

warlord has two decisions: production of goods and services and the appropriation of

goods and services through conflict.

Production of goods and services within the economy is done through capital in-

vestment by both warlord A and warlord B. Each warlord purchases units of capital

from an external seller, for a fixed and exogenous price, using either the sales of ex-

tracted natural resources or the pre-game budget. Each warlord’s production process

is then a function of capital investment and the relative technology/productivity level

of the warlord’s production process.

Conflict within the economy is modeled through a Contest Success Function

(CSF); that is, a function that shows the effect a warlord’s effort has on the pro-

portion of goods and services he is awarded through conflict. Each warlord’s effort

toward conflict in the model is the number of warriors he chooses to hire. A warlord

hires warriors from his own population and also pays a fixed and exogenous wage

to each. Hypothetically, most models within the conflict theory literature focus on

battlefield conflicts, where players can implicitly be viewed as standing across from

each other on different sides of a line. As a result, the CSF predominately used is the

ratio form developed by Tullock (1980). In many modern conflicts in the developing

world, there exist external factors that negatively affect the effort put forth toward

conflict; such as climate, topography, geography and so on. The difference form of

the Contest Success Function, developed by Hirshleifer (1988, 1989), addresses such

factors.

The impact of a warlord’s effort toward winning the conflict can be constructed
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in various ways. Employing the difference form of the CSF, I create three models

of conflict to investigate the different effects that geographical distance can have on

decision making: (1) the Base model, (2) the Gates-logit model and (3) the Ratio

model. The first is a quasilinear formulation of a warlord’s impact on the conflict

which is based upon the CSF modeled in Buhaug et al (2009) to interpret distance

having a subtractive effect on the number of warriors hired for conflict. The Gates-

logit model uses the formula found in Gates (2002) in which distance has a subtractive

effect on the log-linearized number of warriors hired for conflict. Finally, the Ratio

model, views the relationship between warriors hired and distance from the point of

conflict as a ratio.

The results found in Chapter 3 show that there are many similarities and contrasts

in the results of the three above mentioned models. One constant theme found within

the three models resembles what is known as the “Paradox of Power” (Hirshleifer

(2001)); that is, the richer of two contestants within a conflict will invest more in

the production of goods and services, while the poorer invests more in appropriation

and less in production. Specifically, any increase in either warlord’s population size

or pre-game budget causes both warlords to increase their hiring of warriors. In

regards to investment in capital, any increase in warlord A’s population size or pre-

game budget causes warlord A to increase his investment in capital and warlord B

to decrease investment in capital. Any increase in warlord B’s population size or

pre-game budget causes warlord A to decrease his investment in capital and warlord

B to increase investment in capital. In addition, as the point of conflict moves closer

to warlord A’s stronghold, warlord A invests more in capital and warlord B invests

less. Interestingly, the Gates-logit model differs from the other two by showing that

an increase in either warlord’s population size and/or pre-game budget will result in

an increase in the total amount of goods and services produced, on aggregate, within

the economy. Alternatively, the Base and Ratio models show that the total amount
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of goods and services produced is unaffected by increases in population sizes and

pre-games budgets.

All three models show that when both warlords face the same prices and the point

of conflict is at the midpoint of the two strongholds, warlords hire the same number of

warriors. As the point of conflict moves closer to a warlord’s stronghold, the warlord

hires fewer warriors and the opposing warlord hires more. The Base and Gates-logit

models agree that the total number of warriors hired in the economy is unaffected

by the point of conflict. The Ratio model differs in that when the point of conflict

is at the midpoint between the two strongholds, total expenditure in conflict is at

its highest and as the point of conflict moves away from the midpoint toward either

warlords’ stronghold, the total number of warriors hired decreases.

In terms of capital investment and the production of goods and services, all three

models again agree: as the point of conflict moves closer to a warlord’s stronghold,

the warlord will invest in less capital while the opposing warlord invests more. The

Base and Gates-logit model both show that the increase in one warlord’s production is

offset by the opposing warlord’s decrease in production such that the total production

of goods and services is unaffected by the point of conflict. The Ratio model’s results,

again, illustrate a different conclusion. Specifically, when the point of conflict is at

the midpoint between the two strongholds, the total expenditure toward production

of goods and services is at its lowest and as the point of conflict moves away from

the midpoint toward either warlords’ stronghold, the total production of goods and

services increases.

While the Base and Gates-logit model have many similar results, the effect that

the point of conflict has on the CSF in equilibrium under the Base model differs

from both the Gates-logit and Ratio models. The Base model finds that the CSF in

equilibrium depends upon the wages paid to the warriors hired and the wage paid

to extractors of natural resources. The Gates-logit and Ratio model show that the
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CSF in equilibrium is not impervious to other exogenous variables. Instead, the

CSF depends on both the point of conflict as well as the wages paid to warriors and

extractors. Assuming the wages for warriors and extractors are identical, warlord A

wins a greater proportion of produced goods and services when the point of conflict

moves closer to warlord A’s stronghold while warlord B wins less. As the point of

conflict moves closer to warlord B’s stronghold, warlord B wins a larger proportion

of goods and services and warlord A wins less.

The existence of an interior Nash equilibrium, where a positive number of warriors

are hired and capital invested, differs between the three models. The existence of an

interior Nash equilibrium within the Base model depends largely on the existence

of pre-game budgets, a result that is in line with Collier and Hoeffler (2004); that

is, conflicts and civil wars are more likely to take place when there is funding from

international sources. When both warlords have a pre-game budget of zero, the only

warrior equilibrium solution found is when no warriors are hired unless the wages

paid to warriors are negative, which is a violation of a model assumption. As pre-

game budgets get larger, an interior Nash equilibrium becomes possible as long as

the profits made on the extraction and selling of natural resources outweigh the cost

to hire each warrior. The dependence of the equilibrium’s existence on the value

of pre-game budgets seems to be caused by the requirement that warlords extract

natural resources. In other words, each warrior that is hired costs a warlord a unit

of population plus whatever units of population are needed to extract and sell the

natural resources to pay the warrior. The Gates-logit and Ratio models establish

that the existence of an interior Nash equilibrium is not as sensitive to the values of

the pre-game budgets. Indeed, it is shown that an equilibrium solution with warriors

being hired exists where both warlords’ pre-game budgets are equal to zero.

The results stated above are found assuming a symmetric relationship between the

amount of each warlord’s production of goods and services available for appropriation.
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One interpretation of such a situation is that both warlords are investing in a good

and/or service that has a public value element, such as investing in the infrastructure

of a country that both warlords share and benefit from. While this type of scenario

does exist in modern civil conflict, it is also common to see an asymmetric relationship.

Using the Base model formulation of the CSF, Chapter 4 extends the model developed

in Chapter 3 by not assuming symmetry and allowing only a portion of a warlord’s

goods and services produced to be available for appropriation. The amount of a

warlord’s goods and services at risk is assumed to depend upon the location of the

point of conflict; that is, more of a warlord’s production of goods and services are

subject to appropriation when the point of conflict moves closer to his own territory

and less as it moves closer to the opposing warlord’s territory.

In Chapter 4, the total expenditure on warfare is at its peak and the total invest-

ment on capital is at its lowest when the point of conflict is equidistant between the

two stronghold. As the point of conflict moves closer to either warlord, total warrior

hiring decreases and total capital investment increase. More specifically, when the

point of conflict is closer to warlord A’s stronghold, warlord A spends more on the

hiring of warriors and less on capital investment than warlord B — the opposite holds

true when the point of conflict is closer to warlord B. These contradictions can be

explained by the importance that the point of conflict has on determining the rate

of seizure. In the symmetric rate of seizure model, the closer the point of conflict is

to a warlord’s stronghold means fewer warriors need to be hired because the negative

effect of travel and distance is small. With an asymmetric rate of seizure model,

the closer the point of conflict is to a warlord’s stronghold means that the warlord

has more to gain from conflict because most of his production is being fought over.

The opposing warlord has less to gain from engaging in conflict because little of his

production is being fought over and the cost of conflict for the opposing warlord, due

to the large distance, is high and the returns are low.
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CHAPTER 2

Literature Review

This chapter is structured as follows. Section 2.1 introduces the concept and

axiomatic treatment of Contest Success Functions, the essential “heart” of con-

test/conflict theory. Section 2.2 reviews the theoretic literature pertaining to both

conventional and unconventional conflict types; such as, nation-to-nation, predator-

prey, insurgency, guerilla warfare and so on. Section 2.3 introduces the concept of

“warlord competition”. Finally, Section 2.4 shows the contribution that this disserta-

tion has on the literature. Readers who are familiar with the literature are encouraged

to forgo Sections 2.1 through 2.3, while those unfamiliar to the study may find these

sections helpful in gaining insight into the literature.

2.1 Contest Success Functions

The study of conflict as a theoretical economic problem appears to have originated

as its own field through the developing and modeling of a contest. A contest can be

defined as a competitive scenario where all players, simultaneously or sequentially, put

forth effort to win a prize. A contest can be perfectly discriminating and imperfectly

discriminating. A perfectly discriminating contest is such that that the player who

contributes the most to the conflict wins the prize outright, such as a standard auction

(Moldovanu and Sela (2001)). An imperfectly discriminating contest presumes that
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the player who contributes the highest toward the contest has the greatest probability

of winning the prize. Imperfectly discriminating contest models are based upon a

Contest Success Function (CSF), or what Hirshleifer (1988) calls the “technology of

conflict”. While the functional form of a CSF can vary, all are constructed to relate

a player’s effort within the contest to his success in said contest. Effort levels enter

in the CSF through an Impact Function which shows the per unit effect of a player’s

effort on the CSF.

Certain relationships and axioms must be satisfied to properly define a CSF within

a contest: probability, marginal effects, anonymity, consistency and independence of

irrelevant alternatives (Rai and Sarin (2009) for detailed descriptions). The proba-

bility axiom states that the CSF satisfies the properties of a probability distribution;

that is, it is assumed the summation of all winning probabilities across all players

is equal to one (additive to unity) 1. The marginal effects axiom states that only a

player’s individual effort levels will increase his probability to win and, hence, one

player’s effort levels will not help another player’s chance of winning (Münster (2009)

for an extension into complementary effects and group contests). Anonymity requires

that each player will have the same probability as an opposing player with the same

effort and exogenous factors. In other words, the probability of winning a contest,

given a specific effort level and set of exogenous traits, is not dependent upon the ac-

tual player himself. Consistency and the independence of irrelevant alternatives both

deal specifically with a sub-contest between players. The consistency axiom implies

that contests consisting of a smaller number of players will be qualitatively similar

to the global contest with a large set players. Finally, the independence of irrele-

vant alternatives axiom states that only players active within the contest affect the

CSF; that is, the contest should/can not depend on external players not participating

within the contest itself.

1Blavatskyy (2004) presents an axiomatic model of a CSF which includes the possibility that no
player wins and so there is a draw.
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Skaperdas (1996) proves that there exists a specific class of CSFs that satisfy the

above five axioms. Let a contest take place with i ∈ N players. Let there exist L

types of investments that a player can put efforts toward, where some are allowed

to be fixed. Each player is willing to put forth effort levels xi ≥ 0 ∀i ∈ N , where

xi ∈ RL
+ is the effort vector of player i for all L investments. Let πi : RLN

+ → R+ be

a probability of success where x ∈ RLN
+ is the effort matrix of all N players for all

L investments. The above axioms are then satisfied if and only if the CSF has the

following form,

πi (x) =
fi (xi)∑
j∈N fj (xj)

∀x ∈ RLN
+ ,∀i ∈ N, (2.1)

where fi (·) : RLN
+ → R+ is an impact function that is increasing in its arguments

(Skaperdas(1996), Clark and Riis (1998) and Rai and Sarin (2009) for proofs). While

the above CSF form is required for the five stated axioms to be satisfied, the impact

function itself often varies depending on the model and its assumptions.

The two most common explicit impact functions used within the literature are

the power and difference models. Originating in the rent-seeking literature, the power

model, first presented by Tullock (1980), equates the impact function as f(xi) = αi ·xδi

where L = 1, xi ∈ R+ is player i effort put toward the contest, αi > 0 is a positive

scalar representing exogenous factors and δ > 0 is commonly known as a mass effect

factor; that is,

πi (x) =



αi·xδi∑
j∈N αj ·xδj

∀i ∈ N if
∑

j∈N αj · xδj > 0;

1
N

Otherwise.

The above CSF model is often the workhorse of the conflict theory literature that is

also present in other economics fields that incorporate competition in their models

such as rent-seeking models, auctions, advertising and sports (Konrad (2007) for a
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survey). The presence of the parameter αi is meant to represent some exogenous

factor that influences a player’s probability of winning the contest that does not stem

from effort (Clark and Riis (1998)). Such factors are a player’s charisma, favoritism

or some biased advantage, pre-game standings and so on. The mass effect variable

δ is frequently interpreted as an element that captures the marginal increase in a

player’s probability of winning from an increase in effort. This variable can also be

interpreted as a description of the type of conflict taking place. As δ approaches

zero, the influence that effort has on the probability of winning the contest becomes

less and the contest converges toward a random lottery. As δ approaches infinity, the

contest converges toward a perfectly discriminating contest such as an all-pay auction

(Jai et al (2011)).

The other common, albeit less popular, impact function form is known as the

difference (Hirshleifer (1988,1989)) form:

πi (x) =
1

1 +
∑

j∈N\{i} e
δ(αj ·xj−αi·xi)

∀i ∈ N,

where variables α and δ are positive scalars. There are a few notable advantages of

the difference CSF form that are generally agreed upon. First, from an econometric

standpoint, one can easily introduce an additive constant to the impact functions that

would normally cause problems for the power form; that is, if f (xi) = xi and the

impact function for each i ∈ N is fi (xi, c) = xi + c, where c > 0, then the difference

CSF form is

πi =
1

1 +
∑

j∈N e
δ(xj+c−xi−c)

=
1

1 +
∑

j∈N e
δ(xj−xi)

∀i ∈ N,
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while the power CSF form is

πi =
1

1 +
(J−1)·c+

∑
j∈N\{i} xj

xi+c

∀i ∈ N.

Second, the functional form of the difference CSF is helpful in creating a decaying

effect that territory, environment, climate factors and other causes of fatigue have on

a player’s effort level. Given the possibilities of imperfect conditions and imperfect

information (hidden resources, numerous strongholds and battlefields, clandestine

operations and so on), a player may lose a contest yet not lose everything he owns;

that is, a player may hide some of his resources so that an opposing player may not

win them during a conflict. In other words, the difference CSF form allows a player

to not put forth any effort toward the contest and still be able to survive the contest

with some nonnegative value. As an example, assume that a contest exists between

N players for some exogenous prize and the impact function is again f (xi) = xi for

all i ∈ N . If the power CSF is used and player i puts forth zero effort, then

πi =
xi

xi +
∑

j∈N\{i} xj
=

0∑
j∈N\{i} xj

= 0 ∀i ∈ N.

The difference CSF illustrates a different outcome where, again, if player i expends

no effort toward the contest, then

πi =
1

1 +
∑

j∈N\{i} e
xj−xi

=
1

1 +
∑

j∈N\{i} e
xj
∀i ∈ N.

The two equations show that the difference CSF allows the opportunity for player i

to survive the contest with some portion of the prize when he puts no effort into the

contest while the power CSF form does not. Therefore, the difference form is said

to represent a CSF which equates the proportion of the prize one wins and not the

probability of winning the entire prize (Hirshleifer (1988), Skaperdas (1996)).
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Likewise, there are two key problems with the difference CSF. The first and prob-

ably most obvious problem that arises with the use of the difference CSF is computa-

tion. Given the exponential form of the impact function, models using the difference

CSF may not produce a tractable set of results. Secondly, a Nash equilibrium is not

always guaranteed, when we seek a Nash Equilibrium in the interior of the strategy

space (Garfinkel and Skaperdas (2007) have examples).

2.2 Economics of Conflict

As asserted above, many fields of economics use CSFs in their models, such as

the development of alliances (Sandler (1999)), coalition games (Jordan (2006) and

Piccione and Rubinstein (2007)), defense treaty organizations (Sandler and Hart-

ley (2001)), sports economics (Szymanski (2003)), civil wars (Sambanis (2002) and

Skaperdas (2008)), and organized crime (Skaperdas (2001)). Another field that uses

CSFs within their models is the economic analysis of conflict and appropriation

through warfare. The field itself is divided into many categories from the more un-

conventional conflicts to the more conventional conflicts.

2.2.1 Unconventional Conflicts

One of the unconventional types of conflict common within the literature is rev-

olutionary insurgency; that is, a conflict between an established economic leader or

regime and a group of players set upon usurping power. Early results show that

in equilibrium, established regimes will always hire soldiers to defend their current

wealth and insurrection will always take place (Grossman (1991,1999)). When a war-

ring side must contend with a non-warring social class, the incentives and relationships

between the two groups are such that a regime’s level of tyranny and wealth distribu-

tion levels are directly linked to the usurping coalition’s size and promises of future

wealth distribution (Roemer (1985), Grossman (1995)). Anticipation and, hence,
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expectation of such revolutions can be rationalized as well. Specifically, the occur-

rence of a revolution depends upon the collective sentiment of a ruled population and

the difference between those who are identified as non-activists and activists, known

as a “threshold” function. As the threshold function, based upon self-interested

preferences, becomes smaller, those identified as non-activists need fewer and fewer

incentives to participate within a revolution (Kuran (1989)). There are also more non-

conventional forms of insurrection, such as dynamic guerilla warfare models (Brito

and Intriligator(1992)) and terrorism (Ferrero (2005)).

Such early results lead to the persistent question of the existence and/or rationale

of Hobbesian stability within certain political states, such as anarchy, dynasties and

despotism; that is, does the constant threat of war and appropriation lead popula-

tions to submit to a despotic government or ruler? The overwhelming answer is that

anarchy itself is not stable, yet the reasoning varies depending on the model. Reasons

include population growth versus income per capita (Usher (1989)), property rights

(Skaperdas (1992), Grossman (1995), Grossman and Kim (1995)), morality (Gross-

man and Kim (2000)), the technology of predation (Grossman (2002)), technology

of warfare and the effectiveness of conflict (Hirshleifer (1995)), the expected time in

which warfare begins (Powell (1993)), religion (Ferrero (2008)), spatial distance and

coalitions (Jung (2009)) and a competitive security market (Konrad and Skaperdas

(2012)).

2.2.2 Conventional Conflicts

The models of unconventional conflicts, such as revolution and insurrection, usu-

ally assume that at least the usurper, if not the incumbent ruler as well, acts in a

purely parasitic manner; that is, using an economy’s resources to win the contest’s

prize and never investing within the economy itself. A rich set of models exists for

conventional conflict scenarios, such as state-to-state conflicts and modern wars of
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secession, where the decision process involves both the expending of resources toward

production of goods and services and/or the appropriation of goods and services,

what is known as a Guns and Butter economy. One key distinction between contests

within a guns and butter economy and other possible contests is the notion of how

the prize — the object over which players are contesting — is developed. One class

of models involves exogenous prize contests in which the players’ actions do not affect

the prize. The other class deals with endogenous prize contests where players’ actions

directly or indirectly affect the actual value of the contest’s prize. A guns and butter

economy can be placed in the later class of models.

The earliest attempt, to the author’s knowledge, to present an analytic model

of such an economy is by the econometrician Trygve Haavelmo in his treatise A

Study in the Theory of Economic Evolution. Within a series of what he believes are

oversights by the economics profession, Haavelmo presents a primordial model of a

guns and butter economy influenced by the writings of Vilfredo Pareto. Even though

a framework is present, Haavelmo does not produce any startling conclusions except

for the intuitive result that the existence of conflict decreases the amount of resources

toward goods and services produced (Haavelmo (1954)).

Excluding the work done by Haavelmo, guns and butter conflict models are gen-

erally believed to have originated as a distinct field through a series of papers by Jack

Hirshleifer (See Skaperdas (1992), Garfinkel and Skaperdas (2006) and Sandler and

Hartley (1995)). The guns and butter economy is modeled and solved using an array

of CSFs with a focus on whether or not peace is possible. The result that many of

these models have in common is known as the Paradox of Power : within the inte-

rior of the strategy space, poorer players benefit more from conflict than their richer

counterparts (Hirshleifer(1988, 1991, 1995)). This conclusion is the product of their

derived symmetric levels of effort toward conflict within the Nash equilibrium. The

paradox of power holds for both the difference and the power CSF forms when the aim
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is for a symmetric solution. The existence of asymmetric solutions has been known to

be more problematic. Specifically, some models show that all difference CSFs lead to

an interior asymmetric Nash equilibrium, yet this notion has been discredited (Dixit

(1987) and Garfinkel and Skaperdas (2007)). In terms of the possibility of a peace-

ful solution, the standard guns and butter economy can have a peaceful outcome

when the logit CSF is used and the decisiveness parameter is low. It is demonstrated

that a peaceful solution can not exist when the power CSF is applied (Hirshleifer

(1991,1995)).

Many of the early models and results are limited by a few key assumptions. First,

contests are two party interactions with no consideration of group formation (Noh

(2002), Sandler (1999), Skaperdas (1998), and Sandler and Hartley (1995)). Second,

it is assumed that full/complete information is held by both players (Fearon(1995),

Sánchez-Pagés (2004) and Bester and Wärneryd (2006)). Third, the CSFs used are

simplistic in nature in that they ignore the distinction between defensive and offensive

measures (Grossman and Kim (1995)). Fourth, issues of timing and repeated inter-

actions are ignored (McBride and Skaperdas (2005) and Bester and Konrad (2004)).

Finally, geographical factors — such as distance of conflict and resources, environ-

mental concerns, etc, — are left out (Findlay (1996), Gates (2002), Olsson (2007)).

2.3 Warlord Economies

The literature pertaining to guns and butter economies primarily focuses on bat-

tlefield conflicts, where players can implicitly be viewed as standing across from each

other on different sides of a line. These types of conflicts are not as prevalent as they

once were, especially within and between developed economics (Collier and Sambanis

(2005a,b)). Incidentally, most conflicts and civil wars take place within developing

economies such as Angola, Somalia, Sierra Leone, Afghanistan and the Republic of

Congo and, hence, the standard methods will not effectively model said economies
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(Collier and Sambanis (2005a,b) and Ali and Matthews (1999)). A key facet of these

economies is that a state government is either too weak to enforce law or is com-

pletely non-existent. Individuals within such an economy need protection from the

predator-prey system that exists which gives rise to warlords who offer protection to

individuals within the economy from other competing warlords. Some studies have

also shown that many warlord economies form and function in an almost identical

way that many organized crime syndicates do (Reno (1998) and Skaperdas (2001)).

Skaperdas (2002) first developed a model of a “warlord economy” by defining

warlords as warmongers who compete against each other over rents, such as oil,

diamonds and other natural resources, instead of the production of marketable goods

and services. To illustrate the model, let L ≥ 2 be the number of warlords, T ∈ R+

be the total amount of resources or rents, P ≥ 0 the total number of producers and

α ≥ 0 the tax or “tribute rate” that each producer pays to their associated warlord

for protection. Initially, each warlord is given an equal portion of resources; that is,

T+α·P
L

. Warlords can then compete with other warlords for a larger share of rents and

producers by employing warriors, denoted by W . The warriors hired and producers

by the warlords come from a single population set N such that N = P +W .

Under a localized competition model, warlords are spaced equally around a circle

where each warlord ` ∈ L can only engage his two neighbors, warlord ` − 1 and

warlord ` + 1. Let β ∈ R+ be the wage paid to each warrior, w``−1 be the number

of warriors that warlord ` hires to combat the warriors hired by warlord ` − 1 and

w``+1 be the number of warriors that warlord ` hires to combat the warriors hired by

warlord `+ 1 . Warlord `’s payoff function is defined as follows:

V loc
` =

(
w``−1

w``−1 − w
`−1
`

+
w``+1

w``+1 − w
`+1
`

)
·
(
T + α · P

L

)
− β ·

(
w``−1 + w``+1

)
∀` ∈ L.

(2.2)

Under a globalized competition model, warlords are allowed to engage all other op-

18



posing warlords. The payoff function for warlord ` is then

V glob
` =

(
w`∑L
j=1w

j

)
·
(
T + α · P

L

)
− β ·

(
w`
)
∀` ∈ L (2.3)

Under the localized competition model, a symmetric Nash equilibrium is found where

as the number of warlords increases, each warlord hires fewer warriors and receives

a smaller payoff while the sum of all warlord payoffs is constant. As the amount of

total rents within the economy increases, the number of producers decreases while

the number of warriors hired increases; that is, as the total amount of rents increases,

warlords prefer the appropriation of these rents over the taxation of producers. Within

the globalized competition model, a Nash equilibrium exists that illustrates a conflict

which is much more intense than its localized counterpart. Specifically, as the number

of warlords increases, not only are more warriors hired, but both individual warlord

payoffs and the sum of warlord payoffs decrease. In addition, for a large enough L, it

is possible for there to be zero producers and N = W .

This model is constructed under seven important assumptions. First is that war-

lords, and hence warlord competition, are those who compete over natural resources

and the taxation of a group of protectorates. Second, warlords are completely para-

sitic in appropriating the surplus of resources within the economy without investing

in its future. Third, the aggregate of natural resources and the collection of producers

within the economy are equally distributed before conflict begins. Fourth, warlords

hire warriors and protect producers from a single population set. Fifth, warriors are

implicitly being paid for their services after conflict from the warlord’s post-contest

spoils. Sixth, rents are assumed to be fully extracted and do not impose any cost on

the warlords. Finally, the model assumes a quasi-linear utility function and, hence,

sets the Lagrangian multiplier of the budget constraint equal to one.

Konrad and Skaperdas (2012) also construct a model of warlord competition but
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direct their attention more on the development of the protection market than the

appropriation of an economy’s rents. The model evaluates four types of political or-

ders that have existed: anarchy, collective protection and self-governance, competing

warlords and a Leviathan-like state. Like Skaperdas (2002), there exists a popula-

tion of producers that need protection. Unlike Skaperdas (2002), the protection is

needed against bandits, who prey upon the producers, and not from other warlords.

Producers can choose to defend themselves against bandits or create a union of self-

governance to defend themselves as a whole. As an alternative, warlords may exist

that offer protection for a fee or “tribute rate”. Konrad and Skaperdas show that

self-governance produces lower payoffs for producers than under anarchy or warlord

competition. In addition, the existence of multiple warlords competing over producers

to protect does not increase the quality of protection against bandits, but increases

the resources spent on the competition between warlords. Therefore, a single and

unified autocratic state is preferred over a competitive market for protection.

2.4 Contribution of the Present Dissertation

The aim of my research is to extend the warlord competition model in a few

important directions. First, the model found in Skaperdas (2002) focuses on purely

parasitic warlords that do not invest in the economy but only extract an economy’s

resources through taxing protected producers. This is not the only type of warlord

competition present within developing economies. There exist many situations where

civil war has erupted between warlords who use an economy’s resources for both

conflict and investment in the future of the economy as a whole. Such cases can be

found, in varying degrees, in the conflicts taken place in Kenya, Democratic Republic

of Congo, Somalia, and Northern Ireland (Collier and Sambanis (2005a, 2005b) and

Ali and Matthews (1999) for case studies), as well as in the history of organized crime

syndicates such as the yakuza and the mafia (Reno (1998) and Skaperdas (2001)).
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The model I present here studies an economy where warlords may be non-parasitic in

that they can both produce goods and services and forcefully take opposing warlords’

profits.

Skaperdas (2002) also assumes that the size of the population and the set of

rents or natural resources are shared by all warlords. Again, there are many cases in

practice, such as Sierra Leone and Liberia, where warlords control areas endowed with

natural resources and a population set that is rarely, if ever, under explicit conflict by

opposing warlords. Instead, the points of conflict within these economies are distant

from the territories/strongholds of the warlords. Likewise, the budget constraints

found in Skaperdas (2002) and Konrad and Skaperdas (2012) do not reflect the true

costs of many warlords. Natural resources, such as diamonds, oil, timber and so on,

need to be physically extracted in order to be sold and, hence, explicitly and implicitly

affect the warlord’s resources. Loyal subjects within a warlord’s population set may

also seek explicit compensation in the short-term, as opposed to a fraction of the

warlord’s spoils. My model includes both the necessity of natural resource extraction

and wage compensation given by warlords to motivate their population.

In addition to this point, the model does not consider the role of geographical

distance between the warlords. To the author’s knowledge, there has been very lit-

tle theoretical research on the relationship between geography and conflict2. Gates

(2002) presents a model including both conflict and geographical distance between

an established government and an insurrectionist movement. Using a principal-agent

2Findlay (1996) analyzes the role of territorial expansion by illustrating an economy where an
individual leader seeks to increase his territory through force, but does not include the possibility
of production of goods and services nor direct conflict against another player. Through a series of
papers, Brito and Intrillgator (1988,1989,1992) develop a model of a dynamic guerilla warfare which
includes movement toward optimal territories for both conflict advantages and the accumulation of
membership. The works by Brito and Intrillgator deal strictly within an insurrection scenario against
an established government and, again, do not include the possible production of goods and services.
More so, their focus is placed on how conflict affects the location of the insurrectionist players and
not the effect that the location of conflict has on decision making. Jung (2009) develops an extension
of a pillage game with three players to include spatial movement. The model is concerned with the
question of alliances and coalitions between the players and not the effects that geography and points
of conflict have on the level of conflict.
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framework, the focus of the analysis is on the set of rewards and penalties that both

the establish government and insurrectionist leader create to attract and maintain

supporters that are located along some geographical spectrum. Using Gates (2002)

as a theoretical base, Buhaug and Scott (2002) and Buhaug et al (2009) empirically

study the effects that the distance between warlords has on the timing and length

of civil war. The above models assume that combatants are parasitic and do not

include any form of investment into the production of goods and services. The model

I present expands on these papers by narrowing in on how the location of conflict

affects the expenditures on both the war effort and production of goods and services.

In a further extension, I analyze the effect that asymmetric rates of seizure, based on

the point of conflict, has on conflict and the production of goods and services by each

warlord.

Third, Skaperdas (2002) and Konrad and Skaperdas (2012) use the standard power

CSF. Gates (2002) uses the difference CSF to include the effects that geographical

distance may have on an insurgent’s war effort. Since the model developed below

is giving special focus to the effects of geography on conflict and production, the

appropriate CSF to use is the difference form presented earlier by Hirshleifer.
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CHAPTER 3

Two Warlord Models Including Geographical

Distance

3.1 Model Construct

Consider an economy where two warlords, A and B, are each in control of a

distinct and separate territory. Within each territory of warlord A and B, there is

a population of loyal subjects, NA ∈ R+ and NB ∈ R+, and a cache of unextracted

natural resources, RA ∈ R+ and RB ∈ R+. Both warlord A’s population size NA

and warlord B’s population size NB are taken to be continuous. Each member of the

populations NA and NB is endowed with a single unit of resource that can be used

toward one and only one economic activity. Let VA and VB measure the payoffs of

warlord A and warlord B.

Each warlord’s strategy set, denoted by SA and SB, includes two economic activ-

ities: producing goods and services and appropriating goods and services produced

by the opposing warlord through force. All decisions by the two warlords are made

simultaneously during a one-stage game. In addition, it is assumed that both war-

lords have complete information in that each warlord knows with full certainty both

the game structure as well as his own and the opposing warlord’s payoff structure

and abundance of resources.
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3.1.1 Production of Goods and Services

The production of goods and services by warlord A, denoted by QA, is a function

of the level of capital invested into production by the warlord A, denoted by KA ∈ R+.

This dissertation interprets capital as a basic input into the production of goods and

services and does not consider intertemporal issues.

To help facilitate production within his territory, warlord A can invest in the

capital stock at a price of ck > 0 per unit of capital KA. Assuming linearity, QA is

defined by,

QA = θA ·KA θA > 0, (3.1)

where θA represents the effectiveness that each unit of capital invested by warlord A

has on the total quantity produced. Warlord B’s production function for goods and

services is similarly defined:

QB = θB ·KB θB > 0. (3.2)

Both θA and θB are assumed to be equal to 1; that is, QA = KA and QB = KB. It

is assumed that the goods and services produced by both warlord A and warlord B

are sold to an external purchaser, who pays a fixed exogenous price of 0 < m < 1 per

each unit of QA and QB.

Remark It should be emphasized here that the model does not include local con-

sumption of the goods and services being produced on the part of either the two

warlords and their respective population sizes. Therefore, all goods and services be-

ing produced within the economy are being sold to the external purchaser, regardless

of any conflict that may occur.
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3.1.2 Appropriation through Force

As opposed to financing his own territory’s production, warlord A also has the

ability to take revenues earned by the opposing warlord through force. The contest

between the two warlords is determined by a Contest Success Function (CSF). A CSF

is defined by the difference between the impact of each warlord’s effort put toward

the conflict. The effect or impact of each warlord’s effort on the outcome of the

conflict is explicitly defined as an Impact Function. The impact function of warlord

A’s effort toward the contest against warlord B is denoted by IA. The impact function

of warlord B’s effort toward the contest against warlord A is denoted by IB.

Definition 1. Let πA : R2
+ → R+ be the CSF for the conflict between warlord A and

B. From Hirshleifer (1989), the explicit form of πA is defined as

πA =
eα·IA

eα·IA + eα·IB
=

1

1 + eα·(IB−IA)
, (3.3)

where 0 < α < 1 is an exogenous mass effect variable and πA = 1− πB.

The CSF πA should not be interpreted as the probability that warlord A will

defeat B. Instead, πA reflects the share of the total prize that warlord A is able to

acquire while B acquires the remaining 1 − πA. From equation (3.3), if warlord A

exerts no effort toward the conflict such that IA = 0 while IB > 0, the contest will

not necessarily end in his receiving no income; that is, IA = 0 does not imply πA = 0.

3.1.3 Resources

Warlord A and B are each able to increase their chances within the conflict by

employing Warriors, denoted by WA ∈ R+ and WB ∈ R+ respectively. Warriors

hired by warlord A are hired from his population NA and paid a compensating wage

of cAw. Similarly, warriors hired by warlord B are hired from his population NB and

paid a compensating wage of cBw . The compensating wages, set exogenously, of cAw
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and cBw are taken from the gains made by selling of a warlord’s extracted natural

resource stock RA ∈ R++ and RB ∈ R++, respectively, and some pre-existing cache

of monetary resources YA ∈ R+ and YB ∈ R+, respectively. Extracting a unit of

natural resources occupies a population unit, denoted by EA ∈ R+ and EB ∈ R+.

Warlord A pays each extractor an exogenously set wage of cAE ∈ R+ and warlord B

pays each of his extractors an exogenously set wage of cBE ∈ R++. Let R̂A ∈ R+

and R̂B ∈ R+ be the amount of natural resources that warlord A and warlord B,

respectively, chooses to extract.

Assumption 1. Both warlord A and warlord B are incapable of extracting all of the

natural resources such that,

R̂A < RA; (3.4)

R̂B < RB. (3.5)

Equations (3.4) and (3.5) state that each warlord’s level of extracted natural

resources is not constrained by the total amount that is endowed within his given

territory.

Assumption 2. Each unit of natural resources extracted is equal to a population unit

of extractors. That is, R̂A = EA and R̂B = EB.

The goal of each warlord is to maximize his own income subject to two constraints.

The first is labeled the Population Constraint and it is

NA = WA + EA. (3.6)

Equation (3.6) states that warlord A’s decision on how to allocate his population

amongst the two economic activities is restricted by the total population within his

stronghold. Similarly, equation (3.6) states that everyone within warlord A’s populace
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will be economically active. The second constraint is a Resource Constraint :

mR · R̂A + YA = ck ·KA + cAw ·WA + cAE · EA, (3.7)

where mR ∈ R+ is the exogenously set price paid, by some external buyer, to each

warlord for a single unit of natural resource extracted and sold. The population and

resource constraints are similarly defined for warlord B.

Assumption 3. The price for a unit of natural resource is greater than the cost to

extract; that is, mR > cAE and mR > cBE.

Given the relationship between the variables R̂A and EA from Assumption 2,

the population and resource constraints are simplified into a single equation. Let

σA = mR− cAE and σB = mR− cBE . In addition, let ℵA = NA + YA
σA

and ℵB = NB + YB
σB

.

Substituting the budget constraint from equation (3.7) into the population constraint

from equation (3.6) and using Assumption 2, warlord A’s income maximization deci-

sion is constrained by the total population at his disposal, NA, such that

ℵA =

(
cAw
σA

+ 1

)
·WA +

ck
σA
·KA. (3.8)

Likewise, warlord B’s income maximization decision is constrained by the total pop-

ulation at his disposal, NB, such that

ℵB =

(
cw
σB

+ 1

)
·WB +

ck
σB
·KB. (3.9)

3.1.4 Geography of the Economy

Within each territory, the prevailing warlord has an established stronghold where

all economic operations take place. Let the location of warlord A’s stronghold be

denoted by `A and the location of warlord B’s stronghold be denoted by `B.
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Definition 2. The Geography of the economy is defined as a line of fixed length on

an interval [0, 1] where `A = 0 and `B = 1. Figure 2 illustrates the basics of the

economy’s geography.

b
0

`A b
1
`B

Figure 3.1: Geography of the Economy

Let `c denote the location that the conflict actually takes place between warlord

A and B. The location of conflict `c is exogenously determined.

3.1.5 Income Gained from Conflict

The income gained by each warlord is the total amount of production profits he

is able to defend and the amount he is able to take from the opposing warlord.

Definition 3. Let VA and VB be the income gained by warlord A and warlord B,

respectively, from both production and warfare. In addition, let the price paid for

the sale of warlord production be non-negative; that is, m > 0. Warlord A’s income

equation is

VA = πA ·m · (KA +KB) , (3.10)

where warlord B’s income equation is similarly defined as

VB = πB ·m · (KA +KB) . (3.11)

Given WB and KB, warlord A seeks to solve his share of income made on the total
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production within the economy subject to his population size such that

max
WA,KA

VA = πA ·m · (KA +KB)

s.t. ℵA =

(
cAw
σA

+ 1

)
·WA +

ck
σA
·KA, (3.12)

warlord B seeks to solve his share of income made on the total production within the

economy subject to his population size such that

max
WB ,KB

VB = πB ·m · (KA +KB)

s.t. ℵB =

(
cBw
σB

+ 1

)
·WB +

ck
σB
·KB. (3.13)

Table 3.1 presents a quick list and explanation of all the model’s variables.

Remark It is important to point out aspects of the model that may limit the ro-

bustness of the results. First, the conflict within the model is solely over the total

production of goods and services within the economy and not over the natural re-

sources, an assumption that is not made in the warlord competition model from

Skaperdas (2002) in which a common set of natural resources are contested over. One

alternative would be to model the competition solely over natural resources, as in

Skaperdas (2002), while another would be to construct a dual conflict model in which

each warlord can distribute resources toward the conflict over productive goods and

services and the conflict over natural resources. The later has been modeled and

attempted a number of different ways, but I could not find any tractable solutions.

The former alternative is compelling and will possibly be pursued in future research.

Second, the model assumes that each warlord has the same rate of seizure and that

it is set exogenously; that is, all of a warlord’s production is subject to appropriation.

While this assumption is later dropped in the next chapter, there still is relevancy to

this symmetric assumption. In the current model, one can envision that the point of
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Table 3.1: Summary of Variables within the Model
Endogenous

Variable Explanation
WA, WB Number of warriors hired by warlord A and warlord B

KA, KB Units of capital that warlord A and warlord B choose to invest in

EA, EB Number of natural resource extractors hired by warlord A and warlord B

K Total production of goods and services within the economy

Exogenous

Variable Explanation
NA, NB Population sizes for warlord A and warlord B

YA, YB Pre-game budget allocated to warlord A and warlord B

RA, RB Set of un-extracted natural resources for warlord A and warlord B

R̂A, R̂B Amount each warlord chooses to extract from RA and RB where R̂A < RA
and R̂B < RB

cAw, cBw Wage paid to each warrior hired by warlord A and warlord B

ck Price per unit of capital

m Price paid for each good and service produced and sold

mR Price paid on each unit of natural resource that is extracted and sold

cAE, cBE Wage paid to each extractor hired by warlord A and warlord B

`A, `B Location of warlord A’s stronghold and warlord B’s stronghold

`c Location of conflict

φ Scalar that represents the importance of distance on conflict

α Mass-effect variable

Include Both Endogenous and Exogenous Variables

Variable Explanation
πA CSF function for warlord A against warlord B

πB CSF function for warlord B against warlord A

VA, VB The income made by warlord A and warlord B from the production and
appropriation of goods and services

conflict `c is the location where both warlord A and warlord B produce their goods

and services and, hence, have an equal rate of seizure. For example, two separate

individuals or groups may invest their own time and unique level or resources toward

the completion of a single project yet also work against each other on securing a larger

share of the project’s benefit — such as the credit of the project’s success. In the

context of a civil war or an scenario involving organized crime syndicates, one can

conceive two warlords choosing to invest their time, money and resources into some
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profitable good or services, such as the economy of a local area, while also battling

against each other over who gains a larger segment of these profits.

3.1.6 Equilibrium

Before the three models are presented and solved, the appropriate equilibrium

concept must be defined. Given that the model is constructed on the assumption of

complete information and that both warlords are making their respective decisions

simultaneously within a single stage game, a Pure Strategy Nash Equilibrium would

be the most appropriate solution concept for the game.

Definition 4. Let SA ∈ R2
+ × R2

+ and SB ∈ R2
+ × R2

+ denote the strategy set for

warlords A and B, respectively. Let sA = {WA, KA} ∈ SA and sB = {WB, KB} ∈

SB. In addition, let Γ = 〈SA,SB, VA, VB〉 be the two-player strategic-form game as

constructed above. A Pure Strategy Nash Equilibrium for the game Γ specifies a set

of strategy profiles (s∗A, s
∗
B) which solve maximization problems (3.18) and (3.19).

3.2 Base Model

Following Buhaug et al (2009), the impact function IA and IB are therefore ex-

plicitly defined as

IA (`c, `A = 0;WA) = WA − φ · (`c − `A)2 = WA − φ · `2
c ; (3.14)

IB (`c, `B = 1;WB) = WB − φ · (`c − `B)2 = WB − φ · (`c − 1)2 , (3.15)

where φ is an exogenous scalar such that 1 > φ > 0. Equations (3.14) and (3.15) state

that the impact function of warlord A’s effort toward the contest against warlord B

is dependent upon the amount of warriors hired and the distance between warlord

A’s stronghold and the area of conflict.

31



From Definition 1 and using equations (3.14) and (3.15), the CSF πA for the

conflict between warlord A and B equals

πA =
1

1 + eα·(WB−WA+φ·(2·`c−1))
(3.16)

and the CSF πBA for the conflict between warlord B and A equals

πB = 1− πA =
1

1 + eα·(WA−WB−φ·(2·`c−1))
. (3.17)

As intuition would predict, πA is a function increasing in WA and decreasing in WB.

In addition, as the distance between warlord A’s stronghold and the conflict zone

location `c increases, πA decreases. As the distance between warlord B’s stronghold

and the conflict zone location `c increases, πA increases.

Warlord A then must decide on the optimal levels of WA and KA to maximize

his income subject to the single constraint from equation (3.8). Similarly, warlord

B simultaneously decides on the optimal levels of WB and KB to maximize his in-

come subject to to the single constraint from equation (3.9). Using equations (3.10),

(3.11),(3.8) and (3.9), each warlord’s maximization problem is fully constructed.

Given WB and KB, warlord A seeks to solve his share of income made on the total

production within the economy subject to his population size such that

max
WA,KA

VA =

(
1

1 + eα·(WB−WA+φ·(2·`c−1))

)
·m · (KA +KB)

s.t. ℵA =

(
cAw
σA

+ 1

)
·WA +

ck
σA
·KA. (3.18)

Warlord B seeks to solve his share of income made on the total production within
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the economy subject to his population size such that

max
WB ,KB

VB =

(
1

1 + eα·(WA−WB−φ·(2·`c−1))

)
·m · (KA +KB)

s.t. ℵB =

(
cBw
σB

+ 1

)
·WB +

ck
σB
·KB. (3.19)

Solving maximization problems (3.18) and (3.19) for the choice variables and

rearranging the appropriate variables gives rise to the following equilibrium result.

Theorem 1. Let ˆ̀= φ · (2 · `c − 1). Allowing Assumptions 1, 2 and 3 to hold, in the

game Γ defined above, given that the following two conditions are satisfied,

(σA) (ℵA) + (σB) (ℵB)

cBw + σB
> ΩA >

(σB) (ℵB)

cBw + σB
− (σA) (ℵA)

cAw + σA

(σA) (ℵA) + (σB) (ℵB)

cAw + σA
> ΩB >

(σA) (ℵA)

cAw + σA
− (σB) (ℵB)

cBw + σB


(3.20)

where

ΩA =
1

α

(
ln

(
cBw + σB
cAw + σA

)
+

(
cAw + cBw + σA + σB

cBw + σB

))
− φ · (2`c − 1) ;

ΩB =
1

α

(
ln

(
cAw + σA
cBw + σB

)
+

(
cAw + cBw + σA + σB

cAw + σA

))
+ φ · (2`c − 1) ,

an interior pure strategy Nash equilibrium exists where,

1. Warlord A and warlord B hire warrior numbers of

W ∗
A =

(
(σA) (ℵA) + (σB) (ℵB)−

(
cBw + σB

)
· ΩB

cAw + cBw + σA + σB

)
− 1

α
; (3.21)

W ∗
B =

(
(σA) (ℵA) + (σB) (ℵB)−

(
cAw + σA

)
· ΩB

cAw + cBw + σA + σB

)
− 1

α
. (3.22)
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2. Warlord A and B will invest in capital levels of

K∗A =
(

(cBw+σB)(σA·ℵA)+(cAw+σA)·(cBw+σB)·ΩA−(cAw+σA)(σB ·ℵB)

ck·(cAw+cBw+σA+σB)

)
; (3.23)

K∗B =
(

(cAw+σA)(σB ·ℵB)+(cAw+σA)·(cBw+σB)·ΩB−(cBw+σB)(σA·ℵA)

ck·(cAw+cBw+σA+σB)

)
. (3.24)

3. the total production of goods and services within the economy is

K∗ = K∗A +K∗B =
cAw + cBw + σA + σB

α · ck
(3.25)

Proof. See page 108 in the Appendix.

The two conditions in equation (3.20) spotlight the importance of the relationship

between resources in the economy and the price paid to warriors. As the total pop-

ulation, pre-game budget and/or the profits made on the extraction and selling of a

natural resource increase, the higher the wage paid to warriors can possibly be before

it causes one of the decision variables to become negative. This problem derives from

the fact that hiring a warrior costs the warlord in more ways that just the wage; that

is, an increase in hired warriors decreases the warlord’s population size available for

extraction and yet also requires the extraction of more natural resources in order to

pay the warriors’ wages.

To illustrate one possible Nash equilibrium, let both population sizes be normal-

ized to one, such that NA = NB = 1, and let each warlord have a pre-game budget of

one, YA = YB = 1. Let the two warlords’ warrior and extraction wages be identical,

cAw = cBw = cw and cAE = cBE = cE. Finally, let both the cost of hiring a warrior and

the cost per unit of capital equal 1/10 of the profit made from the extraction and

selling of a natural resource; that is, cw = ck = (1/10) · σ. Finally, let the importance

of location be φ = 1/4, the mass-effect variable be α = 1 and the point of conflict
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be located at the midpoint of the two warlord strongholds. From Theorem 1, both

warlord A and B hire the same amount of warriors:

W ∗
A = W ∗

B =
1

11
·
(

10

σ
− 1

)
,

and capital investments of

K∗A = K∗B = 11.

Theorem 1 also states that equilibrium is found in the above example as long as the

profit made from the extraction and selling of a natural resource is positive and no

greater than ten; that is, 10 ≥ σ ≥ 0.

The more interesting results of Theorem 1 are the effects that a warlord’s popu-

lation size has on not only his own production and appropriation levels, but on the

opposing warlord’s, as well. Equations (3.21) and (3.22) illustrate that an increase

in NA will increase the number of warriors hired by both warlord A and warlord B.

Therefore, any increase in a warlord’s population will cause the total war effort W ∗

to increase due to both W ∗
A and W ∗

B increasing.

An increase in population does not have such a positive effect on a warlord’s

production. Using equations (3.23) and (3.24), an increase in NA will cause warlord

A to increase the amount of capital invested, while warlord B responds by choosing to

decrease his investments in capital. The interpretation within this scenario is that an

increase in warlord A’s population size will have his invest more in both warfare and

the production of goods and services. To keep up with the escalated conflict effort

by warlord A, warlord B puts more resources into hiring warriors and dedicates less

toward the production of goods and services. As a result, the total level of production

K∗ is not affected by either warlords’ resources.

By substituting equation (A.10) into the contest success function defined in equa-

tion (3.16), warlord A and B each receive a proportion of K∗ dependent upon the
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wages per warrior hired and the profits made on the extraction and selling of a unit

of natural resources.

Theorem 2. In the game Γ defined above, given assumptions 1 through 3 hold and

the two conditions in equation (3.20) are satisfied, the proportions of K∗ that each

warlord receive in equilibrium are dependent upon wages paid per warrior hired and

the profits made on the extracting and selling of a unit of natural resources; that is,

π∗A =
1

1 + cAw+σA
cBw+σB

(3.26)

π∗B = 1− π∗A =
1

1 + cBw+σB
cAw+σA

(3.27)

Proof. See page 121 in the Appendix.

3.2.1 Comparative Statics

3.2.1.1 Varying Population Sizes and Pre-Game Budgets

Let the point of conflict be equidistant from each warlord’s stronghold such that

`c = 1/2; that is, (`c − `A)2 = (`c − `B)2 and ˆ̀ = 0. In addition, cAw = cBw = cw,

cAE = cBE = cE, YA = YB and α = 1. Suppose that both warlord A and warlord B

have identical population sizes; that is, NA = NB. The equilibrium levels of W and

K for each warlord are:

W ∗
A = W ∗

B =
NA

cw
σ

+ 1
+

YA
cw + σ

− 1;

K∗A = K∗B =

(
cw + σ

ck

)
.
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The results above show that both warlords will invest symmetrically. Additionally,

an increase in the cost per warrior will decrease the level of conflict and increase the

role of production. Because each warlord will mirror the other’s number of warriors

hired, the proportion of goods and services produced, K∗, will be equally split 1.

Suppose, now, that warlord B’s population size is double that of warlord A such

that NB = 2 ·NA. The equilibrium levels of W and K are now:

W ∗
A =

3 ·NA
cw
σ

+ 1
+

YA
cw + σ

− 1 = W ∗
B;

K∗A =
cw + σ

ck
− NA

2 · ck
σ

<
cw + σ

ck
+

NA

2 · ck
σ

= K∗B.

This augmented example shows that when warlord B has double the population size

of warlord A, warlord B will invest in more capital than warlord B. Unfortunately

for warlord B, each warlord still maintains half of the total production K∗ because

both warlords are investing equal amounts of resources toward conflict.

To better emphasize this result, it can be assumed instead that warlord B has

a population size that is 10 times as great as warlord A’s population size; that is,

NB = 10 ·NA. The equilibrium levels of W and K are then,

W ∗
A =

11 ·NA
cw
σ

+ 1
+

YA
cw + σ

− 1 = W ∗
B;

K∗A =
cw + σ

ck
− 9 ·NA

2 · ck
σ

<
cw + σ

ck
+

9 ·NA

2 · ck
σ

= K∗B.

As in the previous example, warlord B’s greater population size causes his to in-

vest more into the production of goods and services while warlord A decreases his

production levels equivalently. Warlord A instead chooses to spend his resources on

1This example, and those to follow, are presented as illustration for the reader. Standard partial
derivative analysis is used and can be found in the accompanying proofs in the Appendix chapter.
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the hiring of warriors so that both warlords again win half of K∗. The above three

examples lead to an important characteristic of the model’s equilibrium.

Corollary 1. In the game Γ defined above, given assumptions 1 through 3 hold and

the two conditions in equation (3.20) are satisfied, an increase in either a warlord’s

population size or pre-game budget in relation to the opposing warlord’s population

size or pre-game budget will cause

1. the warlord to spend more on the production of goods and services while the

opposing warlord will invest in less;

2. no change in the total production of goods and services;

3. both warlords will increase their hiring of warriors.

Proof. See page 122 in the Appendix.

3.2.1.2 Varying Distance from the Point of Conflict

Let α = 1, YA = YB and NB = σ · NA where σ > 0 still holds. In addition,

let φ = 1, cAw = cBw = cw and cEA = cEB = cE. Now allowing `c to vary from 1/2,

suppose that the point of conflict is exogenously set at warlord A’s stronghold such

that `c = `A = 0 and ˆ̀= −1. The equilibrium levels of W ∗ and K∗ are

W ∗A=
(1+σ)·NA
cw
σ +1

+
YA
cw+σ

−φ+2
2

< (1+σ)·NA
cw
σ +1

+
YA
cw+σ

− 2−φ
2

=W ∗B ;

K∗A= cw+σ
ck

(
(1−σ)·NA
2·( cwσ +1)

+φ+2
2

)
> cw+σ

ck

(
(1−σ)·NA
2·( cwσ +1)

+ 2−φ
2

)
=K∗B .

The results given by the above equations show that when the point of conflict is set at

warlord A’s stronghold, warlord A will hire fewer warriors while warlord B will need

to hire more warriors because of the distance that needs to be travelled. By hiring
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a smaller number of warriors, warlord A is given the opportunity to invest in more

capital. Likewise, warlord B is unable to invest in greater quantities of goods and

services due to the high number of warriors needed to be hired; that is, K∗A > K∗B.

The opposing extreme of `c = 0 is to locate the point of conflict at warlord B’s

stronghold such that `c = 1. The equilibrium levels of W ∗ and K∗ now become

W ∗A=
(1+σ)·NA
cw
σ +1

+
YA
cw+σ

− 2−φ
2

> (1+σ)·NA
cw
σ +1

+
YA
cw+σ

−φ+2
2

=W ∗B ;

K∗A= cw+σ
ck

(
(1−σ)·NA
2·( cwσ +1)

+ 2−φ
2

)
< cw+σ

ck

(
(1−σ)·NA
2·( cwσ +1)

+φ+2
2

)
=K∗B .

By changing the location of `c from 0 to 1, the equilibrium results are reversed.

Warlord B now chooses to spend less on the hiring of warriors while investing more

in capital. Warlord A, having to travel long distances to fight warlord B, must spend

more on the hiring of warriors and forgo large investments into the production of

goods and services; that is, K∗A < K∗B.

The illustrative examples above lead to another important characteristic of the

model’s equilibrium.

Corollary 2. In the game Γ defined above, given assumptions 1 through 3 hold and

the two conditions in equation (3.20) are satisfied, as `c increases away from `A = 0

toward `B = 1,

1. Warlord B spends more on the production of goods and services while warlord

A invests in less;

2. the total production of goods and services stays the same;

3. Warlord A will increase his hiring of warriors while warlord B decreases hers;

4. the proportion of goods and services that each warlord takes is unaffected.
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Proof. See page 123 in the Appendix.

3.2.1.3 Exogenous Prices

To begin, the price paid on the selling of a productive good or service m is absent

from the equilibrium decision variables of both warlord and the equilibrium CSF; that

is,

∂W ∗
A

∂m
=
∂W ∗

B

∂m
=
∂K∗A
∂m

=
∂K∗B
∂m

=
∂K∗

∂m
= 0

and

∂πA
∂m

=
∂πB
∂m

= 0.

This result is not surprising since the price m affects each warlord’s post-conflict value

identically.

The per unit price of capital ck has the expected inverse relationship on both

the individual and total production of goods and services. From equation (3.25),

an increase in the per unit cost in capital causes the total production of goods and

services to decrease: ∂K∗/∂ck = −2 ·(cAw+cBw +σA+σB)/c2
k < 0. Similarly for warlord

A, using equation (3.23)

∂K∗A
∂ck

= − 1

ck
·K∗A. (3.28)

From definition, K∗A cannot be negative and, therefore, ∂K∗A/∂ck < 0. From equation

(3.24),

∂K∗B
∂ck

= − 1

ck
·K∗B. (3.29)

Again from definition, K∗B cannot be negative and, therefore, ∂K∗B/∂ck < 0.

Theorem 2 states that the proportion of goods and services each warlord will

attain within equilibrium is independent of the per unit cost of capital but dependent

upon the wages per warrior hired and the costs per extractor hired. Equations (3.26)

and (3.27) state that, all other variables remaining constant, an increase in a warlord’s
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wage per warrior results in a decrease in the amount of K∗ won while an increase in

a warlord’s wage per extractor results in an increase in the proportion of K∗ gained.

Corollary 3. In the game Γ defined above, given assumptions 1 through 3 hold and

the two conditions in equation (3.20),

1. an increase in a warlord’s wage paid per warrior hired will decrease the propor-

tion of total goods and services won after conflict;

2. the proportion of goods and services that a warlord wins after conflict increases

when the opposing warlord’s wage paid per warrior hired increases;

3. an increase in a warlord’s wage paid per extractor hired will increase the pro-

portion of total goods and services won after conflict;

4. the proportion of goods and services that a warlord wins after conflict decrease

when the opposing warlord’s wage paid per extractor hired increases.

Proof. See page 124 in the Appendix.

Finding the effects that changes in cAw, cBw , cAE and cBE have on each warlord’s

warrior hiring and capital investment decisions are problematic and are based on

variable relationships that have no clear interpretation. The effects of these variables

can more easily be seen when there is a unilateral increase in both cAw and cBw as well

cAE and cBE . From equations (3.21) and (3.22):

∂W ∗
A

∂cw
=
∂W ∗

B

∂cw
=

(
1

2

)(
(−1)

σ

(cw + σ)2

)
(ℵA + ℵB) > 0.

The above equation affirms that a unilateral increase in warrior wages will result in

both warlords decreasing the number of warriors they hire. While an increase in cw

has an identical effect on both warlords’ warrior hiring decision, its effect on each
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warlord’s production of goods and services differs. For warlord A, the effect that an

increase in cw has on K∗A is

∂K∗A
∂cw

=

(
1

2 · ck

)
· (−φ (2 · `c − 1)) +

1

α · ck

where,

∂K∗A
∂cw

=


> 0 if 1

φ·α + 1
2
> `c;

< 0 if 1
φ·α + 1

2
< `c.

(3.30)

In similar fashion for warlord B

∂K∗B
∂cw

=

(
1

2 · ck

)
· (φ (2 · `c − 1)) +

1

α · ck

where,

∂K∗B
∂cw

=


> 0 if 1

2
− 1

φ·α < `c;

< 0 if 1
2
− 1

φ·α > `c.

(3.31)

Equation (3.30) states that the effect that wages paid to warriors has on the equi-

librium depends upon the location of conflict, the importance of location variable φ

and the mass-effect variable α. When the point of conflict passes (1/2) + (1/α · φ)

and moves closer to `A = 0, an increase in warrior wages will cause warlord A to

spend less on capital and when the point of conflict moves toward `B = 1 by passing

(1/2) + (1/α · φ), an increase in the wage paid to warriors will result in a greater

investment in capital. Likewise for warlord B, equation (3.31) asserts that when the

point of conflict passes (1/2) − (1/α · φ) and moves closer to `B = 1, an increase in

warrior wages will cause warlord B to spend more on capital and when the point of

conflict moves toward `A = 0 by passing (1/2)−(1/α ·φ), an increase in the wage paid

to warriors will result in a less investment in capital. Therefore, when the location

of conflict lies on the interval
(

1
2
− 1

α·φ ,
1
2

+ 1
α·φ

)
, both warlords will increase their
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capital investments as the wage paid to warriors increases. These results are mildly

intuitive since it was shown earlier that a warlord invests in fewer warriors and in

more capital as the location of conflict moves toward his own stronghold.

Regarding a unilateral increase in extracted natural resource profits σA and σB,

equations (3.21) and (3.22) expound the following:

∂W ∗
A

∂σA
=

(NA +NB) · cw
σ2
A

2 ·
(
cw
σA

+ 1
)2 −

(YA + YB)

2 · (cw + σA)2 ,

where,

∂W ∗
A

∂σA
=


> 0 if cw >

YA+YB
NA+NB

;

< 0 if cw <
YA+YB
NA+NB

,

(3.32)

and

∂W ∗
B

∂σB
=

(NA +NB) · cw
σ2
B

2 ·
(
cw
σB

+ 1
)2 −

(YA + YB)

2 · (cw + σB)2 ,

where

∂W ∗
B

∂σB
=


> 0 if cw >

YA+YB
NA+NB

;

< 0 if cw <
YA+YB
NA+NB

.

(3.33)

Equation (??) states that the effect σ has on each warlord’s number of warriors hired

is dependent upon the wages paid to warriors and the ratio of pre-game resources.

For an increase in extracted natural resource profit to positively affect the number of

warriors hired, the wage paid to each warrior must be more expensive than the ratio

of pre-game resources. If the value of pre-game budgets outweighs the size of the

populations, the wage must be very high for σ to have a positive effect on W ∗
A and

W ∗
B. If the value of pre-game budgets is outweighed by the size of the populations,

the wage does not need to be very high for σ to have a positive effect. In other words,

if pre-game budgets are relatively more abundant than the population sizes, there is

no real need to extract and sell natural resources and more warriors can be hired.
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On the other hand, if pre-game budgets are low, warlords need to extract and sell

resources in order to hire more warriors.

In general, the effect that extracted natural resource profits have on the production

of goods and services is positive; that is, from equation (3.25),

∂K∗

∂σA
=
∂K∗

∂σB
=

1

α · ck
· 2 > 0.

Therefore, production of goods and services increases within the economy when more

is paid for extracted natural resources.

3.3 Examples

3.3.1 Simplified Example with No Distance Effects

Let both warlord A’s and warlord B’s population sizes be generalized to 1; that

is, NA = NB = 1. Let cAw = cBw = cw and cAE = cBE = cE. Finally, let the mass-effect

variable be equal to one, α = 1, and the point of conflict be equidistant from each

warlord’s stronghold; that is, `c = 1
2

or φ = 0. From equations (3.21) and (3.22), the

number of warriors hired by each warlord is

W ∗
A =

σ

cw + σ
+

YA + YB
2 · (cw + σ)

− 1;

W ∗
B =

σ

cw + σ
+

YA + YB
2 · (cw + σ)

− 1.

Given the above equations, the contest success functions πAB and πBA are equal at

1
2
. From equations (3.25), the total amount of goods and services produced within

the economy is

K∗ = 2 · cw + σ

ck
,
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where, from equations (3.23) and (3.24),

K∗A =
YA − YB

2 · ck
+
cw + σ

ck
;

K∗B =
YB − YA

2 · cw
+
ck + σ

ck
.

3.3.1.1 No Pre-Game Budgets

Suppose, initially, that each warlord has a pre-game budget of zero such that

YA = YB = 0. The number of warriors hired under the Nash Equilibrium are

W ∗
A = W ∗

B =
σ

cw + σ
− 1,

and the amount of capital investment is

K∗A = K∗B =
cw + σ

ck
.

Theorem 1 states that for the Nash equilibrium to exist, W ∗
A,W

∗
B ≥ 0. For this

condition to be satisfied, the wage offered to warriors by both warlords must be equal

to 0 and neither warlord will hire a single warrior. In other words, for W ∗
A,W

∗
B > 0,

then cw < 0; for W ∗
A,W

∗
B = 0, then cw = 0. As a result of hiring no warriors, each

warlord invests in capital levels of

K∗A = K∗B =
σ

ck
,

which is greater than zero by definition. The total production within the economy is

then K∗ = 2 · σ
ck

.

The above example illustrates that when both warlords are not endowed with a

pre-game budget are left with only their current set of resources, neither warlord is

45



able to afford putting any resources toward conflict unless the wage paid to warriors

is negative. Therefore, each warlord will dedicate his resources toward the extraction

of natural resources and the production of goods and services.

3.3.1.2 An Established Warlord versus an Upstart

Now suppose that warlord A is an established warlord that has a pre-game budget

of YA = 1 while warlord, being an upstart, has a pre-game budget of YB = 0. The

number of warriors hired under the Nash equilibrium now are

W ∗
A = W ∗

B =
σ

cw + σ
+

1

2
·
(

1

cw + σ

)
− 1,

and the amount of capital investment is

K∗A =
1

2 · ck
+
cw + σ

ck
;

K∗B =
cw + σ

ck
− 1

2 · ck
.

For the equilibrium conditions from Theorem 1 to be satisfied, the wage paid to

warriors cannot be greater than 1
2
. That is,

W ∗
A = W ∗

B =


σ

cw+σ
+ 1

2
·
(

1
cw+σ

)
− 1 if cw <

1
2
;

0 if cw = 1
2
.

While it may be intuitive as to how warlord A can afford to invest in warfare, one

maybe perplexed as to how warlord B can afford to hire warriors now when YB is still

equal to zero. The answer lies within equation (3.21) and (3.22), which state that

any increase in either YA and/or YB will increase both W ∗
A and W ∗

B proportionately.

Therefore, both warlords will hire the same number warriors such that πAB = πBA =
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1
2
. To afford the increase in warrior purchasing, warlord B will decrease the amount of

goods and services he produces while warlord A will increase his production of goods

and services. By definition, the equilibrium level of capital investment by warlord

A satisfies the equilibrium conditions of Theorem 1: from mR > cE, K∗A > 0. For

warlord B’s equilibrium level of capital investment to be positive, σ ≥ 1
2
− cw; that

is,

K∗B =



cw+σ
ck
− 1

2·ck
if σ > 1

2
− cw, cw < 1

2
;

σ
ck
− 1

2·ck
if cw = 0;

0 otherwise.

The above example illustrates that when one warlord is endowed with a pre-game

budget and one is not, both warlords will begin to put resources toward conflict while

total production within the economy will stay unchanged.

3.3.1.3 Two Established Warlords

Finally, suppose that both warlord A and warlord B are established and each have

a pre-game budget of YA = YB = 1. The number of warriors hired under the Nash

equilibrium are

W ∗
A = W ∗

B =
σ

cw + σ
+

1

cw + σ
− 1,

where W ∗
A and W ∗

B are positive when the wage paid to warriors is less than 1 and

equal to zero when the wage is exactly 1; that is, W ∗
A,W

∗
B > 0 when 1 > cw and

W ∗
A = W ∗

B = 0 when 1 = cw. Each warlord then invests in capital levels of

K∗A = K∗B =
cw + σ

ck
,
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where K∗A = K∗B ≥ 0 when σ ≥ −cw. From the assumptions that cw ≥ 0 and

mR > cE, K∗A and K∗B will always be positive.

The final example presented shows that when both warlords have equal pre-game

budgets that are greater than zero, warfare will take place as well as the production

of goods and services.

3.3.2 Simplified Example with Distance Effects

Let both warlord A’s and warlord B’s population sizes still be generalized to 1;

that is, NA = NB = 1. For added simplicity, let cAw = cBw = cw, cEA = cEB = cE, the

mass-effect variable again be equal to one, α = 1, and the effect of distance on each

warrior, φ, be equal to 1
2
. From equations (3.21) and (3.22), the number of warriors

hired by each warlord is

W ∗
A =

σ

cw + σ
+

YA + YB
2 · (cw + σ)

+
ˆ̀

4
− 1;

W ∗
B =

σ

cw + σ
+

YA + YB
2 · (cw + σ)

−
ˆ̀

4
− 1.

Given the above equations, the contest success functions πAB and πBA are equal at

1
2
. From equations (3.25), the total amount of goods and services produced within

the economy is

K∗ = 2 · cw + σ

ck
,

where, from equations (3.23) and (3.24),

K∗A =
YA − YB

2 · ck
+
cw + σ

2 · ck
·

(
2−

ˆ̀

2

)
;

K∗B =
YB − YA

2 · cw
+
ck + σ

2 · ck
·

(
2 +

ˆ̀

2

)
.
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3.3.2.1 No Pre-Game Budgets

Suppose, initially, that each warlord has a pre-game budget of 0 such that YA =

YB = 0. The number of warriors hired under the Nash Equilibrium are

W ∗
A =

σ

cw + σ
+

ˆ̀

4
− 1;

W ∗
B =

σ

cw + σ
−

ˆ̀

4
− 1.

and the amount of capital investment is

K∗A =
cw + σ

2 · ck
·

(
2−

ˆ̀

2

)
;

K∗B =
cw + σ

2 · ck
·

(
2 +

ˆ̀

2

)
.

Theorem 1 states that for a Nash equilibrium to be found, W ∗
A,W

∗
B ≥ 0. For this

condition to be satisfied, the wage offered to warriors by warlord A must be

W ∗
A ≥ 0 → (σ) ·

(
`c − 1

2
5
2
− `c

)
≥ cw,

and the wage offered to warriors by warlord B must be

W ∗
B ≥ 0 → (σ) ·

( 1
2
− `c

3
2

+ `c

)
≥ cw.

In the extreme case where `c = `A = 0, warlord A’s equilibrium condition from

equation (3.20) will not hold unless the wage paid to warriors, cw, is negative which,

by definition, is not possible. In the polar extreme case where `c = `B = 1, warlord

B’s equilibrium condition will not hold unless cw is negative. In fact, warlord A’s

equilibrium condition will only be satisfied when `c ≤ 1
2

and warlord B’s equilibrium
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condition will only be satisfied when `c ≥ 1
2
. Therefore, the only outcome that is

possible is when the point of conflict is `c = 1
2

and, hence, the wage paid to warriors

is cw = 0 and there are no warriors are hired by either warlord; that is, W ∗
A = W ∗

B = 0.

As a result of hiring no warriors, each warlord invests in capital levels of

K∗A = K∗B =
σ

ck
,

which is greater than zero by definition. The total production within the economy is

then K∗ = 2 · σ
ck

.

The above example illustrates that when both warlords are not endowed with a

pre-game budget and are left with only their current set of resources, the only equi-

librium outcome occurs when the point of conflict is the half way point between the

two warlord strongholds and neither warlord is able to afford putting any resources

toward conflict unless the wage paid to warriors is negative. Therefore, each war-

lord will dedicate his resources toward the extraction of natural resources and the

production of goods and services.

3.3.2.2 An Established Warlord versus an Upstart

Now suppose that warlord A is an established warlord that has a pre-game budget

of YA = 1 while warlord, being an upstart, has a pre-game budget of YB = 0. The

number of warriors hired by warlord A under the Nash equilibrium now is

W ∗
A =

σ

cw + σ
+

1

2
·
(

1

cw + σ

)
+

ˆ̀

4
− 1,

and the number hired by warlord B is

W ∗
B =

σ

cw + σ
+

1

2
·
(

1

cw + σ

)
−

ˆ̀

4
− 1.
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The level of capital investment by each warlord is thus

K∗A =
1

2 · ck
+
cw + σ

ck
·

(
2−

ˆ̀

2

)
;

K∗B =
cw + σ

ck
·

(
2 +

ˆ̀

2

)
− 1

2 · ck
.

For the conditions from Theorem 1 to be satisfied, the wage paid to warriors by

warlord A must be

W ∗
A ≥ 0 → (σ) ·

(
`c − 1

2
5
2
− `c

)
+

1
5
2
− `c

≥ cw,

and the wage paid to warriors by warlord B must be

W ∗
B ≥ 0 → (σ) ·

( 1
2
− `c

3
2

+ `c

)
+

1
3
2

+ `c
≥ cw.

If the point of conflict is equidistant from each warlord’s stronghold, `c = 1/2, the

same conditions hold as the did within the above example without the effects of

distance. If the point of conflict is located at warlord A’s stronghold, `c = 0, warlord

B’s above condition is satisfied when 2 ≥ 3 · cw − (σ), while warlord A’s equilibrium

condition is satisfied only if 2 ≥ 5 · cw + (σ); hence,

2 ≥ max{3 · cw − (σ) , 5 · cw + (σ)}.

Likewise, if the point of conflict is located at warlord B’s stronghold, `c = 1, warlord

A’s equilibrium condition is satisfied when 2 ≥ 3·cw−(σ), while warlord B’s condition

is satisfied when 2 ≥ 3 · cw − (σ). Therefore, the above conditions are satisfied when

cw ≤ min

{
(σ) ·

(
`c − 1

2
5
2
− `c

)
+

1
5
2
− `c

, (σ) ·
( 1

2
− `c

3
2

+ `c

)
+

1
3
2

+ `c

}
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The equilibrium conditions from Theorem 1 also require that both K∗A ≥ 0 and

K∗B ≥ 0. Specifically for warlord A, the existence of an equilibrium requires

K∗A ≥ 0 → 1

2 · `c − 5
− σ ≤ cw.

The above condition itself will be satisfied when 1 ≥ σ · (2 · `c − 5), which, for any

value of `c ∈ [0, 1], will always be satisfied because of the assumption that mR > cE.

Likewise for warlord B,

K∗B ≥ 0 → 1

3 + 2 · `c
+ σ ≥ −cw,

which, for any `c ∈ [0, 1], is satisfied.

3.3.3 Summary

The examples illustrated above show that the value of each warlord’s pre-game

budget is crucially important for the game to have a solution.

When the point of conflict is located at an equidistant point of the two strongholds,

`c = 1
2
, and the pre-game is equal to zero, Theorem (1) requires each warlord pay each

warrior a wage of 0 — which causes each warlord to hire zero warriors and dedicate

all their resources toward production of goods and services — for an equilibrium to

exist. As pre-game budgets start to increase, the wage paid to each warrior that

results in an equilibrium increases. This fact only requires that the total pre-game

budget amount increases and not each warlord’s own budget; that is, it is possible

for an equilibrium to be found that includes warfare even when one warlord has a

positive pre-game budget while the opposing warlord has a pre-game budget of zero.

By allowing the point of conflict to vary between zero and one, the above examples

show that, again, the existence of pre-game budgets are a necessary component to

the game having a solution. More so, the examples imply that as the point of conflict
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moves closer to one’s stronghold, the wage paid to each warrior must decrease to

satisfy equation (3.20). Since the wage paid to warriors is the same for both warlords,

the wage paid to warriors must decrease as the point of conflict varies from the

midpoint for an equilibrium to exist.

3.4 Multi-Warlord Conflict

Consider an economy where J ≥ 2 warlords, J = {1, 2, . . . , j}, are each in control

of a distinct territory. Within each territory of warlord i ∈ J , there is a population

of loyal subjects, Ni ∈ R+ and a cache of unextracted natural resources, Ri ∈ R+.

Warlord j’s population size Nj is understood to be continuous. Each member of the

population Ni ∀i ∈ J is endowed with a single unit of resource that can be used

toward one and only one economic activity.

Each warlord’s strategy set includes two economic activities: producing goods and

services and appropriating goods and services produced by another warlord through

force. All decisions by the warlords are made simultaneously during a one-stage game.

In addition, it is assumed that all warlords have complete information in that each

warlord knows with full certainty both the game structure as well as his own and the

other warlords’ payoff structure and abundance of resources.

Production of Goods and Services

The production of goods and services by warlord i, denoted by Qi, is a function

of the level of capital invested into production by the warlord i, denoted by Ki ∈ R+.

This paper interprets capital as a basic input into the production of goods and services

and does not consider intertemporal issues.

To help facilitate production within his territory, warlord i can invest in the capital
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stock at a price of ck > 0 per unit of capital Ki. Assuming linearity, Qi is defined by,

Qi = θi ·Ki,with θi > 0, ∀i ∈ J (3.34)

where θi represents the effectiveness that each unit of capital invested by warlord i

has on the total quantity produced. θi is assumed to be equal to 1; that is, Qi = Ki

∀i ∈ J . It is assumed that the goods and services produced by all warlords are sold

to an external purchaser, who pays a fixed exogenous price of m ∈ R+ per each unit

of Qi.

Resources

Each warlord is able to increase his chances within the conflict by employing

Warriors, denoted by Wi ∈ R+ ∀i ∈ J . Warriors hired by warlord i are hired from

his population Ni and paid a compensating wage of ciw. The compensating wages are

taken from the gains made by the selling of a warlord’s extracted natural resource

stock Ri ∈ R++ and some pre-existing cache of monetary resources Yi ∈ R+. Let

Ei ∈ R+ denote the total number of natural resource extractors hired by warlord i.

Each warlord i ∈ J pays each extractor an exogenously set wage of ciE ∈ R+. Let

R̂i ∈ R+ be the amount of natural resources that warlord i chooses to extract.

Assumption 4. Each warlord i ∈ J is incapable of extracting all of the natural

resources such that,

R̂i < Ri, i ∈ J (3.35)

Equation (3.35) states that each warlord’s level of extracted natural resources is

not constrained by the total amount that is endowed within his given territory.

Assumption 5. Each unit of natural resources extracted requires a population unit

of extractors. That is, for all i ∈ J , R̂i = Ei.

The goal of each warlord is to maximize his own income subject to two constraints.
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The first is labeled the Population Constraint and it is

Ni = Wi + Ei, ∀i ∈ J. (3.36)

Equation (3.36) states that each warlord i’s decision on how to allocate his population

amongst the two economic activities is restricted by the total population within his

stronghold. Similarly, equation (3.36) states that everyone within warlord i’s populace

will be economically active. The second constraint is a Resource Constraint :

mR · R̂i + Yi = ck ·Ki + ciw ·Wi + ciE · E, ∀i ∈ J (3.37)

where mR ∈ R+ is the exogenously set price paid, by some external buyer, to each

warlord for a single unit of natural resource extracted and sold.

Assumption 6. The price for a unit of natural resource is greater than the cost to

extract; that is, mR > ciE for all i ∈ J .

Given the relationship between the variables R̂i and Ei from Assumption 5, the

population and resource constraints are simplified into a single equation. For sim-

plicity, let the profit each warlord i ∈ J earns from the sale of each unit of extracted

natural resources be denoted by σi = mR − ciE. Substituting the budget constraint

from equation (3.37) into the population constraint from equation (3.36), warlord i’s

income maximization decision is constrained by the total population at his disposal,

Ni, such that

Ni +
Yi
σi

=

(
ciw
σi

+ 1

)
·Wi +

ck
σi
·Ki. (3.38)

Geography of the Economy

Within each territory, the prevailing warlord has an established stronghold where

all economic operations take place. Let the location of each warlord i’s stronghold
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be denoted by `i. Each warlord’s stronghold is connected to a point of conflict `c,

which is exogenously determined, by a line of fixed length. Figure 3.4 illustrates the

economy.
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Figure 3.2: Geography of the Multi-warlord Economy

Appropriation through Force

Following Buhaug et al (2009), the impact function Ii ∀i ∈ J is explicitly defined,

using the base model form, as

Ii (Wi; `i, `c, φ) = Wi − φ · (`c − `i)2 , (3.39)

where φ is an exogenous scalar which represents the implicit costs of geographical

distance, such that 1 > φ > 0. Equations (3.39) states that the impact function of

warlord i’s effort toward the contest against all other warlords dependents upon the

amount of warriors hired and the distance between warlord i’s stronghold and the

area of conflict.

As in the previous chapter, each warlord also has the ability to take revenues

earned by an opposing warlord through force. The difference form CSF, presented

by Hirshleifer (1989), is again used to model situations where contests can result in
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both contestants surviving but with different portions of the prize.

Definition 5. For each warlord i ∈ J , let πi : R2
+ → R+ be the CSF for the conflict

between warlord i and all other warlords h ∈ J . From Hirshleifer (1989), the explicit

form of πi is defined as

πi =
eα·Ii∑J
i=1 e

Ii
=

1

1 +
∑J

h∈J,h6=i e
α·(Ih−Ii)

, (3.40)

where 0 < α < 1 is an exogenous mass effect variable and πi = 1−
∑J

h6=i πh.

From Definition 5 and using equation (3.39), the CSF πi is defined as

πi =
1

1 + ΣJ
h∈J,h6=ie

α·(Wh−Wi+φ·(`c−`i)2−φ·(`c−`j)2)
∀i ∈ J, (3.41)

Let J/i = {1, 2, . . . , i − 1, i + 1, . . . , j}. As intuition would predict, πi is a function

increasing in Wi and decreasing in Wh ∀h ∈ J/i. In addition, as the distance between

warlord i’s stronghold and the conflict zone location `c increases, πi decreases.

Income Gained from Conflict

The income gained by each warlord is the total amount of production profits he

is able to defend and the amount he is able to take from the opposing warlords.

Let W = {W1,W2, . . . ,Wj} and K = {K1, K2, . . . , Kj}. In addition, let W/i =

{W1,W2, . . . ,Wi−1,Wi+1, . . . ,Wj} and K/i = {K1, K2, . . . , Ki−1, Ki+1, . . . , Kj}.

Definition 6. Let Vi be the income gained by each warlord i ∈ J from both production

and warfare. Warlord i’s income is

Vi (Wi, Ki;W/i,K/i) = πi ·m ·
J∑
i=1

Ki, ∀i ∈ J. (3.42)

Given W/i and K/i, warlord i optimizes Wi and Ki to maximizes Vi subject to the

constraint (3.38).
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Each warlord i ∈ J then must decide on the optimal levels of Wi and Ki to

maximize his income subject to the single constraint from equation (3.38). Using

equations (3.42) and (3.38), each warlord’s maximization problem is fully constructed.

Assume that each warlord pays identical wages to each extractor and warrior; that

is, ciw = chw ∀i, h ∈ J and ciE = chE ∀i, h ∈ J . Then given W/i and K/i, warlord i

seeks to solve his share of income made on the total production within the economy

subject to his population size such that

max
Wi,Ki

Vi =

 1

1 +
∑J

h∈J,h6=i e
α·(Wh−Wi+φ·(`c−`i)2−φ·(`c−`j)2)

 ·m · J∑
i=1

Ki

s.t. Ni +
Yi
σ

=
(cw
σ

+ 1
)
·Wi +

ck
σ
·Ki. (3.43)

Solving maximization problem (3.43) for each warlord i ∈ J for the choice variables

and rearranging the appropriate variables gives rise to the following equilibrium result.

Theorem 3. Let ℵi =
(
Ni + Yi

σ

)
for all i ∈ J . Suppose assumptions 1, 2 and 3 with

the following condition,

J∑
i=1

ℵi >
(
cw + σ

σ

)
· Ωi >

(
1

J
·

J∑
i=1

ℵi

)
− ℵi ∀i ∈ J, (3.44)

where

Ωi =
1

α · (J − 1)2
+ φ ·

(∑J
i=1 (`c − `i)2

J
− (`c − `i)2

)
.

Then a pure strategy Nash equilibrium exists. Additionally, this equilibrium is char-

acterized as follows.

1. Each warlord i ∈ J hires a number of warriors equal to

W ∗
i =

(
σ

cw + σ

)
·
∑J

i=1 ℵi
J

− Ωi ∀i ∈ J. (3.45)
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2. Each warlord i ∈ J will invest in capital levels of

K∗i =

(
σ

ck

)
·

(
ℵi −

∑J
i=1 ℵi
J

)
+

(
cw + σ

ck

)
· Ωi ∀i ∈ J. (3.46)

3. the total production of goods and services within the economy is

K∗ = ΣJ
i=1Ki =

(
cw + σ

σ

)
· J

(J − 1)2 (3.47)

Proof. See page 126 in the appendix.

As in the previous chapter when the base form of the impact function was used,

Theorem 3 shows that a change in a warlord’s (exogenously given) resources has the

expected effect. Any increase in ℵi ∀i ∈ J will cause every warlord to increase his

hiring of warriors while an increase in ℵh ∀h 6= i ∈ J will make warlord i decrease

his capital investment; that is, the paradox of power is still present when there are

J ≥ 2 warlords present. Likewise, the farther warlord i’s stronghold is from the

point of conflict, the more he will choose to spend on hiring warriors and less on the

production of goods and services. As another warlord h 6= i is located further away

from the point of conflict, warlord i will need to hire fewer warriors and, therefore,

increase his investment in capital.

The more interesting results of Theorem 3 come with an increase in the number

of warlords J . Equation (3.45) demonstrates that each individual warlord will put in-

creasing amounts of resources toward warfare as the number of warlords involved gets

larger. As a result, which is confirmed by both equation (3.46) and equation (3.47),

the increasing dedication to conflict by each warlord decreases his own production of

goods and services.

The economy is then worse off, if the social welfare is being defined as increasing

with production of goods and services and decreasing with warfare, when there are
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fewer warlords present. More so, it is better for the economy as a whole to have

warlords closer to the point of conflict than further away. In other words, theorem

3 elucidates that conflicts will be more intense when the number of combatants are

many and further away from each other. Conflict will de-escalate when either fewer

combatants are present and/or closer to each other.

By substituting the above equilibrium equations into the contest success function

defined in equation (3.40), each warlord i receives a proportion of K∗ dependent only

upon the total number of warlords involved within the conflict.

Theorem 4. Suppose assumptions 1, 2 and 3 and the condition in equation (3.44).

The proportions of K∗ that each warlord receives in equilibrium are dependent the

number of warlords involved in the game:

π∗i =
1

J
. (3.48)

Given that warrior and extractor wages are held to be symmetric between war-

lords, theorem 4 simply states that each warlord i ∈ J obtains an equal division of

the economy’s total production and its division decreases as the number of warlords

increases.

Proof. See page 133 in the appendix.

3.5 Gates-Logit Model

Returning to the original two warlord case, the impact function from Gates (2002)

can be constructed and implemented into the above guns-and-butter model that again

has the properties of ∂IA
∂WA

> 0, ∂IB
∂WB

> 0, ∂IA
∂`c

< 0 and ∂IB
∂`c

> 0. Recalling `A = 0 and
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`B = 1, the newly constructed impact functions IAB and IBA are explicitly defined as

IA = α + ln (WA)− φ · (`c − `A)2 = α + ln (WA)− φ · `2
c ; (3.49)

IB = α + ln (WB)− φ · (`c − `B)2 = α + ln (WB)− φ · (`c − 1)2 . (3.50)

where φ is again an exogenous scalar such that 1 > φ > 0 and `c ∈ [0, 1]2.

From equations (3.49), (3.50) and (3.3), the CSF πA for the conflict between

warlord A and B equals

πA =
1

1 + eIB−IA

=
1

1 + eln(WB)−ln(WA)+φ·(`2c−(`c−1)2)

=
1

1 + WB

WA
· eφ·(2`c−1)

(3.51)

and the CSF πBA for the conflict between warlord B and A equals

πB = 1− πA =
1

1 + WA

WB
· 1
eφ(2`c−1)

(3.52)

2Gates (2002) uses slightly modified versions of equations (3.49) and (3.50) to include two stochas-
tic elements such that

IA = α+ ln (WA)− (`c − `A)
2

+ ηA;

IB = α+ ln (WB)− (`c − `B)
2

+ ηB .

To derive the logit success function, the stochastic element of the impact function is featured. The
cumulative density function of the difference between the two stochastic elements, F (ηB − ηA) is
assumed to have the following logistic form,

F (ηB − ηA) =
eηB−ηA

1 + eηB−ηA
.

The contest success function is derived by applying the above impact functions into the cumulative
density function:

F (ηB − ηA) = πA =
WA

WB

WA

WB
+ e(`c−`A)2−(`c−`B)2

,

which is very similar to the formula in equation (3.51).

61



As stated previously, the new impact functions still result in πA being an increasing

function in WA and a decreasing function in WB. In addition, as the distance between

warlordA’s stronghold and the conflict zone location `c increases, πA decreases. As the

distance between warlord B’s stronghold and the conflict zone location `c increases,

πA increases.

Let Assumptions 1 through 3 still hold as well as the structure of game Γ defined

above. Solving maximization problems (3.18) and (3.19), given the alternative forms

of πAB and πBA defined in equations (3.51) and (3.52), for the choice variables and

rearranging the appropriate variables gives rise to the following equilibrium result.

Theorem 5. Let ˆ̀= φ · (2 · `c − 1). In the game Γ defined above, given assumptions

1 through 3 hold and the following condition is satisfied,

1 +
2√

eˆ̀ ·
(
cAw+σA
cBw+σB

)
 >

(
σB
σA

)(
ℵB
ℵA

)
>

1

1 + 2 ·
√
eˆ̀
(
cAw+σA
cBw+σB

) (3.53)

an interior pure strategy Nash equilibrium exists where,

1. Warlord A and warlord B hire warrior numbers of

W ∗
A =

1

2
·
(

1

cAw + σA

)
·

 (σA · ℵA) + (σB · ℵB)

1 +

(
1√
eˆ̀

)
·
√

cBw+σB
cAw+σA

 ; (3.54)

W ∗
B =

1

2
·
(

1

cBw + σB

)
·

(σA · ℵA) + (σB · ℵB)

1 +
√
eˆ̀ · cAw+σA

cBw+σB

 . (3.55)
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2. Warlord A and B will invest in capital levels of

K∗A =
1

2 · ck
·


(

1 + 2√
eˆ̀
·
√

cBw+σB
cAw+σA

)
· (σA · ℵA)− σB · ℵB

1 +

(
1√
eˆ̀

)
·
√

cBw+σB
cAw+σA

 ; (3.56)

K∗B =
1

2 · ck
·


(

1 + 2 ·
√
eˆ̀ · cAw+σA

cBw+σB

)
· (σB · ℵB)− σA · ℵA

1 +
√
eˆ̀ · cAw+σA

cBw+σB

 . (3.57)

3. the total production of goods and services within the economy is

K∗ =
1

2
·
(
σA · ℵA + σB · ℵB

ck

)
. (3.58)

Proof. See page 133 in the Appendix.

To illustrate a few possible Nash equilibria, let both population sizes be normalized

to one, such that NA = NB = 1, and let each warlord have a pre-game budget of

one, YA = YB = 1. In addition, let cAw = cBw = cw and cAE = cBE = cE where both the

cost of hiring a warrior and the cost per unit of capital equal 1/10 of the profit made

from the extraction and selling of a natural resource; that is, cw = ck = (1/10) · (σ).

Finally, let the importance of location be φ = 1/4. Figure 3.2 illustrates the results

of Theorem 5 for the three points of conflict of `A = 0, 1
2

and `B = 1.

Remark Through a series of examples, the existence of a Nash equilibrium in the

Base model was shown to be dependent upon the the total pre-game budget being

greater than zero. Interestingly, the existence of a Nash equilibrium in the Gates-

logit Model is not fully dependent upon positive pre-game budgets. It can further be

shown that equilibria can exist where both warlords have a pre-game budget of zero.

Let NA = NB = 1, YA = YB = 0, α = 1 and φ = 1/2. In addition, let cAw = cBw = cw
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Table 3.2: Three Simple Examples for the Logit-CSF

`c = 0 `c = 1
2

`c = 1

Equ. Con. 3.27 ≥ 1 ≥ 0.36 3 ≥ 1 ≥ 0.33 2.77 ≥ 1 ≥ 0.31

πA 0.532 0.5 0.469
πB 0.469 0.5 0.532

W ∗
A (0.43)

(
1 + 1

σ

)
(0.45)

(
1 + 1

σ

)
(0.47)

(
1 + 1

σ

)
W ∗
B (0.47)

(
1 + 1

σ

)
(0.5)

(
1 + 1

σ

)
(0.43)

(
1 + 1

σ

)
W ∗ (0.5)

(
1 + 1

σ

)
(0.5)

(
1 + 1

σ

)
(0.5)

(
1 + 1

σ

)
K∗A (5.33)

(
1 + 1

σ

)
(5)
(
1 + 1

σ

)
(4.67)

(
1 + 1

σ

)
K∗B (4.67)

(
1 + 1

σ

)
(5)
(
1 + 1

σ

)
(5.33)

(
1 + 1

σ

)
K∗ (10)

(
1 + 1

σ

)
(10)

(
1 + 1

σ

)
(10)

(
1 + 1

σ

)

and cAE = cBE = cE. From equation (3.53), an interior Nash equilibrium exists when,

(
1 +

1√
eˆ̀

)
≥ 1 ≥

(
1

1 + 2 ·
√
eˆ̀

)
.

Assume at first that the point of conflict is set at `c = 0 such that
√
eˆ̀ = 0.78.

Therefore,

3.56 ≥ 1 ≥ 0.39.

Adjusting the point of conflict to the polar opposite position of `c = 1 such that√
eˆ̀ = 1.28:

2.56 ≥ 1 ≥ 0.28.

From the above simplified examples, it is possible to find an equilibrium when both

warlords have pre-game budgets equal to zero. These examples give different results

from those examples shown for the Base model with the same specifications; that is,
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positive pre-game budgets are not required for a Nash equilibrium being found.

By substituting equation (A.47) into the contest success function defined in equa-

tion (3.69), warlord A and B each receive a proportion of K∗ dependent upon the

point of conflict `c.

Theorem 6. In the game Γ defined above, given assumptions through 1 and 3 hold

and the condition in equation (3.53) is satisfied, the proportions of K∗ are divided as

such

π∗A =
1

1 +
√
eˆ̀ · cAw+σA

cBw+σB

(3.59)

π∗B = 1− π∗A =
1

1 +

(
1√
eˆ̀

)
·
√

cBw+σB
cAw+σA

(3.60)

Proof. See page 144 in the Appendix.

Like in the Base model, Theorem 6 affirms that the proportion of goods and

services won by each warlord after conflict is dependent on both the location of

the point of conflict and the wages paid per worker and extractor hired. In terms of

geographical distance, a warlord gains a greater proportion of total goods and services

won when the location of the point of conflict is closer to his stronghold.

Corollary 4. Given assumptions 1 through 3 hold and the condition in equation

(3.53) is satisfied, warlord B’s proportion of total goods and services gained through

conflict increases while warlord A’s proportion decreases when the point of conflict
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moves away form `A = 0 and closer to `c = 1:

∂πA
∂`c

=
−φ ·

√
eˆ̀ · cAw+σA

cBw+σB(
1 +

√
eˆ̀ · cAw+σA

cBw+σB

)2 < 0; (3.61)

∂πB
∂`c

=
φ ·
√

cBw+σB
cAw+σA√

eˆ̀

(
1 + 1√

eˆ̀

√
cBw+σB
cAw+σA

)2 > 0. (3.62)

As in the Base model, an increase in a warlord’s wage paid per warrior hired

will decrease the proportion of total goods and services awarded after conflict and

increases the opposing warlord’s proportion. Likewise, an increase in a warlord’s wage

paid per extractor hired will increase the proportion of total goods and services won

through conflict and decreases the opposing warlord’s proportion.

Corollary 5. Given assumptions 1 through 3 hold and the condition in equation

(3.53) is satisfied,

1. an increase in a warlord’s wage paid per warrior hired will decrease the propor-

tion of total goods and services won after conflict;

2. the proportion of goods and services that a warlord wins after conflict increases

when the opposing warlord’s wage paid per warrior hired increases;

3. an increase in a warlord’s wage paid per extractor hired will increase the pro-

portion of total goods and services won after conflict;

4. the proportion of goods and services that a warlord wins after conflict decrease

when the opposing warlord’s wage paid per extractor hired increases.

Proof. See page 145 in the Appendix.
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3.5.1 Comparative Statics

3.5.1.1 Varying Population Sizes and Pre-Game Budgets

An increase in either warlord’s population size and/or pre-game budget affects

each warlord’s individual decisions as well as the aggregate. Using the results in both

Theorem 5 and 6, an increase in either population size, NA and/or NB, or pre-game

budget, YA and/or YB, increases the number of warriors hired by both warlords:

∂W ∗
A

∂NA

=
σA

2 (cAw + σA)
(1− πA) > 0

∂W ∗A
∂NB

= σB
2(cAw+σA)

(1− πA) > 0

∂W ∗
B

∂NA

=
σA

2 (cBw + σB)
(πA) > 0

∂W ∗B
∂NB

= σB
2(cBw+σB)

(πA) > o

∂W ∗
A

∂YA
=
∂W ∗

A

∂YB
=

1

2 (cAw + σA)
(1− πA) > 0

∂W ∗B
∂YA

=
∂W ∗B
∂YB

= 1
2(cAw+σA)

(1− πA) > 0

In regards to capital investment, an increase in either NA or YA will cause an increase

in K∗A and a decrease in K∗B,

∂K∗A
∂NA

=
σA
2ck

(1− πA)

(
1 +

2√
eˆ̀

√
cBw + σB
cAw + σA

)
> 0;

∂K∗B
∂NA

= (−1)

(
σA
2ck

)
(πA) < 0;

∂K∗A
∂YA

=
1

2ck
(1− πA)

(
1 +

2√
eˆ̀

√
cBw + σB
cAw + σA

)
> 0;

∂K∗B
∂YA

= (−1)

(
1

2ck

)
(πA) < 0,

while an increase in either NB or YB causes an increase in K∗B and a decrease in K∗A:

∂K∗A
∂NB

= (−1)

(
σB
2ck

)
(1− πA) > 0;

∂K∗B
∂NB

=
σA
2ck

(πA)

(
1 + 2

√
eˆ̀ · c

A
w + σA
cBw + σB

)
< 0;

∂K∗A
∂YB

= (−1)

(
1

2ck

)
(1− πA) > 0;

∂K∗B
∂YB

=
1

2ck
(πA)

(
1 + 2

√
eˆ̀ · c

A
w + σA
cBw + σB

)
< 0.
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As opposed to the results of the Base model, population sizes and pre-game budgets

do have an affect on the total amount of goods and services. Equation (3.58) shows

that any increase in either warlord’s population sizes or pre-game budget will cause

K∗ to increase:

∂K∗

∂NA

=
σA
2ck

> 0;
∂K∗

∂NB

=
σB
2ck

> 0;

∂K∗

∂YA
=

1

2ck
> 0;

∂K∗

∂YB
=

1

2ck
> 0.

Therefore, even though an increase in a variable such as NA will cause an increase

in K∗A and a decrease in K∗B, the increase in warlord A’s population sizes will have

an increasing affect on the total amount of goods and services produced within the

economy.

3.5.1.2 Varying Point of Conflict and Importance of Geographical Dis-

tance

From Theorem 6, the effect that the variable φ has on the proportion of goods

and services each warlord receives after conflict depends on the location of the point

of conflict. From equation (3.59),

∂πA
∂φ

=
−
(
`c − 1

2

)
·
√
eˆ̀ · cAw+σA

cBw+σB(
1 +

√
eˆ̀ · cAw+σA

cBw+σB

)2 , (3.63)

which is positive when the location of the point of conflict is less than 1/2 and negative

when the location of the point of conflict is greater than 1/2. From equation (3.60),

∂πB
∂φ

=

(
`c − 1

2

)
·
√

cBw+σB
cAw+σA√

eˆ̀

(
1 + 1√

eˆ̀

√
cBw+σB
cAw+σA

)2 , (3.64)
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which is positive when the location of the point of conflict is greater than 1/2 and

negative when the location of the point of conflict is less than 1/2. The above two

equations demonstrate that when the point of conflict is past the midpoint and closer

to `B = 1, an increase in the effects of geographical distance, φ, will decrease the

proportion of goods and services awarded to warlord A and increases the amount to

warlord B after conflict. Oppositely, when the point of conflict is located before the

midpoint and closer to `A = 0, an increase in φ will increase the proportion of goods

and services awarded to warlord A and decrease the size won by warlord B after

conflict.

From equations (3.54) and (3.60), the equilibrium number of warriors hired by

warlord A is

W ∗
A =

σA · ℵA + σB · ℵB
2 (cAw + σA)

· πB, (3.65)

which, from equation (3.62), increases as the point of conflict moves away from his

stronghold, `A = 0, and closer to warlord B’s stronghold, `B = 1. Furthermore, from

equations (3.55) and (3.61), the equilibrium number of warriors hired by warlord B

is

W ∗
B =

σA · ℵA + σB · ℵB
2 (cBw + σB)

· πA, (3.66)

which, from equation (3.61), decreases as the point of conflict moves away from war-

lord A’s stronghold and closer his own. As in the Base model, the above two equations

illustrate that as the point of conflict moves away from a warlord’s stronghold, the

greater the distance that needs to be traveled by each warrior hired and, hence, the

less effective each warrior is against the opposing warlord’s hired army. Therefore,

the further the point of conflict is from a warlord’s, the greater number of warriors

he needs to hired.

The effect that the variable φ has on the number of warriors hired by both warlord

A and B is also dependent upon the location of the point of conflict. Again, from
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equations (3.65) and (3.64),

∂W ∗
A

∂φ
=


> 0 if `c >

1
2
;

< 0 if `c <
1
2
,

and from equations (3.66) and (3.63),

∂W ∗
B

∂φ
=


> 0 if `c <

1
2
;

< 0 if `c >
1
2
.

In other words, when the point of conflict is located closer to warlord A’s stronghold,

an increase in the effect of the point of conflict, φ, will cause warlord B to increase

the number of warriors hired — due to the increasing negative affect that distance

has on warlord B’s warriors — and warlord A to decrease the number of warriors

hired. On the other hand, when the point of conflict is located closer to warlord B’s

stronghold, an increase in φ will cause warlord B to decrease the number of warriors

hired while warlord A increases the number.

The relationship between `c and a warlord’s investment in capital is quite the
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opposite of its relationship with the number of warriors hired. From equation (3.56),

∂K∗A
∂`c

=


φ

√
cBw+σB
cAw+σA√

e
ˆ̀

1+ 1√
e
ˆ̀

√
cBw+σB
cAw+σA


2


((

1+ 2√
e
ˆ̀

√
cBw+σB
cAw+σA

)
(σA)(ℵA)

)

−


φ

√
cBw+σB
cAw+σA√

e
ˆ̀

1+ 1√
e
ˆ̀

√
cBw+σB
cAw+σA


2


(

(σB)
(
NB−

YB
σB

))

−

 1

1+ 1√
e
ˆ̀

√
cBw+σB
cAw+σA

·
 2φ√

e
ˆ̀
√
cAw+σA
cBw+σB

(σA)(ℵA)>
<

0

=


φ

√
cBw+σB
cAw+σA√

e
ˆ̀

1+ 1√
e
ˆ̀

√
cBw+σB
cAw+σA




((

1+ 2√
e
ˆ̀

√
cBw+σB
cAw+σA

)
(σA)(ℵA)

)

−


φ

√
cBw+σB
cAw+σA√

e
ˆ̀

1+ 1√
e
ˆ̀

√
cBw+σB
cAw+σA




(

(σB)
(
NB−

YB
σB

))

−

 2φ√
e
ˆ̀
√
cAw+σA
cBw+σB

(σA)(ℵA)>
<

0

=
(

1+ 2√
e
ˆ̀

√
cBw+σB
cAw+σA

)
(σA)(ℵA)−(σB)

(
NB−

YB
σB

)

−2

(
1+ 1√

e
ˆ̀

√
cBw+σB
cAw+σA

)
(σA)(ℵA)>

<
0

= −
√
eˆ̀(cAw+σA)(σA)

(
NA+

YA
σA

)
−
√
eˆ̀(cAw+σA)(σB)(ℵB)<0.

As the point of conflict moves from `A = 0 to `B = 1, the amount of goods and
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services produced by warlord A decreases. From equation (3.57),

∂K∗B
∂`c

= −

 φ·

√
e
ˆ̀cAw+σA
cBw+σB(

1+

√
e
ˆ̀cAw+σA
cBw+σB

)2

(1+2

√
eˆ̀cAw+σA
cBw+σB

)
(σB)(ℵB)

+

 1

1+

√
e
ˆ̀cAw+σA
cBw+σB

(2φ·
√
eˆ̀cAw+σA
cBw+σB

)
(σB)(ℵB)

+

 φ·

√
e
ˆ̀cAw+σA
cBw+σB(

1+

√
e
ˆ̀cAw+σA
cBw+σB

)2

(σA)
(
NA+

YB
σA

)
>
<

0

= −
(

1+2

√
eˆ̀cAw+σA
cBw+σB

)
(σB)(ℵB)

+2

(
1+

√
eˆ̀cAw+σA
cBw+σB

)
(σB)(ℵB)

+(σA)(ℵA)>
<

0

= (σB)(ℵB)+(σA)(ℵA)>0.

As the point of conflict moves away from `A = 0 and closer `B = 1, warlord B

increases his capital investment and produces more goods and services. As in the

Base model, the partial derivatives
∂W ∗A
∂`c

,
∂W ∗B
∂`c

,
∂K∗A
∂`c

and
∂K∗B
∂`c

show that as the point

of conflict moves away from a warlord’s stronghold, more resources must be spent

on hiring warriors and less on the production of goods and services. As the point of

conflict moves closer to a warlord’s stronghold, less resources are needed for hiring

warriors and more is shifted to the production of goods and services.
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3.5.1.3 Exogenous Prices

The effect of the exogenous prices are similar to those found in the previous section.

Because each warlord pays the same price in capital, an increase in the price per unit

of capital will result in both K∗A and K∗B to decrease; that is,

∂K∗A
∂ck

= (−1)

(
1

ck

)
·K∗A < 0;

∂K∗B
∂ck

= (−1)

(
1

ck

)
·K∗B < 0.

Since an increase in ck decreases the production of goods and services for both war-

lords, it is not surprising that the total amount of goods and services produced within

the economy also decreases when the price per unit of capital rises

∂K∗

∂ck
= (−1)

1

2 · c2
k

· ((σA) (ℵA) + (σB) (ℵB)) < 0.

Conversely, each warlord does not necessarily pay the same per warrior wage as

the other. As a result, the wage per warrior hired affects many important aspects

the game. Inspecting the number of warriors hired by each warlord in equilibrium,

an increase in the wage per warrior hired by warlord A will decrease the amount of
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warriors he hires,

∂W∗A
∂cAw

=
(

−1

cAw+σA

)
W ∗A+


1

2·
√

e
ˆ̀

√
cBw+σB

cAw+mR−c
A
w

(cAw+σA)

1+ 1√
e
ˆ̀

√
cBw+σB
cAw+σA



W ∗A ><0

= −1+


1

2·
√

e
ˆ̀

√
cBw+σB
cAw+σA1+ 1√

e
ˆ̀
√
cBw+σB
cAw+σA




>
<

0

=


−1− 1

2·
√

e
ˆ̀

√
cBw+σB
cAw+σA

1+ 1√
e
ˆ̀

√
cBw+σB
cAw+σA

>
<

0,

which is negative by definition. An increase in cBw will also lead to a decrease in the

number of warriors hired by warlord A

∂W ∗
A

∂cBw
= W ∗

A ·

− 1

2
√
eˆ̀

√
1

(cAw+σA)(cBw+σB)

1 + 1

sqrteˆ̀

√
cBw+σB
cAw+σA

 < 0.

Analogously for warlord B, an increase in cBw will decrease the number of warriors

warlord B will choose to hire,

∂W∗B
∂cBw

=
(

−1

cBw+σB

)
W ∗B+


√

e
ˆ̀

2

√
cAw+σA
cBw+σB

(cBw+σB)

(
1+

√
e
ˆ̀cAw+σA
cBw+σA

)
W ∗B >

<
0

= −1+


√

e
ˆ̀

2

√
cAw+σA
cBw+σB

(cBw+σB)

(
1+

√
e
ˆ̀cAw+σA
cBw+σA

)
>
<

0

=

−1− 1
2

√
e
ˆ̀cAw+σA
cBw+σB

1+

√
e
ˆ̀cAw+σA
cBw+σB

>
<

0,

which is negative by definition. An increase cAw will also cause warlord B to decrease
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the number of warriors to hire,

∂W ∗
B

∂cAw
= W ∗

B

 −1
2

√
eˆ̀cBw+σB
cAw+σA

1 +
√
eˆ̀cAw+σA
cBw+σB

 < 0.

The above equations illustrate an interesting relationship between wages paid to war-

riors hired and the number of warriors hired by each warlord. When cAw increases,

warlord A cannot afford to hire as many warriors and warlord B now does not need

to hire as many to remain competitive within the conflict. Likewise, an increase in

cBw will decrease the number of warriors that warlord B can hire and warlord A has

the incentive to decrease the number of warriors he hires.

Expanding on this point, it can be recalled from Corollary 5 that an increase in cAw

will decrease the proportion of goods and services gained by warlord A after conflict

takes place and an increase in cBw will increase the proportion. Therefore, an increase

cAw will cause warlord A to decrease the number of warriors he hires and be awarded

less of the total production of goods and services within the economy after conflict

takes place. Warlord B can now also decrease the number of warriors hired and

still gain an increased proportion of post-conflict goods and services won. A similar

analysis holds for an increase in cBw .

While equation (3.58) from Theorem 5 reveals that an increase in either cAw or cBw

will not affect the total amount of goods and services produced within the economy,

both warrior wages do affect the individual warlord’s capital investment decision.

Therefore, it should be expected that any affect that an increase in one warlord’s

wage per warrior hired has on his own capital investment decision will have the

opposite affect on the opposing warlord’s investment; that is, from equation (3.56),

75



an increase in cAw will cause K∗A to decrease:

∂K∗A
∂cAw

=


1

2

√
e
ˆ̀

√
cBw+σB
cAw+σA

(cAw+σA)

(
1+ 1

e
ˆ̀

√
cBw+σB
cAw+σA

)
K∗A

−

 1

2ck

(
1+ 1√

e`

√
cBw+σB
cAw+σA

)

(

1√
e
ˆ̀

√
cBw+σB
cAw+σA

)(
(σA)(ℵA)
cAw+σA

)
>
<

0

= K∗A−2(σA)(ℵA) 1
2ck

>
<

0

=
(

1+ 2√
e
ˆ̀

√
cBw+σB
cAw+σA

)
((σA)(ℵA))−(σB)(ℵB)

−
(

2+ 2√
e
ˆ̀

√
cBw+σB
cAw+σA

)
((σA)(ℵA))>

<
0

= −(σA)(ℵA)−(σB)(ℵB)<0,

and from equation (3.57), an increase in cAw will result in a increase in K∗B:

∂K∗B
∂cAw

=


√√√√ e

ˆ̀

(cAw+σA)(cBw+σB)

2

(
1+

√
e
ˆ̀cAw+σA
cBw+σB

)
K∗B

+

√
e
ˆ̀

(cAw+σA)(cBw+σB)
·

 1

1+

√
e
ˆ̀cAw+σA
cBw+σB

( (σB)(ℵB)
2ck

)
>0.

In words, an increase in cAw will cause warlord A to decrease the number of warriors

hired but the increased wage decreases the amount of resources available for capital

investment and, hence, K∗A decreases as well. Similarly for cBw , an increase in the wage

that warlord B pays per warrior hired will cause result in a decrease in the level of

capital investment by warlord B and an increase the production of goods and services

by warlord A.
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3.6 Ratio Model

The impact functions defined above in the both the Base and Gates-logit models

interpret the location of the point of conflict as having a linear affect on each warlord’s

decision. An alternative form of the impact function, known as the Ratio model, can

be constructed that still upholds the properties ∂IA
∂WA

> 0, ∂IB
∂WB

> 0, ∂IA
∂`c

< 0 and

∂IB
∂`c

> 0. Recalling again `A = 0 and `B = 1, the newly constructed impact functions

IA and IB are therefore explicitly defined as

IA (`c, `A;WA) =
WA

φ · (`c − `A)2 =
WA

φ · `2
c

; (3.67)

IB (`c, `B;WB) =
WB

φ · (`c − `B)2 =
WA

φ · (`c − 1)2 , (3.68)

where φ is again an exogenous scalar such that 1 > φ > 0 and 0 < `c < 1. Equations

(3.67) and (3.68) state that the impact function of warlord A’s effort toward the

contest against warlord B is still dependent upon the amount of warriors hired and

the distance between warlord A’s stronghold and the area of conflict.

From equations (3.67), (3.68) and (3.3), the CSF πA for the conflict between

warlord A and B equals

πA =
1

1 + e
α·
(

WB
φ·(`c−1)2

−WA
φ·`2c

) (3.69)

and the CSF πB for the conflict between warlord B and A equals

πB = 1− πAB =
1

1 + e
α·
(
WA
φ·`2c
− WB
φ·(`c−1)2

) (3.70)

As stated previously, the new impact functions still result in πA being an increasing

function in WA and a decreasing function in WB. In addition, as the distance between

warlordA’s stronghold and the conflict zone location `c increases, πA decreases. As the
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distance between warlord B’s stronghold and the conflict zone location `c increases,

πA increases.

Let Assumptions 1 through 3 still hold as well as the structure of game Γ defined

above. Solving maximization problems (3.18) and (3.19), given the alternative forms

of πAB and πBA defined in equations (3.69) and (3.70), for the choice variables and

rearranging the appropriate variables gives rise to the following equilibrium result.

Theorem 7. In the game Γ defined above, given assumptions 1 through 3 hold and

the following two conditions are satisfied,

σA · ℵA + σB · ℵB >
φ

α
ΩA > σB · ℵB −

(
cBw + σB
cAw + σA

(
`c − 1

`c

)2
)
· (σA · ℵA)

σA · ℵA + σB · ℵB >
φ

α
ΩA > σA · ℵB −

(
cAw + σA
cBw + σB

(
`c

`c − 1

)2
)
· (σA · ℵA)


(3.71)

where

ΩA =
α

φ

((
cAw + σA

)
`2
c +

(
cBw + σB

)
(`c − 1)2

(
1− ln

(
cBw + σB
cAw + σA

(
`c − 1

`c

)2
)))

;

ΩB =
α

φ

((
cBw + σB

)
(`c − 1) +

(
cAw + σA

)
`2
c

(
1− ln

(
cAw + σA
cBw + σB

(
`c

`c − 1

)2
)))

,

an interior pure strategy Nash equilibrium exists where,
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1. Warlord A and warlord B, where `A = 0 and `B = 1, hire warrior numbers of

W ∗
A = `2

c ·
(

(σA · ℵA) + (σB · ℵB)

(cAw + σA) `2
c + (cBw + σB) (`c − 1)2 −

φ

α

)

+
φ

α


(
cBw + σB

)
(`c − 1)2 `2

c ln

(
cBw+σB
cAw+σA

(
`c−1
`c

)2
)

(cAw + σA) `2
c + (cBw + σB) (`c − 1)2

 ; (3.72)

W ∗
B = (`c − 1)2 ·

(
(σA · ℵA) + (σB · ℵB)

(cAw + σA) `2
c + (cBw + σB) (`c − 1)2 −

φ

α

)

+
φ

α


(
cAw + σA

)
(`c − 1)2 `2

c ln

(
cAw+σA
cBw+σB

(
`c
`c−1

)2
)

(cAw + σA) `2
c + (cBw + σB) (`c − 1)2

 . (3.73)

2. Warlord A and B will invest in capital levels of

K∗A =
1

ck

((
cBw + σB

)
(σA · ℵA) (`c − 1)2 −

(
cAw + σA

)
(σB · ℵB) `2

c

(cAw + σA) `2
c + (cBw + σB) (`c − 1)2

)

+
φ

αck

(( (
cAw + σA

) (
cBw + σB

)
(`c − 1)2 `2

c

(cAw + σA) (`c − 1)2 + (cBw + σB) `2
c

)
· ln

(
cAw + σA
cBw + σB

(
`c

`c − 1

)2
))

+
φ

αck

((
cAw + σA

)
`2
c

)
; (3.74)

K∗B =
1

ck

((
cAw + σA

)
(σB · ℵB) `2

c −
(
cBw + σB

)
(σA · ℵA) (`c − 1)2

(cAw + σA) `2
c + (cBw + σB) (`c − 1)2

)

+
φ

αck

(( (
cAw + σA

) (
cBw + σB

)
(`c − 1)2 `2

c

(cAw + σA) (`c − 1)2 + (cBw + σB) `2
c

)
· ln

(
cBw + σB
cAw + σA

(
`c − 1

`c

)2
))

+
φ

αck

((
cBw + σB

)
(`c − 1)2) . (3.75)
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3. the total production of goods and services within the economy is

K∗ =
φ

αck

((
cAw + σA

)
· `2
c +

(
cBw + σB

)
· (`c − 1)2

)
. (3.76)

Proof. See page 146 in the Appendix.

By substituting equation (A.47) into the contest success function defined in equation

(3.69), warlord A and B each receive a proportion of K∗ dependent upon the point

of conflict `c.

Theorem 8. In the game Γ defined above, given assumptions 1 through 3 hold and

the two conditions in equation (3.71) are satisfied, the proportion of K∗ that each

warlord receives after conflict is based upon the location of the point of conflict and

the wages each warlord pays per warrior and extractor hired; that is,

π∗A =
1

1 +
(
cAw+σA
cBw+σB

)
·
(

`c
`c−1

)2 (3.77)

π∗B = 1− π∗A =
1

1 +
(
cBw+σB
cAw+σA

)
·
(
`c−1
`c

)2 (3.78)

Proof. See page 155 in the Appendix.

Theorem 8 states that the proportion of goods and services each warlord will attain

within equilibrium is dependent upon both warlord A and warlord B’s wage per

warrior hired, the wage per extractor hired and the point of conflict `c.
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3.6.1 Comparative Statics

3.6.1.1 Population Sizes and Pre-Game Budgets

The effect that the size of each warlord’s population has on the equilibrium number

of warriors hired and level of capital produced is identical to both the Base and Gates-

logit models presented above; that is, for warlord A

∂W∗A
∂NA

=

(
(σA)·`2c

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
>0

∂W∗A
∂NB

=

(
(σB)·`2c

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
>0,

and for warlord B

∂W∗B
∂NA

=

(
(σA)·(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
>0

∂W∗B
∂NB

=

(
(σB)·(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
>0.

Again, as in both the Base and Gates-logit model, any increase in the size of either

warlord’s population is going to raise the number of warriors hired by each warlord.

The same holds true with increases in YA and YB such that

∂W ∗
A

∂YA
=

∂W ∗
A

∂YB
=

(
`2
c

(cAw + σA) `2
c + (cBw + σB) (`c − 1)2

)
> 0;

∂W ∗
B

∂YA
=

∂W ∗
B

∂YB
=

(
(`c − 1)2

(cAw + σA) `2
c + (cBw + σB) (`c − 1)2

)
> 0.

Population sizes and pre-game budgets again have the same effects on the equi-

librium investment level of capital as in the first two model. Any increase in either

NA or YA will cause an increase in warlord A’s investment in capital and decrease
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warlord B’s investment; that is,

∂K∗A
∂NA

=

(
(cBw+σB)(σAck )(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
>0

∂K∗A
∂YA

=


(
cBw+σB
ck

)
(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

>0

∂K∗B
∂NA

=

(
(−1)·(cBw+σB)(σAck )(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
<0

∂K∗A
∂YA

=

 (−1)·
(
cBw+σB
ck

)
(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

<0.

Likewise, any increase in either NB or YB will cause a decrease warlord A’s investment

in capital and increase warlord B’s; that is,

∂K∗A
∂NB

=

(
(−1)·(cAw+σA)(σBck )·`2c

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
<0

∂K∗A
∂YB

=

 (−1)·
(
cAw+σA
ck

)
·`2c

(cAw+σA)`2c+(cBw+σB)(`c−1)2

<0

∂K∗B
∂NB

=

(
(cAw+σA)(σBck )·`2c

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
>0

∂K∗A
∂YB

=


(
cAw+σA
ck

)
·`2c

(cAw+σA)`2c+(cBw+σB)(`c−1)2

<0.

3.6.1.2 Location of the Point of Conflict

To help get some clear results, it is assumed that cAw = cBw = cw and cAE = cBE = cE.

Comparing equations (3.25) and (3.76), it stands out that the the total amount of

goods and services produced within the Ratio model is strictly dependent upon the

point of conflict. Starting at the midpoint of `c = 1/2, any variation either toward

`A = 0 or `B = 1 will cause an increase in the total production of goods and services.

Specifically, by taking the partial derivative of K∗,

∂K∗

∂`c
=


< 0 if `c <

1
2
;

> 0 if `c >
1
2
.

The above equation states that as the point of conflict moves away from warlord

A’s stronghold, the amount of goods and services produced within the economy de-
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creases. Once the point of conflict crosses the midpoint and moves toward warlord

B’s stronghold, the amount of goods and services produced within the economy starts

to increase again. This implies that the worst outcome, in terms of the production of

goods and services, is when the war is fought at an equidistant location between the

two warlords.

Similarly, using equations (3.72) and (3.73), the total number of warriors dedicated

toward warfare is

W ∗ =

(
σ

cw + σ

)
· (ℵA + ℵB)− φ

α
·
(
2 · `2

c − 2 · `c + 1
)
,

in which,

∂W ∗

∂`c
=


> 0 if `c <

1
2
;

< 0 if `c >
1
2
.

The partial derivative states that as the point of conflict moves away from `A = 0

toward the midpoint, the amount of warriors dedicated for warfare increases. As the

point of conflict moves away from the midpoint and toward `B = 1, the amount of

warriors dedicated for warfare decreases. Therefore, warfare is at its height when the

point of conflict is at the midpoint between the two strongholds.

Finally, the equilibrium CSFs found in equations (3.77) and (3.78) state that each

warlord gains a greater proportion of the total production of goods and services when

the point of conflict is close to his stronghold. Specifically,

∂π∗A
∂`c

= `c − 1 < 0
∂π∗B
∂`c

= 1− `c > 0.

In other words, as the point of conflict moves away from `c = 0 toward `B = 1, the

proportion of goods and services attained and retained by warlord A decreases while
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warlord B’s proportion increases.

3.6.1.3 Model Comparison

These results are in stark contrast to those of the Base model which state that

the total production of goods and services and the total amount of warriors hired are

unaffected by the point of conflict. The reason being that any shift in resources by

one warlord was made up by the opposing warlord.

The Ratio model seems to suggest a different scenario. Assuming warrior and

extractor wages are the same for both warlord, when the point of conflict is set at the

midpoint between the two strongholds, each warlord wins half the goods and services

produced within the economy while production is at its lowest and warfare its highest.

When the point of conflict moves closer to warlord A’s stronghold, the production

of goods and services increases while warfare decreases and warlord A wins a larger

proportion of goods and services. When the point of conflict moves closer to warlord

B’s stronghold, the production of goods and services again will increase while warfare

decreases and warlord B now wins the larger proportion of goods and services.

3.6.2 Remark

Through a series of examples, the existence of a Nash equilibrium in the Base

model was shown to be dependent upon the the total pre-game budget being greater

than zero while such restrictions are not necessarily needed for an equilibrium to

be found in the Gates-logit model. Like the Gates-logit model, the existence of a

Nash equilibrium in the Ratio Model is not fully dependent upon positive pre-game

budgets. It can further be shown that equilibria can exist where both warlords have

a pre-game budget of zero.

Let NA = NB = 1, YA = YB = 0, α = 1 and φ = 1/2. In addition, let cAw = cBw = cw

and cAE = cBE = cE.Assume at first that the point of conflict is set at `c = 1/2. The
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equilibrium values of the decision variables are thus

W ∗
A = W ∗

B =

(
σ

cw + σ

)
− 1

8
;

K∗A = K∗B =

(
cw + σ

ck

)
·
(

1

8

)
.

Substituting these values into the two conditional equations found in Theorem 7 leads

to an equilibrium as long as 7 · (σ) ≥ cw.

Adjusting the point of conflict to `c = 1/4 results in the equilibrium values W ∗
A

and W ∗
B of

W ∗
A =

(
σ

cw + σ

)
·
(

1

5

)
+ 0.031;

W ∗
B =

(
σ

cw + σ

)
·
(

9

5

)
− 0.343,

and equilibrium capital investment levels of

K∗A =

(
σ

ck

)
·
(

4

5

)
− (0.031) ·

(
cw + σ

ck

)
;

K∗B = (0.343) ·
(
cw + σ

ck

)
−
(
σ

ck

)
·
(

4

5

)

Substituting the level of capital investment and number of warrior hired by each

warlord into equation (3.71) results in a Nash equilibrium when

(4.25) · (σ) ≥ cw ≥ (1.33) · (σ) .

The same holds true when the point of conflict is located at `c = 3/4.

From the above simplified examples, it is possible to have an equilibrium where
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there exist no pre-game budgets. These examples give different results from those

examples shown for the original model with the same specifications; that is, positive

pre-game budgets are not required for a Nash equilibrium being found.
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CHAPTER 4

Asymmetric Rates of Seizure

The model introduced in Chapter 3 was based on the assumption that the rate

of seizure of a warlord’s production of goods and services was symmetric and equal

to 1; that is, when J = 2, the total production of goods and services and the total

number of goods and services being fought over is K∗ = KA +KB. One can interpret

this symmetric assumption as the production of goods and services by both warlords

taking place at the same location — namely, the point of conflict `c. While a sym-

metric model can represent some, if not many, modern civil conflicts, the asymmetric

scenario is also prevalent and studied.

The model is now altered to have each warlord’s production of goods and services

taking place at his respective territory or stronghold, `A and `B respectively, instead

of the point of conflict `c.

Definition 7. The Geography of the economy is defined as a line of fixed length on

an interval [0, 1] where `A = 0 and `B = 1. Figure 7 illustrates the basics of the

economy’s geography.

Once again, it is assumed that the location of conflict `c is exogenously determined

Assuming each warlord produces goods and services at her own stronghold loca-

tion, the point of conflict now also affects the amount of each warlord’s production

available for appropriation. Recalling K∗ as denoting the total amount of goods and
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Figure 4.1: Geography of the Asymmetric Economy

services produced by both warlords, it now does not accurately represent the total

amount of production that is being fought over between warlords A and B. Therefore,

let K̂ be the amount of goods and services on the table for appropriation such that

K̂ = KA · (`B − `c) · β +KB · (`c − `A) · β = KA · (1− `c) · β +KB · `c · β, (4.1)

where β > 0 is a scalar representing the effect that terrain and distance have on

the rate of seizure. Equation (4.1) asserts that as `c moves closer to warlord A’s

stronghold `A = 0, more of KA and less of KB is subject to appropriation through

conflict. Likewise, as `c moves toward warlord B’s stronghold `B = 1, less of KA and

more of KB is subject to appropriation through force.

Holding assumptions 1, 2 and 3 from Chapter 3, the income gained by warlord A

after conflict is constructed from equations (3.39), (3.41) and (4.1) where J = {A,B}:

VA (WA, KA;WB, KB) = (m · πA) · K̂ +m ·KA · (1− (`B − `c) · β)

= (m · πA) · K̂ +m ·KA · (1− (1− `c) · β) , (4.2)

and for warlord B,

VB (WB, KB;WA, KA) = (m · πB) · K̂ +m ·KB · (1− (`c − `A) · β)

= (m · πB) · K̂ +m ·KB · (1− `c · β) . (4.3)
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For simplicity, it is again assumed that both warlords pay the same warrior and

extractor wages; that is, cAw = cBw = cw, cAE = cBE = cE and σ = mR − cE. Therefore,

given WB and KB, warlord A optimizes WA and KA to maximize equation (4.2)

subject to equation (3.38). The same holds for warlord B given WA and KA.

4.1 Equilibrium

Solving maximization problems (4.2) and (4.3) for the choice variables and rear-

ranging the appropriate variables gives rise to the following equilibrium result.

Theorem 9. Let ˆ̀= (`c − `A)2− (`c − `B)2, ℵA =
(
NA + YA

σ

)
and ℵB =

(
NB + YB

σ

)
.

Suppose assumptions 1, 2, 3 and

(β − 2) +
√

4 + β2 > (2 · β) · `c > (2 + β)−
√

4 + β2 (4.4)

with the following two conditions,

ℵA · (1− `c) + ℵB · `c ≥
(
cw + σ

α · σ

)
· ΩA ≥ `c · (ℵB − ℵA)

ℵA · (1− `c) + ℵB · `c ≥
(
cw + σ

α · σ

)
· ΩB ≥ (1− `c) · (ℵA − ℵB)


(4.5)

where

ΩA =

(
1− `c · (1− `c) · β
`c · (1− `c) · β

+ `c · ln
(

`c
1− `c

)
− α · ̂̀c · `c) ;

ΩB =

(
1− `c · (1− `c) · β
`c · (1− `c) · β

+ (1− `c) · ln
(

1− `c
`c

)
+ α · ̂̀c · (1− `c)) ,

a pure strategy Nash equilibrium exists where,
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1. Warlord A and warlord B hire warrior numbers of

W ∗
A =

(
σ

cw + σ

)
· ((1− `c) · ℵA + `c · ℵB)− ΩA (4.6)

W ∗
B =

(
σ

cw + σ

)
· ((1− `c) · ℵA + `c · ℵB)− ΩB. (4.7)

2. Warlord A and B will invest in capital levels of

K∗A =

(
σ · `c
ck

)
· (ℵA − ℵB) +

(
cw + σ

α · ck

)
· ΩA; (4.8)

K∗B =

(
σ · (1− `c)

ck

)
· (ℵB − ℵA) +

(
cw + σ

α · ck

)
· ΩB. (4.9)

3. the total production of goods and services within the economy is

K∗ =

(
σ

ck

)
· ̂̀· (ℵA − ℵB) + 2 ·

(
cw + σ

α · ck

)
·
(

1− `c · (1− `c) · β
(1− `c) · `c · β

)

+

(
cw + σ

α · ck

)
· ̂̀c · (ln

(
`c

1− `c

)
− α · φ · ̂̀c) , (4.10)

while the number of goods and services available for appropriation through con-

flict is

K̂ =

(
1

`c(1− `c)
− β

)
·
(
cw + σ

α · ck

)
. (4.11)

Proof. See page 156 in the Appendix.

Similar to the results of the symmetric base model in the previous chapter, The-

orem 9 shows that the paradox of power is still present in the current model with

asymmetric rates of seizure. From equations (4.6) and (4.7), an increase in either ℵA
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and/or ℵB will cause both warlords to increase the number of warriors they hire; that

is, if either warlord is given (or acquires) more pre-game exogenous resources, both

warlords will increase their level of warfare. On the other hand, equations (4.8) and

(4.9) show that an increase in a warlord’s pre-game exogenous resources will cause

the warlord to increase spending on the production of goods and services while also

causing the opposing warlord to decrease his investment into production.

By substituting the above equilibrium equations into the contest success function

defined in equation (3.41), warlord A and B each receive a proportion of K̂ dependent

upon the location of conflict `c.

Theorem 10. Suppose assumptions 1, 2, 3, equation (4.4) and the two conditions

in equation (4.5). The proportions of K̂ that each warlord receive in equilibrium are

dependent the geography of the economy:

π∗A =
1

1 + `c
1−`c

= 1− `c (4.12)

π∗B = 1− π∗A = `c (4.13)

Proof. See page 166 in the Appendix.

According to Theorem 10, each warlord is able to acquire more of K̂ when the point

of conflict is closer to his own stronghold.

4.2 The Effect of Geography: Examples

The most prudent way to show the affect the point of conflict and the variable

β have on the equilibrium is through a series of examples. Let cw = (1/10) · σ and

ck = (1/5)·σ. In addition, let NA = NB = YA = YB = 1 and (mR − cE) = (0.05)·YA =
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(0.05) · YB such that ℵA = ℵB = 21. Finally, let it be that φ = 0.5 and α = 1. Given

these specifications, an equilibrium can be found when, from the two conditions in

(4.5),

19.11 ≥ ΩA,ΩB ≥ 0

where the equilibrium number of warriors hired and capital invested by each warlord

are

W ∗
A = 19.11− ΩA W ∗

B = 19.11− ΩB;

K∗A = (2.2) · ΩA K∗B = (2.2) · ΩB.

In addition, the total amount of goods and services produced within the economy is

K∗ = (2.2) · (ΩA + ΩB)

and the amount of goods and services produced that are available for appropriation

through conflict equals

K̂ = (2.2) ·
(

1

`c · (1− `c)
− β

)
.

Since the equilibrium values, and the existence of the equilibrium itself, are dependent

upon β and `c, a series of four examples are explored below. For means of analysis

and comparison, let K̃ be equal to the percentage of goods and services produced

that are actually being fought over; that is,

K̃ =

(
K̂

K∗

)
· 100.
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4.2.1 Example A: β = 0.25

When the affect that geography has on the seizure rate of production is β = 0.25,

equation (4.4) shows that an equilibrium can be found when 0.54 > `c > 0.46; that

is, an equilibrium solution will exist somewhere very close to `c = 0.5, the midpoint

between the two warlords’ strongholds. Table 4.1 illustrates the corresponding values

for the variables in equilibrium. The blue shaded cells in Table 4.1 show decreasing

values and the green cells show increasing values when `c moves from 0.46 to 0.54.

Table 4.1: Example A: β = 0.25

`c ΩA ΩB W ∗
A W ∗

B W ∗ K∗A K∗B K∗ K̂

0.53 15.12 15.02 4.00 4.09 8.09 33.23 33.03 66.26 8.28
0.52 15.06 15.00 4.05 4.11 8.16 33.13 32.99 66.12 8.26
0.51 15.02 14.99 4.09 4.12 8.21 33.05 32.98 66.03 8.254
0.50 15.00 15.00 4.11 4.11 8.22 33.00 33.00 66.00 8.25
0.49 14.99 15.02 4.12 4.09 8.21 32.98 33.05 66.03 8.254
0.48 15.00 15.06 4.11 4.05 8.16 32.99 33.13 66.12 8.26
0.47 15.02 15.12 4.09 4.00 8.09 33.03 33.23 66.26 8.28

Immediately, the first two columns of Table 4.1 show that both ΩA and ΩB are

less than 19.11 for 0.54 > `c > 0.47 and, hence, the two conditions found in equation

(4.5) are satisfied. Contrary to the base model results found in the previous chapter,

warlord A will hire more warriors than warlord B when the point of conflict is closer

to his stronghold. When the point of conflict is closer to `B = 1, warlord B will hire

more warriors than warlord A. It should also be noted that for both warlords, more

warriors are hired as the point of conflict approaches the midpoint of `c = 1/2.

The opposite is found with each warlord’s decision to invest into capital. Warlord

A tends to invest less than warlord B when the point of conflict is closer to `A = 0

and the contrast is true when the point of conflict approaches `B = 1. As a result,

the total production of goods and services within the economy increases as the point

of conflict moves away from `c = 1/2 toward either warlord’s stronghold. Finally, the
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last two columns of Table 4.1 show that when β = 0.25, only a very small percentage

of the total number of goods and services produced are available for appropriation

through conflict; that is, K̃ = 12.5% when 0.54 > `c > 0.48.

4.2.2 Example B: β = 0.5

When the effect that geography has on the seizure rate of production increases

to β = 0.5, equation (4.4) shows that an equilibrium can now be found when

0.56 > `c > 0.44. The region where an equilibrium solution can be found increases

marginally from when β = 0.25 and is still very close to the midpoint between the two

warlords’ strongholds. Table 4.2 illustrates the corresponding values for the variables

in equilibrium. Again, the blue shaded cells in Table 4.2 show decreasing values and

the green cells show increasing values when `c moves from 0.44 to 0.56.

Table 4.2: Example B: β = 0.5

`c ΩA ΩB W ∗
A W ∗

B W ∗ K∗A K∗B K∗ K̂

0.55 7.16 7.01 11.95 12.10 24.04 15.76 15.43 31.19 7.79
0.54 7.12 7.00 12.00 12.11 24.11 15.66 15.39 31.05 7.76
0.53 7.08 6.99 12.03 12.12 24.15 15.57 15.37 30.94 7.73
0.52 7.04 6.98 12.07 12.13 24.19 15.50 15.36 30.86 7.71
0.51 7.02 6.99 12.09 12.12 24.21 15.44 15.37 30.82 7.704
0.50 7.00 7.00 12.11 12.11 24.22 15.40 15.40 30.80 7.70
0.49 6.99 7.02 12.12 12.09 24.21 15.37 15.44 30.82 7.704
0.48 6.98 7.04 12.13 12.07 24.19 15.36 15.50 30.86 7.71
0.47 6.99 7.08 12.12 12.03 24.15 15.37 15.57 30.94 7.73
0.46 7.00 7.12 12.11 12.00 24.11 15.39 15.66 31.05 7.76
0.45 7.01 7.16 12.10 11.95 24.04 15.43 15.76 31.19 7.79

Again, the first two columns of Table 4.2 show that both ΩA and ΩB are less

than 19.11 for 0.54 > `c > 0.47 and, hence, the two conditions found in equation

(4.5) are satisfied. The geographical elasticity of the decision variables hold the

same pattern as in the previous example, yet the total numbers differ. Now that

the effect of geography has increased, both warlord A and warlord B increase the
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amount of resources dedicated to the hiring of warriors and decrease the amount of

capital invested. Interestingly, the percentage of goods and services that are subject

to appropriation through conflict, K̃, increases. When β = 0.25, only around 12% of

the economy’s total production is being fought over. As β increases to 0.5, both K∗

and K̂ decrease but K̃ = 25% when 0.62 > `c > 0.38.

4.2.3 Example C: β = 1

Increasing the effect that geography has on the seizure rate of production to β = 1,

equation (4.4) shows that an equilibrium can now be found when 0.62 > `c > 0.38.

The region where an equilibrium solution can be found increases further from, but

still very close to, the midpoint between the two warlords’ strongholds. Table 4.3

illustrates the corresponding values for the variables in equilibrium. Again, the blue

shaded cells in Table 4.3 show decreasing values and the green cells show increasing

values when `c moves from 0.38 to 0.62.

The first two columns of Table 4.3 show that, again, both ΩA and ΩB are less

than 19.11 for 0.62 > `c > 0.38 and, hence, the two conditions found in equation

(4.5) are satisfied. As when β equals 0.25 and/or 0.5, the geographical elasticity of

the decision variables hold the same patterns and, yet again, warlord A and warlord

B increase the amount of resources dedicated to the hiring of warriors and decrease

the amount of capital invested. The percentage of goods and services that subject

to appropriation through conflict increases even further as β increases from 0.5 to 1;

that is, both K∗ and K̂ decrease but, roughly, K̃ = 50%.

4.2.4 Example D: β = 2

Increasing the effect that geography has on the seizure rate of production to

β = 2, equation (4.4) shows that an equilibrium can now be found when 1 > `c > 0.

The region where an equilibrium solution can be found increases further from the
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Table 4.3: Example C: β = 1

`c ΩA ΩB W ∗
A W ∗

B W ∗ K∗A K∗B K∗ K̂

0.61 3.41 3.07 15.70 16.04 31.74 7.50 6.76 14.26 7.05
0.60 3.35 3.04 15.76 16.07 31.83 7.34 6.70 14.07 6.97
0.59 3.30 3.02 15.81 16.09 31.90 7.25 6.65 13.90 6.89
0.58 3.25 3.00 15.86 16.11 31.97 7.14 6.61 13.75 6.83
0.57 3.20 2.99 15.91 16.12 32.03 7.04 6.58 13.62 6.78
0.56 3.16 2.98 15.95 16.13 32.08 6.95 6.55 13.50 6.73
0.55 3.12 2.972 16.00 16.137 32.137 6.87 6.54 13.41 6.69
0.54 3.09 2.970 16.02 16.40 32.42 6.80 6.53 13.33 6.66
0.53 3.06 2.972 16.05 16.137 32.187 6.74 6.54 13.28 6.63
0.52 3.04 2.98 16.07 16.13 32.20 6.68 6.55 13.23 6.61
0.51 3.02 2.99 16.09 16.12 32.21 6.64 6.57 13.21 6.603
0.50 3.00 3.00 16.11 16.11 32.22 6.60 6.60 13.20 6.60
0.49 2.99 3.02 16.12 16.09 32.21 6.57 6.64 13.21 6.603
0.48 2.98 3.04 16.13 16.07 32.20 6.55 6.68 13.23 6.61
0.47 2.972 3.06 16.137 16.05 32.187 6.54 6.74 13.28 6.63
0.46 2.970 3.09 16.14 16.02 32.42 6.53 6.80 13.33 6.66
0.45 2.972 3.12 16.137 16.00 32.137 6.54 6.87 13.41 6.69
0.44 2.98 3.16 16.13 15.95 32.08 6.55 6.95 13.50 6.73
0.43 2.99 3.20 16.12 15.91 32.03 6.58 7.04 13.62 6.78
0.42 3.00 3.25 16.11 15.86 31.97 6.61 7.14 13.75 6.83
0.41 3.02 3.30 16.09 15.81 31.90 6.65 7.25 13.90 6.89
0.40 3.04 3.35 16.07 15.76 31.83 6.70 7.34 14.07 6.97
0.39 3.07 3.41 16.04 15.70 31.74 6.76 7.50 14.26 7.04
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Table 4.4: Example D: β = 2

`c ΩA ΩB W ∗
A W ∗

B W ∗ K∗A K∗B K∗ K̂ K̃

0.97 19.10 16.09 0.01 3.02 3.03 42.02 35.40 77.42 71.20 91.97%
0.96 14.63 11.91 4.48 7.20 11.68 32.20 26.21 58.39 52.89 90.58%
0.95 11.90 9.40 7.21 9.71 16.92 26.17 20.68 46.85 41.92 89.46%
0.90 6.17 4.38 12.94 14.73 27.67 13.58 9.63 23.21 20.04 86.37%
0.85 4.10 2.71 15.01 16.40 31.41 9.02 5.97 14.99 12.85 85.77%
0.80 3.00 1.91 16.12 17.20 33.32 6.59 4.20 10.79 9.35 86.70
0.75 2.30 1.45 16.81 17.66 34.46 5.07 3.20 8.27 7.33 88.71%
0.70 1.83 1.19 17.28 17.92 35.20 4.03 2.61 6.64 6.08 91.43%
0.65 1.50 1.03 17.61 18.08 35.68 3.31 2.27 5.58 5.27 94.45%
0.60 1.27 0.96 17.84 18.15 35.99 2.79 2.11 4.90 4.77 97.26%
0.55 1.10 0.95 18.01 18.16 36.16 2.43 2.10 4.53 4.49 99.23%
0.50 1.00 1.00 18.11 18.11 36.22 2.20 2.20 4.40 4.40 100%
0.45 0.95 1.10 18.16 18.01 36.17 2.10 2.43 4.53 4.49 99.27%
0.40 0.96 1.27 18.15 17.84 35.99 2.11 2.79 4.90 4.77 97.23%
0.35 1.03 1.50 18.08 17.61 35.68 2.27 3.31 5.58 5.27 94.45%
0.30 1.19 1.83 17.92 17.28 35.20 2.61 4.03 6.64 6.08 91.43%
0.25 1.45 2.30 17.66 16.81 34.46 3.20 5.07 8.27 7.33 88.71%
0.20 1.91 3.00 17.20 16.12 33.32 4.20 6.59 10.79 9.35 86.70%
0.15 2.71 4.10 16.40 15.01 31.41 5.97 9.02 14.99 12.85 85.77%
0.10 4.38 6.17 14.73 12.94 27.67 9.63 13.58 23.21 20.04 86.37%
0.05 9.40 11.90 9.71 7.21 16.92 20.68 26.17 46.85 41.92 89.46%
0.04 11.91 14.63 7.20 4.48 11.68 26.21 32.19 58.39 52.89 90.58%
0.03 16.09 19.10 3.02 0.01 3.03 35.40 42.02 77.42 71.20 91.97%

midpoint between the two warlords’ strongholds and almost encompasses the entire

geographical landscape of the economy. Table 4.4 illustrates the corresponding values

for the variables in equilibrium. Again, the blue shaded cells in Table 4.4 show

decreasing values and the green cells show increasing values when `c moves from 0 to

1.

From the first two columns of Table 4.4, ΩA and ΩB are again less than 19.11 for

0.97 > `c > 0.3 and, hence, the two conditions found in equation (4.5) are satisfied.

As in the previous examples, the increase in β causes an increase in the hiring of

warriors and a further decrease in capital investment. The last column shows that K̃
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ranges from 85.77% to a full 100%; that is, the increase in the value of β decreases

total production in the economy but increase the number of these goods and services

that will be seized during conflict such that K̃ = 100% when `c = 1/2

4.3 Summary

In all of the above four examples, the midpoint `c = 1/2 is a focal point in

comparing the decisions made by the warlords. At `c = 1/2, warlords hire the same

number of warriors and invest in the same amount of capital; that is, W ∗
A = W ∗

B and

K∗A = K∗B. As the point of conflict moves closer to `A = 0, warlord A will hire more

warriors and invest in less capital than warlord B. Likewise, warlord A will hire less

warriors and invest in more capital than warlord B as the point of conflict moves

toward `B = 1. The two graphs in Figure 4.3 illustrate the effect that the distance

from the point of conflict has on warlord decision making.

-

6

WA,WB

`c
11/20

W ∗A

W ∗B

W ∗

-

6

KA,KB

`c
11/20

K∗A

K∗B

K∗

These two graphs tell an interesting story in relationship with the asymmetric rate

of seizure model. As the point of conflict moves away from `A = 0 toward `B = 1,

warlord A briefly increases his participation in warfare but then quickly begins to

decrease the hiring of warriors. Why? The answer lies on the adjacent graph. When

the point of conflict is closer to warlord A, more of his production is being fought

over and, hence, more warriors are needed to help secure as much of K∗A as possible.
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As `c moves away from `A = 0, less of his production is being fought over. Since less

of K∗A is vulnerable, warlord A increases his production and has no real incentive to

put up a fight against warlord B; that is, warlord A loses the urge to fight because

the conflict is no longer a matter of protection as it is attrition. From this angle,

warlord A winning less of K̂ as the point of conflict becomes more distant is because

he chooses to fight less and yet is able to keep more of his own production. The same

analysis holds for warlord B.

The above four basic examples elucidate the importance that β and `c have on

both the value of the decision variables in equilibrium and on the geographical area in

which an equilibrium can be found. As the value of β increase, so does the area where

an equilibrium can be found. To reframe, as the level of seizure upon the warlords’

production increases, the incentives are right for each warlord to venture past the

midpoint into the opposing warlord’s territory.

While the area in which an equilibrium can be found widens as β increases, it

can also be observed that the total amount of production in the economy decreases.

Similarly, as K∗ decreases, so does K̂ — albeit at different rates. This decrease in K∗

and K̂ are primarily due to increasing resources being spent on the hiring of warriors;

that is, as W ∗ increases as β gets larger. The soaring level of K̃ due to the increase

in β should not be overstated or read into too much. Given that the elasticity of K∗

in relation to β is substantially greater than the elasticity of K̂, the increase in K̃ is

more a result of decreasing production than an increase in K̂.
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CHAPTER 5

Conclusion

I presented in the analysis above three models where two non-parasitic warlords,

who are geographically connected, must decide on the amount of resources to be

dedicated for conflict and the amount to be dedicated toward production.

Within the Base model, an equilibrium is found which depends upon a positive

pre-game budget. In equilibrium, the exogenously chosen location of conflict affects

each warlord’s individual level of conflict and production, but has no effect on the

aggregate number of warriors hired and the total quantity of goods and services

produced. As a result, the equilibrium contest success function is independent of the

location of the point of conflict but does depend upon the wages each warlord pays

warriors and extractors hired. In addition, as the number of warlords participating in

the economy increases, each warlord hires increasing number of warriors and invests

in less capital and production of goods and services.

Under the Gates-logit and Ratio model, an interior equilibrium can be found that

does not depend on positive pre-game budgets. In the Ratio model, the point of

conflict affects both individual warlord levels of conflict and production as well as the

aggregate number of warriors hired and quantity of goods and services produced. Un-

like the Base and Ratio models, the total production of goods and services produced

in the Gates-logit model increases when either warlord’s populations size grows or is
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given a large pre-game budget. According to the Ratio model, the total production of

goods and services produced is dependent upon the location of the point of conflict.

Specifically, when the point of conflict is at the midpoint, the total production of goods

and services is at its lowest and the total number of warriors hired is at its highest.

As the point of conflict moves toward either warlord A’s stronghold or warlord B’s

stronghold, the total production of goods and services within the economy increases

and the total number of warriors hired decreases. In addition, the equilibrium contest

success functions in both the Gates-logit and Ratio models are dependent upon the

point of conflict and the wages paid to both warriors and extractors by each warlord.

As the point of conflict gets closer to warlord A’s stronghold, warlord A wins a larger

share of the total production. As the point of conflict moves away from warlord A’s

stronghold and toward warlord B’s, warlord A wins less and warlord B gains more

of the total production.

Using the Base model formulation of the contest success function, I extend the

original model by abandoning the assumption that all of a warlord’s production of

goods and services are available for appropriation. Instead, only a portion — de-

pendent upon the location of the point of conflict — of a warlord’s production is

under threat of appropriation. In contrast to the original model, this new approach

finds that a warlord hires more warriors and invests in less capital when the point of

conflict is closer to his stronghold. This is in direct contrast to the results above.
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APPENDIX

� Proof for Theorem 1:

The proof for Theorem 1 begins by maximizing warlord A and B’s optimization

problems for the two choice variables W and K. Let λA and λB be the associated

Lagrangian multipliers for maximization problems (3.18) and (3.19). The Lagrangian

equations for warlords A and B are

LA =

(
m (KA +KB)

1 + eα·(WB−WA+φ·ˆ̀)

)
+ λA

(
ℵA −

(
cAw + σA
σA

)
WA −

(
ck
σA

)
KA

)
(A.1)

LB =

(
m (KA +KB)

1 + eα·(WA−WB−φ·ˆ̀)

)
+ λB

(
ℵB −

(
cBw + σB
σB

)
WB −

(
ck
σB

)
KB

)
(A.2)

Therefore:

∂LA

∂WA

= 0 ⇒ α·m(KA+KB)·eα·(WB−WA+φ·ˆ̀)(
1+e

α(WB−WA+φ·ˆ̀)
)2 −

(
cAw
σA

+1

)
·λA=0 (A.3)

∂LA

∂KA

= 0 ⇒ m

1 + eα·(WB−WA+φ·ˆ̀)
− ck
σA
· λA = 0 (A.4)

∂LB

∂WB

= 0 ⇒ α·m(KA+KB)·eα(WA−WB−φ·ˆ̀)(
1+e

α·(WA−WB−φ·ˆ̀)
)2 −

(
cBw
σB

+1

)
·λB=0 (A.5)

∂LB

∂KB

= 0 ⇒ m

1 + eα·(WA−WB−φ·ˆ̀)
− ck
σB
· λB = 0. (A.6)
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Using equations (A.3) and (A.4),

(α·m)· e
α(WB−WA+φ·ˆ̀)(

1+e
α(WB−WA+φ·ˆ̀)

)2

·(KA+KB)·
(

σA
cAw+σA

)
=

(
m

1+e
α(WB−WA+φ·ˆ̀)

)
·
(
σA
ck

)

(
α· e

α(WB−WA+φ·ˆ̀)

1+e
α(WB−WA+φ·ˆ̀)

)
·(KA+KB)·

(
σA

cAw+σA

)
=

(
σA
ck

)

(
α· e

α(WB−WA+φ·ˆ̀)

1+e
α(WB−WA+φ·ˆ̀)

)
·(KA+KB)·

(
ck

cAw+σA

)
= 1

(
eα(WB−WA+φ·ˆ̀)

)
·(KA+KB)·

(
α· ck
cAw+σA

)
= 1+eα(WB−WA+φ·ˆ̀)

(
eα(WB−WA+φ·ˆ̀)

)
·
(

(KA+KB)·
(
α· ck
cAw+σA

))
−eα(WB−WA+φ·ˆ̀) = 1

(
eα(WB−WA+φ·ˆ̀)

)
·
(

(KA+KB)·
(
α· ck
cAw+σA

)
−1

)
= 1

eα(WB−WA+φ·ˆ̀) =
(

cAw+σA

(α·ck)·(KA+KB)−(cAw+σA)

)

WB−WA+φ·ˆ̀ = 1
α
·ln


(
cAw
σA

+1

)
α·ck

mR−cE
(KA+KB)−

(
cAw
σA

+1

)


WB+φ·ˆ̀− 1
α
·ln


(
cAw
σA

+1

)
α·ck
σA

(KA+KB)−
(
cAw
σA

+1

)
 = WA. (A.7)

Solving warlord B’s optimization problem from equation (3.19) and performing sim-
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ilar substitutions,

(α·m)· e
α(WA−WB−φ·ˆ̀)(

1+e
α(WA−WB−φ·ˆ̀)

)2

·(KA+KB)·
(

σB
cBw+σB

)
=

(
m

1+e
α(WA−WB−φ·ˆ̀)

)
·
(
σB
ck

)

(
α· e

α(WA−WB−φ·ˆ̀)

1+e
α(WA−WB−φ·ˆ̀)

)
·(KA+KB)·

(
σB

cBw+σB

)
=

(
σB
ck

)

(
α· e

α(WA−WB−φ·ˆ̀)

1+e
α(WA−WB−φ·ˆ̀)

)
·(KA+KB)·

(
ck

cBw+σB

)
= 1

(
eα(WA−WB−φ·ˆ̀)

)
·(KA+KB)·

(
α·ck

cBw+σB

)
= 1+eα(WA−WB−φ·ˆ̀)

(
eα(WA−WB−φ·ˆ̀)

)
·
(

(KA+KB)·
(

α·ck
cBw+σB

))
−eα(WA−WB−φ·ˆ̀) = 1

(
eα(WA−WB−φ·ˆ̀)

)
·
(

(KA+KB)·
(

α·ck
cBw+σB

)
−1

)
= 1

eα(WA−WB−φ·ˆ̀) =
(

cBw+σB

(α·ck)·(KA+KB)−(cBw+σB)

)

WA−WB−φ·ˆ̀ = 1
α
·ln


(
cBw
σB

+1

)
α·ck
σB

(KA+KB)−
(
cBw
σB

+1

)


WA−φ·ˆ̀− 1
α
·ln


(
cBw
σB

+1

)
α·ck
σB

(KA+KB)−
(
cBw
σB

+1

)
 = WB . (A.8)
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By substituting equation (A.7) into (A.8),

WA = WB+φ·ˆ̀− 1
α
·ln

 ( cwσA +1)
α·ck
σA

(KA+KB)−
(
cAw
σA

+1

)


WA =

WA−φ·ˆ̀− 1
α
·ln


(
cBw
σB

+1

)
α·ck
σB

(KA+KB)−
(
cBw
σB

+1

)

+φ·ˆ̀

− 1
α
·ln


(
cAw
σA

+1

)
α·ck
σA

(KA+KB)−
(
cAw
σA

+1

)


0 = − ln


(
cBw
σB

+1

)
α·ck
σB

(KA+KB)−
(
cBw
σB

+1

)


− ln


(
cAw
σA

+1

)
α·ck
σA

(KA+KB)−
(
cAw
σA

+1

)


ln


(
cBw
σB

+1

)
α·ck
σB

(KA+KB)−
(
cBw
σB

+1

)
 = − ln


(
cAw
σA

+1

)
α·ck
σA

(KA+KB)−
(
cAw
σA

+1

)


ln


(
cBw
σB

+1

)
α·ck
σB

(KA+KB)−
(
cBw
σB

+1

)
 = ln

(α·ckσA
)(KA+KB)−

(
cAw
σA

+1

)
cAw
σA

+1



(
cBw
σB

+1

)(
cAw
σA

+1

)
= (α·ck)2·

(
(KA+KB)2

σA·σB

)
+

(
cAw
σA

+1

)(
cBw
σB

+1

)
−
(
α·ck(KA+KB)

σA·σB

)
(cAw+cBw+σA+σB)

(α·ck)2·
(

(KA+KB)2

σA·σB

)
=

(
α·ck(KA+KB)

σA·σB

)
(cAw+cBw+σA+σB)

KA +KB =
cAw + cBw + σA + σB

α · ck
. (A.9)
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Substituting equation (A.9) into (A.7) and (A.8),

WA = WB + φ · ˆ̀− 1

α
· ln


(
cAw
σA

+ 1
)

α·ck
σA

(KA +KB)−
(
cAw
σA

+ 1
)


= WB + φ · ˆ̀− 1

α
· ln


(
cAw
σA

+ 1
)

α·ck
σA

(
cAw+cBw+σA+σB

α·ck

)
−
(
cAw
σA

+ 1
)


= WB + φ · ˆ̀− 1

α
· ln


(
cAw
σA

+ 1
)

(
cAw
σA

+ 1
)

+
(
cBw+σB
σA

)
−
(
cAw
σA

+ 1
)


WA = WB + φ · ˆ̀− 1

α
· ln
(
cAw + σA
cBw + σB

)
, (A.10)

and

WB = WA − φ · ˆ̀−
1

α
· ln


(
cBw
σB

+ 1
)

α·ck
σB

(KA +KB)−
(
cw
σB

+ 1
)


= WA − φ · ˆ̀−
1

α
· ln


(
cBw
σB

+ 1
)

α·ck
σB

(
cAw+cBw+σA+σB

α·ck

)
−
(
cBw
σB

+ 1
)


= WA − φ · ˆ̀−
1

α
· ln


(
cBw
σB

+ 1
)

(
cBw+σB
σB

+ 1
)

+
(
cAw+σA
σB

)
−
(
cBw
σB

+ 1
)


WB = WA − φ · ˆ̀−
1

α
· ln
(
cBw + σB
cAw + σA

)
. (A.11)

Using warlord A’s constraint from equation (3.8) and the above equations, the
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equilibrium level of capital investment for warlord B is found; that is,

ℵA =
(
cAw
σA

+1

)
WA+

ck
σA

KA

=
(
cAw
σA

)(
WB+φ·ˆ̀− 1

α
·ln
(
cAw+σA
cBw+σB

))
+
(
ck
σA

+1
)(

cAw+cBw+σA+σB
α·ck

−KB
)

=
(
cAw
σA

+1

) NB
cBw
σB

+1

+
YB

cBw+σB
− ck
cBw+σB

KB

+

(
cAw
σA

+1

)(
φ·ˆ̀− 1

α
·ln
(
cAw+σA
cBw+σB

))

+

(
cAw+cBw+σA+σB

α(σA)

)
−
(
ck
σA

)
KB

(
σA

cAw+σA

)
·ℵA =

(
σB

cBw+σB

)
·ℵB+

(
φ·ˆ̀− 1

α
·ln
(
cAw+σA
cBw+σB

))
+ 1
α

(
1+

cBw+σB
cAw+σA

)
−
(

cAw+cBw+σA+σB

(cAw+σA)(cBw+σB)

)
KB ·ck

(
cAw+cBw+σA+σB

(cAw+σA)(cBw+σB)

)
KB ·ck =

(
σB

cBw+σB

)
·ℵA−

(
σA

cAw+σA

)
·ℵB+ 1

α

(
1+

cBw+σB
cAw+σA

)
+

(
φ·ˆ̀− 1

α
·ln
(
cAw+σA
cBw+σB

))
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which equals the equilibrium level of K∗B in equation (3.24). Similarly for warlord A,

ℵB =
(
cBw
σB

+1

)
WB+

ck
σB

KB

=
(
cBw
σB

)(
WA−φ·ˆ̀− 1

α
·ln
(
cBw+σB
cAw+σA

))
+
(
ck
σB

+1
)(

cAw+cBw+σA+σB
α·ck

−KA
)

=
(
cBw
σB

+1

) NA
cAw
σA

+1

+
YA

cAw+σA
− ck
cAw+σA

KA



−
(
cBw
σB

+1

)(
φ·ˆ̀+ 1

α
·ln
(
cBw+σB
cAw+σA

))
+

(
cAw+cBw+σA+σB

α(σB)

)
−
(
ck
σB

)
KA

(
σB

cBw+σB

)
·ℵB =

(
σA

cAw+σA

)
·ℵA−

(
φ·ˆ̀+ 1

α
·ln
(
cBw+σB
cAw+σA

))
+ 1
α

(
1+

cAw+σA
cBw+σB

)
−
(

cAw+cBw+σA+σB

(cAw+σA)(cBw+σB)

)
KA·ck

(
cAw+cBw+σA+σB

(cAw+σA)(cBw+σB)

)
KA·ck =

(
σA

cAw+σA

)
·ℵA−

(
σB

cBw+σB

)
·ℵB+ 1

α

(
1+

cAw+σA
cBw+σB

)
−
(
φ·ˆ̀+ 1

α
·ln
(
cBw+σB
cAw+σA

))

where, again, rearranging the variables leads to the equilibrium level of K∗A in equation

(3.23).

Substituting the equilibrium level of capital K∗A, from equation (3.23), into warlord

A’s constraint from equation (3.8) leads to the equilibrium number of warriors W ∗
A,
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found in equation (3.21):

W ∗A·
(
cAw
σA

+1

)
= ℵA−

(
ck
σA

)
·KA

= ℵA− 1
σA

(cAw+σA)(cBw+σB)
(

1
α ln

(
cBw+σB
cAw+σA

)
−φ·ˆ̀

)
cAw+cBw+σA+σB

−( cAw+σA
α·(σA)

)

− 1
σA

(
(cBw+σB)(σA)·ℵA−(cAw+σA)(σB)·ℵB

cAw+cBw+σA+σB

)

W ∗A =
(

σA
cAw+σA

)
·ℵA−

(cBw+σB)
(

1
α ln

(
cBw+σB
cAw+σA

)
−φ·ˆ̀

)
cAw+cBw+σA+σB

−

(
cBw+σB
cAw+σA

)
(σA)·ℵA−(σB)·ℵB

cAw+cBw+σA+σB

− 1
α

=


(σA)(ℵA)

 cAw+cBw+σA+σB−(cBw+σB)
cAw+σA


cAw+cBw+σA+σB

−
(

(σB)·ℵB
cAw+cBw+σA+σB

)
−

(cBw+σB)
(

1
α ln

(
cBw+σB
cAw+σA

)
−φ·ˆ̀

)
cAw+cBw+σA+σB

− 1
α

W ∗A = (σA)·ℵA+(σB)·ℵB
cAw+cBw+σA+σB

+

(
cwB+σB

cAw+cBw+σA+σB

)
·
(
φ·ˆ̀+ 1

α
ln

(
cAw+σA
cBw+σB

))
− 1
α
.

Similarly, substituting the equilibrium level of capital K∗B, from equation (3.24), into

warlord B’s constraint from equation (3.9) leads to the equilibrium number of warriors
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W ∗
B, found in equation (3.22):

W ∗B ·
(
cBw
σB

+1

)
= ℵB−

(
ck
σB

)
·KB

= ℵB− 1
σB

(cBw+σB)(cAw+σA)
(

1
α ln

(
cAw+σA
cBw+σB

)
+φ·ˆ̀

)
cAw+cBw+σA+σB

−( cBw+σB
α·(σB)

)

− 1
σB

(
(cAw+σA)(σB)·ℵB−(cBw+σB)(σA)·ℵA

cAw+cBw+σA+σB

)

W ∗B =
(

σB
cBw+σB

)
·ℵB−

(cAw+σA)
(

1
α ln

(
cAw+σA
cBw+σB

)
−φ·ˆ̀

)
cAw+cBw+σA+σB

−

(
cAw+σA
cBw+σB

)
·ℵB−(σA)·ℵA

cAw+cBw+σA+σB

− 1
α

=


(σB)(ℵB)

 cAw+cBw+σA+σB−(cAw+σA)
cBw+σB


cAw+cBw+σA+σB

−
(

(σA)·ℵA
cAw+cBw+σA+σB

)
−

(cAw+σA)
(

1
α ln

(
cAw+σA
cBw+σB

)
+φ·ˆ̀

)
cAw+cBw+σA+σB

− 1
α

W ∗B = (σB)·ℵB+(σA)·ℵA
cAw+cBw+σA+σB

+

(
cwA+σA

cAw+cBw+σA+σB

)
·
(

1
α

ln

(
cBw+σB
cAw+σA

)
−φ·ˆ̀

)
− 1
α
.

To show the second-order conditions, the bordered Hessian for warlord A is

HBA =


0 −

(
cAw
σA

+ 1
)
− ck
σA

−
(
cAw
σA

+ 1
)

∂2LA

∂W 2
A

∂2LA

∂WAKA

− ck
σA

∂2LA

∂KAWA

∂2LA

∂K2
A

 (A.12)

=



0 −
(
cAw
σA

+1

)
− ck
σA

−
(
cAw
σA

+1

)
α2·

(
e
α(WB−WA+φ·ˆ̀)

)
·
(
e
α(WB−WA+φ·ˆ̀)−1

)
(

1+e
α(WB−WA+φ·ˆ̀)

)3 ·m·(KA+KB) e
α(WB−WA+φ·ˆ̀)(

1+e
α(WB−WA+φ·ˆ̀)

)2 ·(α·m)

− ck
σA

e
α(WB−WA+φ·ˆ̀)(

1+e
α(WB−WA+φ·ˆ̀)

)2 ·(α·m) 0


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and is satisfied when the determinant, |HBA|, is greater than zero; that is,

|HBA|>0 →
(
cAw
σA

+1

)
·
(
ck
σA

)
·

 e
α(WB−WA+φ·ˆ̀)(

1+e
α(WB−WA+φ·ˆ̀)

)2 ·(α·m)



−
(
ck
σA

)2
·

α2·

(
e
α(WB−WA+φ·ˆ̀)

)
·
(
e
α(WB−WA+φ·ˆ̀)−1

)
(

1+e
α(WB−WA+φ·ˆ̀)

)3 ·m·(KA+KB)



+
(
ck
σA

)
·

( cwσA+1
)
· e

α(WB−WA+φ·ˆ̀)(
1+e

α(WB−WA+φ·ˆ̀)
)2 ·(α·m)

>0

→
(
cAw
σA

+1

) e
α(WB−WA+φ·ˆ̀)(

1+e
α(WB−WA+φ·ˆ̀)

)2



−

α·
(
e
α(WB−WA+φ·ˆ̀)

)
·
(
e
α(WB−WA+φ·ˆ̀)−1

)
(

1+e
α(WB−WA+φ·ˆ̀)

)3 ·(KA+KB)

( ckσA )

+

(
cAw
σA

+1

)
·

 e
α(WB−WA+φ·ˆ̀)(

1+e
α(WB−WA+φ·ˆ̀)

)2

>0

|HBA| > 0 → 2(cAw + σA)

ck(KA +KB)
> α · e

α(WB−WA+φ·ˆ̀) − 1

1 + eα(WB−WA+φ·ˆ̀)
. (A.13)
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Similarly, the bordered Hessian for warlord B is

HBB =


0 −

(
cBw
σB

+ 1
)
− ck
σB

−
(
cBw
σB

+ 1
)

∂2LB

∂W 2
B

∂2LB

∂WBKB

− ck
σB

∂2LB

∂KBWB

∂2LB

∂K2
B

 (A.14)

=



0 −
(
cBw
σB

+1

)
− ck
σB

−
(
cBw
σB

+1

)
α2·

(
e
α(WA−WB−φ·ˆ̀)

)
·
(
e
α(WA−WB−φ·ˆ̀)−1

)
(

1+e
α(WA−WB−φ·ˆ̀)

)3 ·m·(KA+KB) e
α(WA−WB−φ·ˆ̀)(

1+e
α(WA−WB−φ·ˆ̀)

)2 ·(α·m)

− ck
σB

e
α(WA−WB−φ·ˆ̀)(

1+e
α(WA−WB−φ·ˆ̀)

)2 ·(α·m) 0


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and is satisfied when the determinant, |HBB|, is greater than zero; that is,

|HBA|>0 →
(
cBw
σB

+1

)
·
(
ck
σB

)
·

 e
α(WA−WB−φ·ˆ̀)(

1+e
α(WA−WB−φ·ˆ̀)

)2 ·(α·m)



−
(
ck
σB

)2
·

α2·

(
e
α(WA−WB−φ·ˆ̀)

)
·
(
e
α(WA−WB−φ·ˆ̀)−1

)
(

1+e
α(WA−WB−φ·ˆ̀)

)3 ·m·(KA+KB)



+
(
ck
σB

)
·

( cBw
σB

+1

)
· e

α(WA−WB−φ·ˆ̀)(
1+e

α(WA−WB−φ·ˆ̀)
)2 ·(α·m)

>0

→
(
cBw
σB

+1

) e
α(WA−WB−φ·ˆ̀)(

1+e
α(WA−WB−φ·ˆ̀)

)2



−

α·
(
e
α(WA−WB−φ·ˆ̀)

)
·
(
e
α(WA−WB−φ·ˆ̀)−1

)
(

1+e
α(WA−WB−φ·ˆ̀)

)3 ·(KA+KB)

( ckσB )

+

(
cBw
σB

+1

)
·

 e
α(WA−WB−φ·ˆ̀)(

1+e
α(WA−WB−φ·ˆ̀)

)2

>0

|HBB| > 0 → α · e
α(WA−WB−φ·ˆ̀) − 1

1 + eα(WA−WB−φ·ˆ̀)
<

2(cBw + σB)

ck(KA +KB)
. (A.15)
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Substituting the equilibrium levels of W ∗
A, W ∗

B, K∗A and K∗B into equation (A.13):

α · e
α·(WB−WA+φ·ˆ̀) − 1

1 + eα·(WB−WA+φ·ˆ̀)
<

2
(
cAw + σA

)
ck(KA +KB)

α · e
(

ln

(
cAw+σA
cBw+σB

))
− 1

1 + e

(
ln

(
cAw+σA
cBw+σB

)) <
2
(
cAw + σA

)(
cAw+cBw+σA+σB

α

)
cAw+σA−(cBw+σB)

cBw+σB

cAw+cBw+σA+σB
cBw+σB

<
2
(
cAw + σA

)
cAw + cBw + σA + σB

cAw + σA −
(
cBw + σB

)
< 2 ·

(
cAw + σA

)

0 < cAw + cBw + σA + σB.

To check that the second-order condition is satisfied for warlord B, the equilibrium

levels W ∗
A, W ∗

B, K∗A and K∗B are substituted into equation (A.15):

α · e
α·(WA−WB−φ·ˆ̀) − 1

1 + eα·(WA−WB−φ·ˆ̀)
<

2
(
cBw + σB

)
ck(KA +KB)

α · e
(

ln

(
cBw+σB
cAw+σA

))
− 1

1 + e

(
ln

(
cBw+σB
cAw+σA

)) <
2
(
cBw + σB

)(
cAw+cBw+σA+σB

α

)
cBw+σB−(cAw+σA)

cAw+σA

cAw+cBw+σA+σB
cAw+σA

<
2
(
cBw + σB

)
cAw + cBw + 2 ·mR − (cEA + cEB)

cBw + σB −
(
cAw + σA

)
< 2 ·

(
cBw + σB

)

0 < cAw + cBw + σA + σB.
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Finally, it needs to be shown that W ∗
A, W ∗

B, K∗A and K∗B are positive; that is, it

needs to be shown that 1

W ∗
A,W

∗
B, K

∗
A, K

∗
B > 0.

From equation (3.21), W ∗
A is greater than or equal to zero when

(σA)·ℵA+(σB)·ℵB
cBw+σB

> 1
α

ln

(
cAw+σA
cBw+σB

)
−φˆ̀+ 1

α

(
cAw+cBw+σA+σB

cBw+σB

)
,

and from equation (3.23), K∗A is greater than or equal to zero when

1
α

ln

(
cAw+σA
cBw+σB

)
−φˆ̀+ 1

α

(
cAw+cBw+σA+σB

cBw+σB

)
>

(σB)·ℵB
cBw+σB

− (σA)·ℵA
cAw+σA

.

The above two equations lead to the first equilibrium condition found. Likewise, the

feasibility condition for the decision variables W ∗
B and K∗B are found in a similar way.

From equation (3.22), W ∗
B is greater than or equal to zero when

(σA)·ℵA+(σB)·ℵB
cAw+σA

> 1
α

ln

(
cBw+σB
cAw+σA

)
+φˆ̀+ 1

α

(
cAw+cBw+σA+σB

cAw+σA

)
,

and from equation (3.24), K∗B is greater than or equal to zero when

1
α

ln

(
cBw+σB
cAw+σA

)
+φˆ̀+ 1

α

(
cAw+cBw+σA+σB

cAw+σA

)
>

(σA)·ℵA
cAw+σA

− (σB)·ℵB
cBw+σB

.

� Proof for Theorem 2:

Equation (3.26) is derived by substituting equations (3.21) and (3.22) into the CSF

1Showing that K∗
A and K∗

B are greater than zero is equivalent to proving that W ∗
A and W ∗

B are
not greater than ℵA and ℵB , respectively, due to the constraints found in equations (3.8) and (3.9).
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found above in equation (3.3). Explicitly,

π∗A =
1

1 + eα(W
∗
B−W

∗
A+φ·ˆ̀)

=
1

1 + e
ln

(
cAw+σA
cBw+σB

)

=
1

1 + cAw+σA
cBw+σB

.

Equation (3.27) follows by

π∗B = 1− π∗A

= 1− cBw + σB
cAw + cBw + σA + σB

=
1

1 + cBw+σB
cAw+σA

.

� Proof for Corollary 1:

1. Using warlord A and B’s equilibrium capital investment decision equations (3.23)

and (3.24), an increase in either NA and/or YA will cause an increase the equilibrium

levels of capital investment by warlord A and decrease it for warlord B:

∂K∗A
∂NA

= 1
ck

(
(cBw+σB)(σA)

cAw+σA+σB

)
>0

∂K∗A
YA

= 1
ck

(
cBw+σB

cAw+cBw+σA+σB

)
>0

∂K∗B
∂NA

=−1
ck

(
(cBw+σB)(σA)

cAw+cBw+σA+σB

)
<0

∂K∗B
YA

=−1
ck

(
cBw+σB

cAw+cBw+σA+σB

)
<0.

Similarly, an increase in either NB and/or YB will cause an increase in the equilibrium

122



levels of capital investment by warlord B and decrease it for warlord A:

∂K∗A
∂NB

=−1
ck

(
(cAw+σA)(σB)

cAw+cBw+σA+σB

)
<0

∂K∗A
YB

=−1
ck

(
cAw+σA

cAw+cBw+σA+σB

)
<0

∂K∗B
∂NB

= 1
ck

(
(cAw+σA)(σB)

cAw+cBw+σA+σB

)
>0

∂K∗B
YB

= 1
ck

(
cAw+σA

cAw+cBw+σA+σB

)
>0.

2. This result follows from equation (3.25) and its subsequent proof. Specifically,

K∗ =
cAw + cBw + σA + σB

α · ck
⇒ ∂K∗

∂NA

=
∂K∗

∂NB

=
∂K∗

∂YA
=
∂K∗

∂YB
= 0.

3. From equations (3.21) and (3.22), an increase in either warlord’s population size

and/or pre-game budget will increase the number of warriors hired by both warlords:

∂W∗A
∂NA

=
∂W∗B
∂NA

=
σA

(cAw+cBw+σA+σB)
2>0

∂W∗A
∂YA

=
∂W∗B
∂YA

= 1

(cAw+cBw+σA+σB)
2>0

∂W∗B
∂NB

=
∂W∗A
∂NB

=
σB

(cAw+cBw+σA+σB)
2>0

∂W∗B
∂YB

=
∂W∗A
∂YB

= 1

(cAw+cBw+σA+σB)
2>0.

� Proof for Corollary 2:

1. From definition of ˆ̀, an increase of `c will cause ˆ̀ to decrease:

∂ ˆ̀

∂`c
= 2 · (`c − `A)− 2 · (`c − `B) = 2 · (`c − 0)− 2 · (`c − 1) = 2 · `c− 2 · `c + 2 = 2 > 0.

Given ∂ ˆ̀/∂`c > 0, an increase of the conflict location from 0 to 1 will result in an

increase in K∗B and a decrease in K∗A:

∂K∗A
∂`c

=
(
−2·φ
ck

)((cAw+σA)(cBw+σB)
cAw+cBw+σA+σB

)
<0;

∂K∗B
∂`c

=
(

2·φ
ck

)((cAw+σA)(cBw+σB)
cAw+cBw+σA+σB

)
>0.
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2. This result follows from equation (3.25) and its subsequent proof. Specifically,

K∗ =
cAw + cBw + σA + σB

α · ck
⇒ ∂K∗

∂`c
= 0.

3. Using the equilibrium amount of hired warriors found in equations (3.21) and

(3.22),

∂W∗A
∂`c

=(2·φ)

(
cBw+σB

cAw+cBw+σA+σB

)
>0;

∂W∗B
∂`c

=(−2·φ)

(
cAw+σA

cAw+cBw+σA+σB

)
<0.

4. From equation (3.26),

πA =
1

1 + cAw+σA
cBw+σB

⇒ ∂πA
∂`c

= 0.

Likewise with equation (3.27),

πB =
1

1 + cBw+σB
cAw+σB

⇒ ∂πB
∂`c

= 0.

� Proof for Corollary 3.2.1.3:

1. From equation (3.26), an increase in cAw will decrease πAB:

∂πA
∂cAw

=

−1
cBw+σB(

1 + cAw+σA
cBw+σB

)2 < 0,

and from equation (3.27), an increase in cBw will decrease πB:

∂πB
∂cBw

=

−1
cAw+σA(

1 + cBw+σB
cAw+σA

)2 < 0.
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2. From equation (3.26), an increase in cBw will increase πA:

∂πA
∂cBw

=

cAw+σA
(cBw+σB)2(

1 + cAw+σA
cBw+σB

)2 > 0.

Likewise, from equation (3.27), an increase in cAw will increase πB:

∂πB
∂cAw

=

cBw+σB
(cAw+σA)2(

1 + cAw+σA
cBw+σB

)2 > 0.

3. From equation (3.26), an increase in cAE will increase πA:

∂πA
∂cAE

=

1
cBw+σB(

1 + cAw+σA
cBw+σB

)2 > 0.

Likewise, from equation (3.27), an increase in cBE will increase πB:

∂πB
∂cBE

=

1
cAw+σA(

1 + cAw+σA
cBw+σB

)2 > 0.

4.From equation (3.26), an increase in cBE will decrease πA:

∂πA
∂cBE

=
(−1) · cAw+σA

(cBw+σB)2(
1 + cAw+σA

cBw+σB

)2 < 0.

Likewise, from equation (3.27), an increase in cAE will decrease πB:

∂πB
∂cAE

=
(−1) · cBw+σB

(cAw+σA)2(
1 + cAw+σA

cBw+σB

)2 < 0.

125



� Proof for Theorem 3:

The proof for Theorem 3 begins by maximizing Vi (Wi, Ki;W/i,K/i) subject to

the constraint (3.38) for each warlord i ∈ J . Let λi be the associated Lagrangian

multiplier. The Lagrangian equation for each warlord i ∈ J is

Li =

(
m ·
∑J

i=1Ki

1 +
∑J

h∈J,h6=i e
α·(Ih−Ii)

)
+ λi

(
ℵi −

(
cw + σ

σ

)
Wi −

(ck
σ

)
Ki

)
. (A.16)

Therefore, for all i ∈ J

∂Vi
∂Wi

= 0 ⇒ (α·m)·(J−1)(∑Ji=1 Ki)·
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)(
1+
∑J
h∈J,h6=i e

α·(Ih−Ii)
)2 −( cwσ +1)·λA=0 (A.17)

∂Vi
∂Ki

= 0 ⇒ m

1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)
− ck
σ
·λA=0.. (A.18)

Using equations (A.17) and (A.18),

(α·m)·(J−1)(∑Ji=1 Ki)·
∑J
h∈J,h6=i e

α·(Ih−Ii)(
1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)
)2 ·( σ

cw+σ ) = m

1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)
·
(
σ
ck

)

α·(J−1)(∑Ji=1 Ki)·
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)(
1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)
)2 ·( ck

cw+σ ) = 1

1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)

α·(J−1)(
∑J
i=1 Ki)·

∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)·( ck
cw+σ ) = 1+

∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)

α·(J−1)(
∑J
i=1Ki)·(

ck
cw+σ ) =

1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)

(
cw+σ

α·(J−1)·ck

)
·

 1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)∑J
h∈J,h6=i e

α·(Ih−Ii)

 = ∑J
i=1 Ki, (A.19)

for all i, h ∈ J . Since equation (A.19) holds for all warlords in J , the following
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extension is made for all z ∈ J, z 6= i:

(
cw+σ

α·(J−1)·ck

)
·

 1+
∑J
h∈J,h6=z e

α·(Ih−Iz)

∑J
h∈J,h6=z e

α·(Ih−Iz)

 = ∑J
i=1 Ki=

(
cw+σ

α·(J−1)·ck

)
·

 1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)



 1+
∑J
h∈J,h6=z e

α·(Ih−Iz)

∑J
h∈J,h6=z e

α·(Ih−Iz)

 =

 1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)



 1∑J
h∈J,h6=z e

α·(Ih−Iz)

·(1+
∑J
h∈J,h6=z e

α·(Ih−Iz)
)

=

 1∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)

·(1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)
)

(
eα·Iz∑J

h∈J,h6=z e
α·Ih

)
·
(

1+
∑J
h∈J,h6=z e

α·(Ih−Iz)
)

=
(

eα·Ii∑J
h∈J,h∈J,h6=i e

α·Ih

)
·
(

1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)
)

(
eα·Iz∑J

h∈J,h6=z e
α·Ih

)
·
(

1+

∑J
h∈J,h6=z e

α·Ih

eα·Iz

)
=

(
eα·Ii∑J

h∈J,h∈J,h6=i e
α·Ih

)
·
(

1+

∑J
h∈J,h∈J,h6=i e

α·Ih

eα·Ii

)

(
1∑J

h∈J,h6=z e
α·Ih

)
·(eα·Iz+

∑J
h∈J,h6=z e

α·Ih) =
(

1∑J
h∈J,h∈J,h6=i e

α·Ih

)
·(eα·Ii+

∑J
h∈J,h∈J,h6=i e

α·Ih)

(
1∑J

h∈J,h6=z e
α·Ih

)
·(
∑J
i e

α·Ii) =
(

1∑J
h∈J,h∈J,h6=i e

α·Ih

)
·(
∑J
i e

α·Ii)

∑J
h∈J,h6=z e

α·Ih = ∑J
h∈J,h∈J,h6=i e

α·Ih

∑J
h∈J,h6=z,i e

α·Ih+eα·Ii = ∑J
h∈J,h∈J,h6=i,z e

α·Ih+eα·Iz

eα·Ii = eα·Iz

Wi−φ·(`c−`i)2 = Wz−φ·(`c−`z)2, ∀i,z∈J. (A.20)

Equation (A.20) states that the impact function of every warlord i ∈ J is identical
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and, hence,

eα·(Ih−Ii) = eα·0 = e0 = 1 ∀i, h ∈ J.

Therefore, using equations (A.19) and (A.20), the total amount of goods and services

produced within equilibrium, equation (3.47), is found:

∑J
i=1Ki =

(
cw+σ

α·(J−1)·ck

)
·

 1+
∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)∑J
h∈J,h∈J,h6=i e

α·(Ih−Ii)



=
(

cw+σ
α·(J−1)·ck

)
·
(

1+
∑J
h∈J,h∈J,h6=i e

0∑J
h∈J,h∈J,h6=i e

0

)

=
(

cw+σ
α·(J−1)·ck

)
·
(

1+
∑J
h∈J,h∈J,h6=i 1∑J
h∈J,h∈J,h6=i 1

)

=
(

cw+σ
α·(J−1)·ck

)
·( 1+(J−1)

(J−1) )

=
(

cw+σ
α·(J−1)·ck

)
·( J

(J−1))

∑J
i=1Ki =

(
cw+σ
α·ck

)
·
(

J

(J−1)2

)
.

Using warlord i’s constraint from equation (3.38), (A.20) and the above equation,
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the equilibrium level of capital investment for warlord i is found; that is, for all i ∈ J ,

∑J
i=1Ki =

(
cw+σ
α·ck

)
·
(

J

(J−1)2

)

Ki =
(
cw+σ
α·ck

)
·
(

J

(J−1)2

)
−
∑J
h∈J,h∈J,h6=iKh

=
(
cw+σ
α·ck

)
·
(

J

(J−1)2

)
−
∑J
h∈J,h∈J,h6=i

(
σ
ck
·ℵh− cw+σ

ck
·Wh

)

=
(
cw+σ
α·ck

)
·
(

J

(J−1)2

)
−
(
σ
ck
·
∑J
h∈J,h6=i ℵh

)
+
(
cw+σ
ck

)
·ΣJh∈J,h∈J,h6=iWh

=
(
cw+σ
α·ck

)
·
(

J

(J−1)2

)
−
(
σ
ck
·
∑J
h∈J,h6=i ℵh

)
+
(
cw+σ
ck

)
·ΣJh∈J,h6=i(Wi+φ·((`c−`h)2−(`c−`i)2))

=
(
cw+σ
α·ck

)
·
(

J

(J−1)2

)
−
(
σ
ck
·
∑J
h∈J,h6=i ℵh

)
+
(
cw+σ
ck

)
·(J−1)·Wi+

(
φ·(cw+σ)

ck

)
·ΣJh∈J,h6=i((`c−`h)2−(`c−`i)2)

=
(
cw+σ
α·ck

)
·
(

J

(J−1)2

)
−
(
σ
ck
·
∑J
h∈J,h6=i ℵh

)
+
(
σ
ck

)
·(J−1)·(ℵi− ckσ ·Ki)

+
(
φ·(cw+σ)

ck

)
·(ΣJh∈J,h6=i(`c−`h)2−(J−1)·(`c−`i)2)

Ki·(1+(J−1)) =
(
cw+σ
α·ck

)
·
(

J

(J−1)2

)
+
(
σ
ck

)
·((J−1)·ℵi−

∑J
h∈J,h6=i ℵh)+

(
φ·(cw+σ)

ck

)
·(ΣJi=1(`c−`i)2−J ·(`c−`i)2)

Ki·J =
(
cw+σ
α·ck

)
·
(

J

(J−1)2

)
+
(
σ
ck

)
·(J ·ℵi−

∑J
i=1 ℵi)+

(
φ·(cw+σ)

ck

)
·(ΣJi=1(`c−`i)2−J ·(`c−`i)2)

which equals the equilibrium level of K∗i in equation (3.46).

Substituting the equilibrium level of capital K∗i , from equation (3.46), into warlord

i’s constraint from equation (3.38) leads to the equilibrium number of warriors W ∗
i ,
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found in equation (3.45):

W ∗i = ( σ
cw+σ )·ℵi−( ck

cw+σ )·Ki

= ( σ
cw+σ )·ℵi−( ck

cw+σ )·
((

cw+σ

α·ck·(J−1)2

)
+
(
σ
ck

)
·
(
ℵi−

∑J
i=1 ℵi
J

)
+
(
φ·(cw+σ)

ck

)
·
(

ΣJi=1
(`c−`i)

2

J
−(`c−`i)2

))

= ( σ
cw+σ )·ℵi− 1

α·(J−1)2
−( σ

cw+σ )·
(
ℵi−

∑J
i=1 ℵi
J

)
−φ·

(
ΣJi=1

(`c−`i)
2

J
−(`c−`i)2

)

W ∗
i = ( σ

cw+σ )·
∑J
i=1 ℵi
J

+φ·
(

(`c−`i)2−ΣJi=1
(`c−`i)

2

J

)
− 1
α·(J−1)2

.

To show the second-order conditions, the bordered Hessian for each warlord i ∈ J
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is

HBi =



0 −
(
cw
σ

+ 1
)
− ck

σ

−
(
cw
σ

+ 1
)

∂2Li

∂W 2
i

∂2Li

∂WiKi

− ck
σ

∂2Li

∂KiWi

∂2Li

∂K2
i


(A.21)

=



0 −( cwσ +1) − ck
σ

−( cwσ +1) (αm(J−1))2
(ΣJ
h∈J/ie

α(Ih−Ii))(ΣJ
h∈J/ie

α(Ih−Ii)−1)
(1+ΣJ

h∈J/ie
α(Ih−Ii))

3 (ΣJi=1Ki) (αm(J−1))
ΣJh∈J,h6=ie

α(Ih−Ii)

(1+ΣJ
h∈J/ie

α(Ih−Ii))
2

− ck
σ

(α·m·(J−1))·
ΣJh∈J,h6=ie

α·(Ih−Ii)

(1+ΣJ
h∈J,h6=ie

α·(Ih−Ii))
2 0



=



0 −( cwσ +1) − ck
σ

−( cwσ +1) (α·m·(J−1))2· (J−1)·(J−2)

J3 ·(ΣJi=1Ki) (α·m·(J−1))·J−1

J2

− ck
σ

(α·m·(J−1))·J−1

J2 0


(A.22)
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and is satisfied when the determinant, |HBi |, is greater than zero; that is,

|HBi | → ( cwσ +1)·( ckσ )·
(

∂2Vi
∂WiKi

)
−( ckσ )·

(
( ckσ )·

(
∂2Vi
∂W2

i

)
−( cwσ +1)·

(
∂2Vi
∂KiWi

))
>0

→ ( cwσ +1)·
(

∂2Vi
∂WiKi

)
−( ckσ )·

(
∂2Vi
∂W2

i

)
+( cwσ +1)·

(
∂2Vi
∂KiWi

)
>0

→ 2·( cwσ +1)·
(

∂2Vi
∂WiKi

)
−( ckσ )·

(
∂2Vi
∂W2

i

)
>0

→ 2·( cwσ +1)·((α·m·(J−1))·J−1

J2 )−( ckσ )·((α·m·(J−1))2· (J−1)·(J−2)

J3 ·(ΣJi=1Ki))>0

→ 2·( cwσ +1)·((α·m·(J−1))·J−1

J2 )−( ckσ )·
(

(α·m·(J−1))2· (J−1)·(J−2)

J3 ·
(
cw+σ
ck
· J
(J−1)2

))
>0

→ 2·( cwσ +1)·(α·m·(J−1)2)−
(
α·m·(J−1)3·(J−2)

J
·
(
cw+σ
σ
· J
(J−1)2

))
>0

→ 2− (J−1)·(J−2)

(J−1)2
>0

→ 2·(J−1)>J−2

→ 2·J−2>J−2

→ J>0,

which holds by definition.

� Proof for Theorem 4:
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Equation (3.48) is found by substituting in equation (A.20), found in the above

proof, into equation (3.40). Explicitly,

π∗A =
1

1 + ΣJ
h∈J,h6=ie

α·(Ih−Ii)

=
1

1 + ΣJ
h∈J,h6=ie

0

=
1

1 + J − 1

=
1

J
; ∀i ∈ J.

� Proof for Theorem 5:

Let ˆ̀ = φ · ((`c − `A)2 − (`c − `B)2) = φ · (2 · `c − 1). Let λA and λB again be the

associated Lagrangian multipliers for the maximization problems of warlord A and

warlord B. The Lagrangian equations for warlords A and B are

LA =

(
m (KA +KB)

1 + WB

WA
· eˆ̀

)
+ λA

(
ℵA −

(
cAw + σA
σA

)
WA −

(
ck
σA

)
KA

)
; (A.23)

LB =

(
m (KA +KB)

1 + WA

WB
· 1

eˆ̀

)
+ λB

(
ℵB −

(
cBw + σB
σB

)
WB −

(
ck
σB

)
KB

)
.(A.24)

Solving warlord A and B’s optimization problem for the two choice variables W and
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K:

∂LA

∂WA

= 0 ⇒ WB ·e
ˆ̀

W2
A
·(1+

WB
WA
·eˆ̀)

2 ·(m)·(KA+KB)−λA·
(
cAw
σA

+1

)
=0 (A.25)

∂LA

∂KA

= 0 ⇒ 1

(1+
WB
WA
·eˆ̀)
·m−λA·

(
ck
σA

)
=0 (A.26)

∂LB

∂WB

= 0 ⇒
WA·

1

e
ˆ̀

W2
B
·
(

1+
WA
WB
· 1

e
ˆ̀

)2 ·(m)·(KA+KB)−λB ·
(
cBw
σB

+1

)
=0 (A.27)

∂LB

∂KB

= 0 ⇒ 1(
1+

WA
WB
· 1

e
ˆ̀

) ·m−λB ·( ckσB )=0. (A.28)

From equations (A.25) and (A.26),

WB ·e
ˆ̀

W2
A
·(1+

WB
WA
·eˆ̀)

2 ·(m)·(KA+KB)·
(

σA
cAw+σA

)
= 1

(1+
WB
WA
·eˆ̀)
·m·
(
σA
ck

)

WB ·e
ˆ̀

W2
A
·(1+

WB
WA
·eˆ̀)

2 ·(KA+KB)·
(

ck
cAw+σA

)
= 1

(1+
WB
WA
·eˆ̀)

(KA+KB)·
(

ck
cAw+σA

)
=

W2
A·
(

1+
WB
WA
·e

ˆ̀
)

WB ·e
ˆ̀ (A.29)

and from equations (A.27) and (A.28),

WA·
1

e
ˆ̀

W2
B
·
(

1+
WA
WB
· 1

e
ˆ̀

)2 ·(m)·(KA+KB)·
(

σB
cBw+σB

)
= 1(

1+
WA
WB
· 1

e
ˆ̀

) ·m·(σB
ck

)

WA·
1

e
ˆ̀

W2
B
·
(

1+
WA
WB
· 1

e
ˆ̀

)2 ·(KA+KB)·
(

ck
cBw+σB

)
= 1(

1+
WA
WB
· 1

e
ˆ̀

)

(KA+KB)·
(

ck
cBw+σB

)
=

W2
B ·
(

1+
WA
WB
· 1

e
ˆ̀

)
WA·

1

e
ˆ̀

(A.30)

134



Equating equations (A.29) and (A.30) leads to the following relationship:

W2
A·
(

1+
WB
WA
·e

ˆ̀
)

WB ·e
ˆ̀ ·

(
cAw+σA
ck

)
=

W2
B ·
(

1+
WA
WB
· 1

e
ˆ̀

)
WA·

1

e
ˆ̀

·
(
cBw+σB
ck

)

WA

e
ˆ̀ ·W

2
A·
(

1+
WB
WA
·eˆ̀
)

= (WB ·e
ˆ̀)·W 2

B ·
(

1+
WA
WB
· 1

e
ˆ̀

)
·
(
cBw+σB
cAw+σA

)

WA·W 2
A·
(

1+
WB
WA
·eˆ̀
)

= (WB ·e2·
ˆ̀)·W 2

B ·
(

1+
WA
WB
· 1

e
ˆ̀

)
·
(
cBw+σB
cAw+σA

)

W 2
A·(WA+WB ·e

ˆ̀) = (e2·ˆ̀)·W 2
B ·
(
WB+WA· 1

e
ˆ̀

)
·
(
cBw+σB
cAw+σA

)

W 2
A·(WA+WB ·e

ˆ̀) = (eˆ̀)·W 2
B ·(WB ·e

ˆ̀
+WA)·

(
cBw+σB
cAw+σA

)

W 2
A = e

ˆ̀·W 2
B ·
(
cBw+σB
cAw+σA

)

WA = WB ·

√
eˆ̀ ·
(
cBw + σB
cAw + σA

)
(A.31)

and

WA√
eˆ̀ ·
(
cBw+σB
cAw+σA

) = WB. (A.32)
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By substituting (A.32) into (A.29),

(KA+KB)·
(

ck
cAw+σA

)
=

W2
A·
(

1+
WB
WA
·e

ˆ̀
)

WB ·e
ˆ̀

(KA+KB)·
(

ck
cAw+σA

)
=

W2
A·

1+ e
ˆ̀√√√√eˆ̀·

(
cBw+σB
cAw+σA

)


WA·
e
ˆ̀√√√√eˆ̀·

(
cBw+σB
cAw+σA

)


(KA+KB)·
(

ck
cAw+σA

)
=

WA·

1+

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)
√√√√eˆ̀·

(
cAw+σA
cBw+σB

)

(KA+KB) =
(
cAw+σA
ck

)
·

WA·

1+ 1√√√√eˆ̀·
(
cAw+σA
cBw+σB

)



KA+KB =

WA
ck
·

(
(cAw+σA)+

√
(cAw+σA)(cBw+σB)√

e
ˆ̀

)

WB
ck
·

(
(cBw+σB)+

√
eˆ̀(cAw+σA)(cBw+σB)

)


(A.33)
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Using the equations (3.8), (3.9), (A.31), (A.32) and (A.33)

(
cAw+σA
ck

)
·

WA·


1+

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)
√√√√eˆ̀·

(
cAw+σA
cBw+σB

)

−KB = KA

(
cAw+σA
ck

)
·

WA·


1+

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)
√√√√eˆ̀·

(
cAw+σA
cBw+σB

)

−KB =

(
σA
ck

)
·
(
ℵA−

(
cw
σA

+1
)
·WA

)

(
cAw+σA
ck

)
·

WA·


1+2·

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)
√√√√eˆ̀·

(
cAw+σA
cBw+σB

)

 =

(
σA
ck

)
·(ℵA)+KB

(
cAw+σA
ck

)
·

WA·


1+

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)
√√√√eˆ̀·

(
cAw+σA
cBw+σB

)

 =

(
σA
ck

)
·(ℵA)+

(
σB
ck

)
·
(
ℵB−

(
cw
σB

+1
)
·WB

)

(cAw+σA)·

WA·


1+

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)
√√√√eˆ̀·

(
cAw+σA
cBw+σB

)

 = (σA)·(ℵA)+(σB)·(ℵB)−(cBw+σB)

 WA√√√√eˆ̀·
(
cBw+σB
cAw+σA

)


(cAw+σA)·

WA·


1+

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)
√√√√eˆ̀·

(
cAw+σA
cBw+σB

)

 = (σA)·(ℵA)+(σB)·(ℵB)−(cAw+σA)

 WA√√√√eˆ̀·
(
cAw+σA
cBw+σB

)


(cAw+σA)·

WA·


2+2

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)
√√√√eˆ̀·

(
cAw+σA
cBw+σB

)

 = (σA)(ℵA)+(σB)(ℵB),

which equals the equilibrium level of warriors hired by warlord A found in equation

(3.54). By using W ∗
A and equation (A.31), the equilibrium level of warriors hired by
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warlord B is found:

W ∗B ·

√
eˆ̀·
(
cBw+σB
cAw+σA

)
= W ∗A

W ∗B ·

√
eˆ̀·
(
cBw+σB
cAw+σA

)
=

(
(σA)(ℵA)+(σB)(ℵB)

2(cAw+σA)

)
·

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)

1+

√√√√eˆ̀·
(
cAw+σA
cBw+σB

)

W ∗B =
(

(σA)(ℵA)+(σB)(ℵB)

2(cAw+σA)

)
·

(
cAw+σA
cBw+σB

)

1+

√√√√eˆ̀·
(
cBw+σB
cAw+σA

)

W ∗B =
(

(σA)(ℵA)+(σB)(ℵB)

2(cBw+σB)

)
· 1

1+

√√√√eˆ̀·
(
cBw+σB
cAw+σA

)

Substituting the W ∗
A, from equation (3.54) into (A.33) and applying equations

138



(3.8), (3.9) and (3.55):

KA+KB =
(
cAw+σA
ck

)
·

WA·

1+ 1√√√√eˆ̀·
(
cAw+σA
cBw+σB

)



KA+KB =
(
cAw+σA
ck

)(
(σA)(ℵA)+(σB)(ℵB)

2(cAw+σA)

)

KA =

(
(σA)(ℵA)+(σB)(ℵB)

2·ck

)
−KB

=

(
(σA)(ℵA)+(σB)(ℵB)

2·ck

)
−
(
σB
ck

)
·
(
ℵB−

(
cBw
σB

+1

)
·WB

)

=

(
(σA)(ℵA)−(σB)(ℵB)

2·ck

)
+

(
cBw+σB
ck

)
· WA√√√√eˆ̀·

(
cBw+σB
cAw+σA

)

=

(
(σA)(ℵA)−(σB)(ℵB)

2·ck

)
+

(
cBw+σB
ck

)
·
(

σA
cAw+σA

)
·
(ℵA−

ck
σA

KA)√√√√eˆ̀·
(
cBw+σB
cAw+σA

)

KA

1+ 1√√√√eˆ̀·
(
cAw+σA
cBw+σB

)
 =

(
σA
2·ck

)
(ℵA)

1+ 2√√√√eˆ̀·
(
cBw+σB
cAw+σA

)
−( σB

2·ck

)
(ℵB),

which is equal to the equilibrium level of capital investment by warlord A found in
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equation (3.56). Similarly for warlord B,

KA+KB =
(
cBw+σB
ck

)
·
(
WB ·

(
1+

√
eˆ̀·
(
cAw+σA
cBw+σB

)))

KB = (σA)(ℵA)+(σB)(ℵB)
2·ck

−KA

= (σA)(ℵA)+(σB)(ℵB)
2·ck

−σA
ck

(
ℵA−

cAw+σA
σA

·WA

)

= (σB)(ℵB)−(σA)(ℵA)
2·ck

+

(
cAw+σA
ck

)
·
(
WB ·

√
eˆ̀·
(
cBw+σB
cAw+σA

))

= (σB)(ℵB)−(σA)(ℵA)
2·ck

+

(
cAw+σA
ck

)
·
((

σB
cBw+σB

)(
ℵB−

ck
σB
·KB

))
·

√
eˆ̀·
(
cBw+σB
cAw+σA

)

KB

(
1+

√
eˆ̀·
(
cAw+σA
cBw+σB

))
=

(
σB
2·ck

)
(ℵB)

(
1+2·

√
eˆ̀·
(
cAw+σA
cBw+σB

))
−(σA)(ℵA)

To show the second-order conditions, the bordered Hessian for warlord A again is

HBA =


0 −

(
cw
σA

+ 1
)
− ck
σA

−
(
cw
σA

+ 1
)

∂2LA

∂W 2
A

∂2LA

∂WAKA

− ck
σA

∂2LA

∂KAWA

∂2LA

∂K2
A

 (A.34)

where ∂2LA

∂K2
A

= 0 and is satisfied when the determinant, |HBA|, is greater than zero;
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that is,

|HBA| =
(
cAw
σA

+1

)
·
(
ck
σA

)
·
(

∂2VA
∂WAKA

)
−
(
ck
σA

)
·
((

ck
σA

)
·
(
∂2VA
∂W2

A

)
−
(
cAw
σA

+1

)
·
(

∂2VA
∂KAWA

))
>0

=
(
cAw
σA

+1

)
·
(

∂2VA
∂WAKA

)
−
(
ck
σA

)
·
(
∂2VA
∂W2

A

)
+

(
cAw
σA

+1

)
·
(

∂2VA
∂KAWA

)
>0

= 2·
(
cAw
σA

+1

)
·
(

∂2VA
∂WAKA

)
−
(
ck
σA

)
·
(
∂2VA
∂W2

A

)
>0 (A.35)

From equation (A.25)

∂2VA
∂W2

A

=


−2·WA

(
1+

WB
WA
·e

ˆ̀
)2

+2·W2
A

(
1+

WB
WA
·e

ˆ̀
)WB ·eˆ̀

W2
A


W4
A(1+

WB
WA
·eˆ̀)

4

(KA+KB)·m

=

 2·
(

1+
WB
WA
·e

ˆ̀
)(

WB ·e
ˆ̀
)
−2·WA

(
1+

WB
WA
·e

ˆ̀
)2

W4
A(1+

WB
WA
·eˆ̀)

4

(KA+KB)·m

=

 2

(
WB ·e

ˆ̀
)
−2·WA−2

(
WB ·e

ˆ̀
)

W4
A(1+

WB
WA
·eˆ̀)

3

·(KA+KB)·m

= −

 2

W3
A(1+

WB
WA
·eˆ̀)

3

·((cBw+σB)·
(
WB ·

(
1+

√
eˆ̀· c

A
w+σA
cBw+σB

)))
·m

= −

 2(cBw+σB)

W3
A

(
1+

√
e
ˆ̀· c

A
w+σA
cBw+σB

)2

·WB ·mck

= −

 2(cBw+σB)

W2
A

(
1+

√
e
ˆ̀· c

A
w+σA
cBw+σB

)2

·
 m

ck·

√
e
ˆ̀cBw+σB
cAw+σA

<0,
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and from equations (A.25) and(A.26),

∂2VA
∂WA∂KA

=
∂2VA

∂KA∂WA
= WB ·e

ˆ̀

W2
A
·(1+

WB
WA
·eˆ̀)

2 ·(m)

= m·
√

e
ˆ̀

WA·
(

1+

√
e
ˆ̀
)2>0.

The above two equations show that ∂2VA
∂WA∂KA

is positive while ∂2VA
∂W 2

A
is negative. There-

fore, equation (A.35) is positive for all value of `c ranging from 0 to 1.

To check that the second-order condition is satisfied for warlord B,

HBB =


0 −

(
cBw
σB

+ 1
)
− ck
σB

−
(
cBw
σB

+ 1
)

∂2VB
∂W 2

B

∂2VB
∂WBKB

− ck
σB

∂2VB
∂KBWB

∂2VB
∂K2

B

 (A.36)

where ∂2VB
∂K2

B
= 0 and is satisfied when the determinant, |HBB|, is greater than zero;

that is,

|HBB | =
(
cBw
σB

+1

)
·
(
ck
σB

)
·
(

∂2VB
∂WBKB

)
−
(
ck
σB

)
·
((

ck
σB

)
·
(
∂2VB
∂W2

B

)
−
(
cBw
σB

+1

)
·
(

∂2VB
∂KBWB

))
>0

=
(
cBw
σB

+1

)
·
(

∂2VB
∂WBKB

)
−
(
ck
σB

)
·
(
∂2VB
∂W2

B

)
+

(
cBw
σB

+1

)
·
(

∂2VB
∂KBWB

)
>0

= 2·
(
cBw
σB

+1

)
·
(

∂2VB
∂WBKB

)
−
(
ck
σB

)
·
(
∂2VB
∂W2

B

)
>0 (A.37)

142



From equation (A.27)

∂2VB
∂W2

B

=


−2·WB

(
1+

WA

WB ·e
ˆ̀

)2

+2·W2
B

(
1+

WA

WB ·e
ˆ̀

) WA

W2
B
·eˆ̀


W4
B

(
1+

WA

WB ·e
ˆ̀

)4

(KA+KB)·m

=

 2·
(

1+
WA

WB ·e
ˆ̀

)(
WA

e
ˆ̀

)
−2·WB

(
1+

WA

WB ·e
ˆ̀

)2

W4
B

(
1+

WA

WB ·e
ˆ̀

)4

(KA+KB)·m

=

 2

(
WA

e
ˆ̀

)
−2·WB−2

(
WA

e
ˆ̀

)
W4
B

(
1+

WA

WB ·e
ˆ̀

)3

·(KA+KB)·m

= −

 2

W3
B

(
1+

WA

WB ·e
ˆ̀

)3

·
(cAw+σA)·

WA·

1+ 1√
e
ˆ̀· c

A
w+σA
cBw+σB



·m

= −


2(cAw+σA)

W3
B

1+ 1√
e
ˆ̀· c

A
w+σA
cBw+σB


2


·WA·m

ck

= −


2(cAw+σA)

W2
B

1+ 1√
e
ˆ̀· c

A
w+σA
cBw+σB


2


·

m

√
e
ˆ̀cBw+σB
cAw+σA
ck

<0,

and from equations (A.27) and(A.28),

∂2VB
∂WB∂KB

=
∂2VB

∂KB∂WB
=

WA·
1

e
ˆ̀

W2
B
·
(

1+
WA
WB
· 1

e
ˆ̀

)2 ·(m)

=
m· 1√

e
ˆ̀

WB ·

 1+

√
e
ˆ̀√

e
ˆ̀


2

= m·
√

e
ˆ̀

WB ·
(

1+

√
e
ˆ̀
)2 .

The above two equations show that ∂2VB
∂WB∂KB

is positive while ∂2VB
∂W 2

B
is negative. There-

143



fore, equation (A.37) is positive for all value of `c ranging from 0 to 1.

Finally, it needs to be shown that W ∗
A, W ∗

B, K∗A and K∗B are non-negative; that is,

it needs to be shown that

W ∗
A,W

∗
B, K

∗
A, K

∗
B ≥ 0.

Equations (3.54) and (3.55) show that W ∗
A and W ∗

B are positive by definition when

the point of conflict is between the values of 0 and 1. From equation (3.56), the

equilibrium level of investment into capital by warlord A is greater than zero when


1+ 2√

e
ˆ̀cAw+σA
cBw+σB

·(σA)(ℵA)−(σB)(ℵB)

 > 0

1+ 2√
e
ˆ̀cAw+σA
cBw+σB

·(σA)(ℵA) > (σB)(ℵB)

1+ 2√
e
ˆ̀cAw+σA
cBw+σB

>
(

(σB)(ℵB)
(σA)(ℵA)

)
.

Likewise from equation (3.57), the equilibrium level of investment into capital by

warlord B is greater than zero when

((
1+2·

√
eˆ̀cAw+σA
cBw+σB

)
·(σB)(ℵB)−(σA)(ℵA)

)
> 0

(
1+2·

√
eˆ̀cAw+σA
cBw+σB

)
·(ℵB)−(ℵA) > 0

(
(σB)(ℵB)
(σA)(ℵA)

)
> 1

1+2·

√
e
ˆ̀cAw+σA
cBw+σB

.

� Proof for Theorem 6:

Equation (3.59) is derived by substituting equation (A.31) into the CSF found above
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in equation (3.3). Explicitly,

π∗A =
1

1 + WB

WA
eˆ̀

=
1

1 + 1√
eˆ̀cBw+σB
cAw+σB

eˆ̀

=
1

1 +
√
eˆ̀cAw+σA
cBw+σB

.

Equation (3.60) follows by

π∗B = 1− π∗A

= 1− 1

1 +
√
eˆ̀cAw+σA
cBw+σB

=

√
eˆ̀cAw+σA
cBw+σB

1 +
√
eˆ̀cAw+σA
cBw+σB

=
1

1 + 1√
eˆ̀cAw+σA
cBw+σB

.

� Proof for Corollary 5:

1. From equation (3.26), an increase in cAw will decrease πA:

∂πA
∂cAw

=


(
−1

2

√
eˆ̀

(cAw+σA)(cBw+σB)

)
(

1 +
√
eˆ̀cAw+σA
cBw+σB

)2

 < 0,

and from equation (3.27), an increase in cBw will decrease πB:

∂πB
∂cBw

=

−1

2
√
eˆ̀(cAw+σA)(cBw+σB)1 + 1√

eˆ̀cAw+σA
cBw+σB

2 < 0.
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2. From equation (3.26), an increase in cBw will increase πA:

∂πA
∂cBw

= −
(
∂πB
∂cBw

)
> 0.

Likewise, from equation (3.27), an increase in cAw will increase πB:

∂πB
∂cAw

= −
(
∂πA
∂cAw

)
> 0.

3. From equation (3.26), an increase in cAE will increase πA:

∂πA
∂cAE

=


(

1
2

√
eˆ̀

(cAw+σA)(cBw+σB)

)
(

1 +
√
eˆ̀cAw+σA
cBw+σB

)2

 > 0.

Likewise, from equation (3.27), an increase in cBE will increase πB:

∂πB
∂cBE

=

1

2
√
eˆ̀(cAw+σA)(cBw+σB)1 + 1√

eˆ̀cAw+σA
cBw+σB

2 > 0.

4.From equation (3.26), an increase in cBE will decrease πA:

∂πA
∂cBE

= −
(
∂πB
∂cBE

)
< 0.

Likewise, from equation (3.27), an increase in cAE will decrease πB:

∂πB
∂cAE

= −
(
∂πA
∂cAE

)
> 0 < 0.

� Proof for Theorem 7:

The proof and its structure of Theorem 7 is similar to the proof of Theorem 1.
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Let λA and λB again be the associated Lagrangian multipliers for the maximization

problems of warlord A and warlord B. The Lagrangian equations for warlords A and

B are

LA =

 m(KA+KB)

1+e

α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)
+λA

(
ℵA−

(
cAw+σA
σA

)
WA−

(
ck
σA

)
KA

)
; (A.38)

LB =

 m(KA+KB)

1+e

α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)
+λB

(
ℵB−

(
cBw+σB
σB

)
WB−

(
ck
σB

)
KB

)
. (A.39)

Solving warlord A and B’s optimization problem for the two choice variables W

and K:

∂LA

∂WA

= 0 ⇒

(α·m)(KA+KB)
φ·(`c−`A)2 ·

e
α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)
1+e

α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)
2 =

(
cAw
σA

+1

)
·λA (A.40)

∂LA

∂KA

= 0 ⇒ m

1 + e
α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

) =
ck
σA
· λA (A.41)

∂LB

∂WB

= 0 ⇒

(α·m)(KA+KB)
φ·(`c−`B)2 ·

e
α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)
1+e

α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)
2 =

(
cBw
σB

+1

)
·λB (A.42)

∂LB

∂KB

= 0 ⇒ m

1 + e
α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

) =
ck
σB
· λB. (A.43)
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Using equations (A.40) and (A.41),



(α·m)(KA+KB)
φ·(`c−`A)2 ·

e
α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)
1+e

α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)
2


·
(

σA
cAw+σA

)
=

 m

1+e

α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)
·(σAck )

α·(KA+KB)
φ·(`c−`A)2 ·

eα·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)·( ck
cAw+σA

)
= 1+e

α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)

eα·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)·(α·(KA+KB)
φ·(`c−`A)2 ·

ck
cAw+σA

−1

)
= 1

e
α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)
=

(
φ·(`c−`A)2·(cAw+σA)

ck·α·(KA+KB)−φ·(`c−`A)2·(cAw+σA)

)

α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)
= ln

(
φ·(`c−`A)2·(cAw+σA)

ck·α·(KA+KB)−φ·(`c−`A)2·(cAw+σA)

)

WB

φ·(`c−`B)2−
1
α
·ln
(

φ·(`c−`A)2·(cAw+σA)
ck·α·(KA+KB)−φ·(`c−`A)2·(cAw+σA)

)
= WA

φ·(`c−`A)2 . (A.44)
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Performing similar substitutions for warlord B using equations (A.42) and (A.43),



(α·m)(KA+KB)
φ·(`c−`B)2 ·

e
α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)
1+e

α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)
2


·
(

σB
cBw+σB

)
=

 m

1+e

α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)
·(σBck )

α·(KA+KB)
φ·(`c−`B)2 ·

eα·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)·( ck
cBw+σB

)
= 1+e

α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)

eα·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)·(α·(KA+KB)
φ·(`c−`B)2 ·

ck
cBw+σB

−1

)
= 1

e
α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)
=

(
φ·(`c−`B)2·(cBw+σB)

ck·α·(KA+KB)−φ·(`c−`B)2·(cBw+σB)

)

α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)
= ln

(
φ·(`c−`B)2·(cBw+σB)

ck·α·(KA+KB)−φ·(`c−`B)2·(cBw+σB)

)

WA

φ·(`c−`A)2−
1
α
·ln
(

φ·(`c−`B)2·(cBw+σB)
ck·α·(KA+KB)−φ·(`c−`B)2·(cBw+σB)

)
= WB

φ·(`c−`B)2 . (A.45)

By substituting equation (A.44) into (A.45),

WA

φ·(`c−`A)2−
1
α
·ln
(

φ·(`c−`B)2·(cBw+σB)
ck·α·(KA+KB)−φ·(`c−`B)2·(cBw+σB)

)
= WB

φ·(`c−`B)2

− 1
α
·ln
(

φ·(`c−`B)2·(cBw+σB)
ck·α·(KA+KB)−φ·(`c−`B)2·(cBw+σB)

)
= 1

α
·ln
(

φ·(`c−`A)2·(cAw+σA)
ck·α·(KA+KB)−φ·(`c−`A)2·(cAw+σA)

)

ck·α·(KA+KB)−φ·(`c−`B)2·(cBw+σB)
φ·(`c−`B)2·(cBw+σB)

=
φ·(`c−`A)2·(cAw+σA)

ck·α·(KA+KB)−φ·(`c−`A)2·(cAw+σA)

KA+KB = φ
α·ck
·(cAw+σB)·(`c−`A)2

+ φ
α·ck

(cBw+σB)(`c−`B)2. (A.46)

149



Substituting equation (A.46) into (A.44),

WA

φ·(`c−`A)2 = WB

φ·(`c−`B)2−
1
α
·ln
(

φ·(`c−`A)2·(cAw+σA)
ck·α·(KA+KB)−φ·(`c−`A)2·(cAw+σA)

)

WA

φ·(`c−`A)2 = WB

φ·(`c−`B)2−
1
α
·ln
(

φ·(`c−`A)2·(cAw+σA)
φ((cAw+σA)(`c−`A)2

+(cBw+σB)(`c−`B)2)−φ·(`c−`A)2·(cAw+σA)

)

WA

φ·(`c−`A)2 = WB

φ·(`c−`B)2 + 1
α

ln

(
(cBw+σB)(`c−`B)2

(cAw+σA)(`c−`A)2

)
, (A.47)

and substituting equation (A.46) into (A.45),

WB

φ·(`c−`B)2 = WA

φ·(`c−`A)2−
1
α
·ln
(

φ·(`c−`B)2·(cBw+σB)
ck·α·(KA+KB)−φ·(`c−`B)2·(cBw+σB)

)

WB

φ·(`c−`B)2 = WA

φ·(`c−`A)2−
1
α
·ln
(

φ·(`c−`B)2·(cBw+σB)
φ((cAw+σA)(`c−`A)2

+(cBw+σB)(`c−`B)2)−φ·(`c−`B)2·(cBw+σB)

)

WB

φ·(`c−`B)2 = WA

φ·(`c−`A)2−
1
α

ln

(
(cBw+σB)(`c−`B)2

(cAw+σA)(`c−`A)2

)
. (A.48)

Using the above equations and recalling `A = 0 and `B = 1, the equilibrium level
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of capital investment for warlord A is found; that is,

KA = φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))−KB

= φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))−σBck

(
ℵB−

(
cBw
σB

+1

)
WB

)

= φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))−σBck (ℵB)

−
(
cBw+σB
ck

)(
φ
α

ln

(
cAw+σA
cBw+σB

( `c
`c−1)

2
)

+( `c−1
`c

)
2
WA

)

= φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))−σBck (ℵB)−
(
cBw+σB
ck

)(
φ
α

ln

(
cAw+σA
cBw+σB

( `c
`c−1)

2
))

+
σA
ck

(
cBw+σB
cAw+σA

)
( `c−1

`c
)

2
(
ℵA−

ck
σA

KA

)

ck·KA
(

1+
cBw+σB
cAw+σA

( `c−1
`c

)
2
)

= (cBw+σB)(σA)(ℵA)

cAw+σA
−

(cAw+σA)(σB)(NB+
YB
σB

)
cAw+σA

+ φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))

−
(
cBw+σB
ck

)(
φ
α

ln

(
cAw+σA
cBw+σB

( `c
`c−1)

2
))

and rearranging the variables leads to the equilibrium level of K∗A in equation (3.74).
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Similarly for warlord B,

KB = φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))−KA

= φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))−σAck

(
ℵA−

(
cAw
σA

+1

)
WA

)

= φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))−σAck (ℵA)

−
(
cAw+σA
ck

)(
φ
α

ln

(
cBw+σB
cAw+σA

( `c−1
`c

)
2
)

+( `c
`c−1)

2
WB

)

= φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))−σAck (ℵA)−
(
cAw+σA
ck

)(
φ
α

ln

(
cBw+σB
cAw+σA

( `c−1
`c

)
2
))

+
σB
ck

(
cAw+σA
cBw+σB

)
( `c
`c−1)

2
(
ℵB−

ck
σB

KB

)

ck·KB
(

1+
cAw+σA
cBw+σB

( `c−1
`c

)
2
)

= (cBw+σB)(σB)(ℵB)

cBw+σB
−

(cBw+σB)(σA)(NA+
YA
σA

)
cBw+σB

+ φ
α·ck

((cAw+σA)·`2c+(cBw+σB)(`c−1))

−
(
cAw+σA
ck

)(
φ
α

ln

(
cBw+σB
cAw+σA

( `c−1
`c

)
2
))

where, again, rearranging the variables leads to the equilibrium level ofK∗B in equation

(3.75).

Substituting the equilibrium level of capital K∗A, from equation (3.74), into warlord

A’s constraint from equation (3.8) leads to the equilibrium number of warriors W ∗
A,
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found in equation (3.72):

W ∗A =
(

σA
cAw+σA

)
(ℵA)−

(
ck

cAw+σA

)
·K∗A

=
(

σA
cAw+σA

)
(ℵA)− φ

α

(
`2c+

(
(cBw+σB)`2c(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
ln

(
cAw+σA
cBw+σB

( `c
`c−1)

2
))

−
(

1

cAw+σA

)( (cBw+σB)(σA)(ℵA)(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
+

(
1

cAw+σA

)( (cAw+σA)(σB)(ℵB)`2c

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)

=
(

`2c
cAw+σA

)((cAw+σA)(σA)(ℵA)+(cAw+σA)(σB)(ℵB)

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
− φ
α

(
`2c+

(
(cBw+σB)`2c(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
ln

(
cAw+σA
cBw+σB

( `c
`c−1)

2
))

.

Similarly, substituting the equilibrium level of capital K∗B, from equation (3.75), into

warlord B’s constraint from equation (3.9) leads to the equilibrium number of warriors

W ∗
B, found in equation (3.73):

W ∗B =
(

σB
cBw+σB

)
(ℵB)−

(
ck

cBw+σB

)
·K∗B

=
(

σB
cBw+σB

)
(ℵB)− φ

α

(
(`c−1)2+

(
(cAw+σA)`2c(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
ln

(
cBw+σB
cAw+σA

( `c−1
`c

)
2
))

−
(

1

cBw+σB

)( (cAw+σA)(σB)(ℵB)`2c

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
+

(
1

cBw+σB

)( (cBw+σB)(σA)(ℵA)(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)

=
(

(`c−1)2

cBw+σB

)((cAw+σA)(σA)(ℵA)+(cAw+σA)(σB)(ℵB)

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
− φ
α

(
(`c−1)2+

(
(cAw+σA)`2c(`c−1)2

(cAw+σA)`2c+(cBw+σB)(`c−1)2

)
ln

(
cBw+σB
cAw+σA

( `c−1
`c

)
2
))

.

To check that the second-order condition is satisfied for warlord A, the bordered
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Hessian for warlord A is

HBA =


0 −

(
cAw
σA

+ 1
)
− ck
σA

−
(
cAw
σA

+ 1
)

∂2VA
∂W 2

A

∂2VA
∂WAKA

− ck
σA

∂2VA
∂KAWA

∂2VA
∂K2

A

 (A.49)

and is satisfied when the determinant, |HBA|, is greater than zero; that is,

|HBA| > 0 → α· e

α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)
−11+e

α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`A)2

)·φ·(`c−`A)2

<
2(cAw+σA)
ck(KA+KB)

. (A.50)

Substituting the equilibrium levels of W ∗
A, W ∗

B, K∗A and K∗B into equation (A.50):

α· e

α·
(

WB
φ·(`c−1)2

−WA
φ·`2c

)
−11+e

α·
(

WB
φ·(`c−1)2

−WA
φ·`2c

)·φ·`2c
< 2(cAw+σA)

ck(KA+KB)

α·
cAw+σA
cBw+σB

( `c
`c−1)

2
−1(

1+
cAw+σA
cBw+σB

( `c
`c−1)

2
)
·φ·`2c

<
2(cAw+σA)

φ
α ·((cAw+σA)`2c+(cBw+σB)(`c−1)2)

(cAw+σA)`2c−(cBw+σB)(`c−1)2 < 2(cAw+σA)·`2c

0 < (cAw+σA)`2c+(cBw+σB)(`c−1)2.

To check that the second-order condition is satisfied for warlord B, the bordered

Hessian for warlord B is

HBB =


0 −

(
cBw
σB

+ 1
)
− ck
σB

−
(
cBw
σB

+ 1
)

∂2VB
∂W 2

B

∂2VB
∂WBKB

− ck
σB

∂2VB
∂KBWB

∂2VB
∂K2

B

 (A.51)
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and is satisfied when the determinant, |HBB|, is greater than zero; that is,

|HBB| > 0 → α· e

α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)
−11+e

α·
(

WA

φ·(`c−`A)2−
WB

φ·(`c−`B)2

)·φ·(`c−`B)2

<
2(cBw+σB)
ck(KA+KB)

. (A.52)

Substituting the equilibrium levels W ∗
A, W ∗

B, K∗A and K∗B into equation (A.52):

α· e

α·
(
WA
φ·`2c

− WA
φ·(`c−1)2

)
−11+e

α·
(
WA
φ·`2c

− WB
φ·(`c−1)2

)·φ·(`c−1)2

< 2(cBw+σB)

ck(KA+KB)

α·
cBw+σB
cAw+σA

( `c−1
`c )

2
−1(

1+
cBw+σB
cAw+σA

( `c−1
`c )

2
)
·φ·(`c−1)2

<
2(cBw+σB)

φ
α ·((cAw+σA)`2c+(cBw+σB)(`c−1)2)

(cBw+σB)(`c−1)2−(cAw+σA)`2c < 2(cBw+σB)(`c−1)2

0 < (cAw+σA)`2c+(cBw+σB)(`c−1)2.

� Proof for Theorem 8:

Equation (3.77) is derived by substituting equations (3.72) and (3.73) into the CSF

found above in equation (3.3). Explicitly,

π∗A =
1

1 + e
α·
(

WB

φ·(`c−`B)2−
WA

φ·(`c−`B)2

)

=
1

1 + e
− ln

(
cBw+σB
cAw+σA

(`c−1)2

`2c

)

=
1

1 + e
ln

(
cAw+σA
cBw+σB

`2c
(`c−1)2

) =
1

1 + cAw+σA
cBw+σB

(
`c
`c−1

)2 .
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Equation (3.78) follows by

π∗B = 1− π∗A

= 1− 1

1 + cAw+σA
cBw+σB

(
`c
`c−1

)2

=
1

1 + cBw+σB
cAw+σA

(
`c−1
`c

)2 .

� Proof for Theorem 9:

The proof for Theorem 9 begins by maximizing warlord A and B’s optimization

problems for the two choice variables W and K. Let λA and λB be the associated

Lagrangian multipliers for maximization problems (4.2) and (4.3). The Lagrangian

equations for warlords A and B are

LA =
(

m·K̂

1+e
α·(WB−WA+φ·ˆ̀)

)
+(mKA)·(1−(1−`c)β)+λA

(
ℵA−

(
cAw+σA
σA

)
WA−

(
ck
σA

)
KA

)
(A.53)

LB =
(

m·K̂

1+e
α·(WA−WB−φ·ˆ̀)

)
+(mKB)·(1−`cβ)+λB

(
ℵB−

(
cBw+σB
σB

)
WB−

(
ck
σB

)
KB

)
(A.54)

Therefore:

∂LA
∂WA

=0 ⇒ α·m·K̂·eα·(WB−WA+φ·ˆ̀)(
1+e

α(WB−WA+φ·ˆ̀)
)2 =( cwσ +1)·λA (A.55)

∂LA
∂KA

=0 ⇒ m·(1−`c)·β

1+e
α·(WB−WA+φ·ˆ̀)

+m·(1−(1−`c)·β)=
ck
σ
·λA (A.56)

∂LB
∂WB

=0 ⇒ α·m·K̂·eα(WA−WB−φ·ˆ̀)(
1+e

α·(WA−WB−φ·ˆ̀)
)2 =( cwσ +1)·λB (A.57)

∂LB
∂KB

=0 ⇒ m·`c
1+e

α·(WA−WB−φ·ˆ̀)
+m·(1−`c·β)=

ck
σ
·λB . (A.58)
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From equations (A.55) and (A.56),

(
m·(1−`c)·β

1+e
α(WB−WA+φ·ˆ̀)

+m·(1−(1−`c)·β)

)
·
(
σ
ck

)
=

(
α·m·K̂·σ
cw+σ

)
· e

α(WB−WA+φ·ˆ̀)(
1+e

α(WB−WA+φ·ˆ̀)
)2

 1
α·m ·

(
1+e

α(WB−WA+φ·ˆ̀)
)2

e
α(WB−WA+φ·ˆ̀)

·( m·(1−`c)·β

1+e
α(WB−WA+φ·ˆ̀)

+m·(1−(1−`c)·β)

)
·
(
σ
ck

)
= K̂·σ

cw+σ

(
1+e

α(WB−WA+φ·ˆ̀)

e
α(WB−WA+φ·ˆ̀)

)
·
(

(1−`c)·β+
(

1+eα(WB−WA+φ·ˆ̀)
)
·(1−(1−`c)·β)

)
·
(

σ
α·ck

)
= K̂·σ

cw+σ

(
1+e

α(WB−WA+φ·ˆ̀)

e
α(WB−WA+φ·ˆ̀)

)
·
(

1+
(
eα(WB−WA+φ·ˆ̀)

)
·(1−(1−`c)·β)

)
·
(

σ
α·ck

)
= K̂·σ

cw+σ

(
1+e

α(WB−WA+φ·ˆ̀)

e
α(WB−WA+φ·ˆ̀)

)
·
(

1+
(
eα(WB−WA+φ·ˆ̀)

)
·(1−(1−`c)·β)

)
·
(
cw+σ
α·ck

)
= K̂, (A.59)

and from equations (A.57) and (A.58),

(
m·`c·β

1+e
α(WA−WB−φ·ˆ̀)

+m·(1−`c·β)

)
·
(
σ
ck

)
=

(α·m)· e
α(WA−WB−φ·ˆ̀)(

1+e
α(WA−WB−φ·ˆ̀)

)2

·( K̂·σ
cw+σ

)

 1
α·m ·

(
1+e

α(WA−WB−φ·ˆ̀)
)2

e
α(WA−WB−φ·ˆ̀)

·( m·`c·β

1+e
α(WA−WB−φ·ˆ̀)

+m·(1−`c·β)

)
·
(
σ
ck

)
= K̂·σ

cw+σ

(
1+e

α(WA−WB−φ·ˆ̀)

e
α(WA−WB−φ·ˆ̀)

)
·
(
`c·β+

(
1+eα(WA−WB−φ·ˆ̀)

)
·(1−`c·β)

)
·
(

σ
α·ck

)
= K̂·σ

cw+σ

(
1+e

α(WA−WB−φ·ˆ̀)

e
α(WA−WB−φ·ˆ̀)

)
·
(

1+
(
eα(WA−WB−φ·ˆ̀)

)
·(1−`c·β)

)
·
(

σ
α·ck

)
= K̂·σ

cw+σ

(
1+e

α(WA−WB−φ·ˆ̀)

e
α(WA−WB−φ·ˆ̀)

)
·
(

1+
(
eα(WA−WB−φ·ˆ̀)

)
·(1−`c)

)
·
(
cw+σ
α·ck

)
= K̂. (A.60)
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Equating equations (A.59) and (A.60) leads to the following relationship:

(
1+e

α(WB−WA+φ·ˆ̀)

e
α(WB−WA+φ·ˆ̀)

)
·
(

1+
(
eα(WB−WA+φ·ˆ̀)

)
·(1−(1−`c)·β)

)
=

(
1+e

α(WA−WB−φ·ˆ̀)

e
α(WA−WB−φ·ˆ̀)

)
·
(

1+
(
eα(WA−WB−φ·ˆ̀)

)
·(1−`c·β)

)
.

From the definitions of πA and πB found in equation (3.41),

eα·(WB−WA+φ·ˆ̀) = eα·(−1)(WA−WB−φ·ˆ̀) =
1

eα·(WA−WB−φ·ˆ̀)
.

Substituting the above equation into (A.61),

(
1+e

α(WB−WA+φ·ˆ̀)

e
α(WB−WA+φ·ˆ̀)

)
·
(

1+
(
eα(WB−WA+φ·ˆ̀)

)
·(1−(1−`c)·β)

)

=

(
1+e

α(WA−WB−φ·ˆ̀)

e
α(WA−WB−φ·ˆ̀)

)
·
(

1+
(
eα(WA−WB−φ·ˆ̀)

)
·(1−`c·β)

)

(
1+e

α(WB−WA+φ·ˆ̀)

e
α(WB−WA+φ·ˆ̀)

)
·
(

1+
(
eα(WB−WA+φ·ˆ̀)

)
·(1−(1−`c)·β)

)

=
(
eα(WB−WA+φ·ˆ̀)

)
·
(

1+e
α(WB−WA+φ·ˆ̀)

e
α(WB−WA+φ·ˆ̀)

)
·
(

1+ 1−`c·β

e
α(WB−WA+φ·ˆ̀)

)

1+
(
eα(WB−WA+φ·ˆ̀)

)
·(1−(1−`c)·β)=

(
eα(WB−WA+φ·ˆ̀)

)
+1−`c·β

`c·β=
(
eα(WB−WA+φ·ˆ̀)

)
·(1−`c)·β

eα(WB−WA+φ·ˆ̀)= `c
1−`c

and eα·(WA−WB−φ·
ˆ̀)= 1−`c

`c
(A.61)

in which,

WA=WB+φ·ˆ̀− 1
α
·ln( `c

1−`c ) (A.62)
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and

WB=WA−φ·ˆ̀+ 1
α
·ln( `c

1−`c ). (A.63)

Substituting (A.61) into either (A.59) or (A.60),

K̂ =
(

1+e
α(WB−WA+φ·ˆ̀)

e
α(WB−WA+φ·ˆ̀)

)
·
(

1+
(
eα(WB−WA+φ·ˆ̀)

)
·(1−(1−`c)·β)

)
·
(
cw+σ
α·ck

)

=
(

1+ `c
1−`c
`c

1−`c

)
·(1+( `c

1−`c )·(1−(1−`c)·β))·
(
cw+σ
α·ck

)

= ( `c+(1−`c)
`c

)·(1+ `c
1−`c

−`c·β)·
(
cw+σ
α·ck

)

= ( 1
`c

)·( 1
1−`c

−`c·β)·
(
cw+σ
α·ck

)

K̂ = ( 1
`c·(1−`c)

−β)·
(
cw+σ
α·ck

)
. (A.64)
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Using the equations (3.38), (A.62), (A.63) and (A.64)

K̂ = ( 1
`c·(1−`c)

−β)·
(
cw+σ
α·ck

)

KA·(1−`c)·β+KB ·`c·β = ( 1
`c·(1−`c)

−β)·
(
cw+σ
α·ck

)

KA·(1−`c)·β = ( 1
`c·(1−`c)

−β)·
(
cw+σ
α·ck

)
−KB ·`c·β

KA = ( 1
`c·(1−`c)

−β)·( 1
(1−`c)·β )·

(
cw+σ
α·ck

)
−KB · `c

1−`c

= ( 1
`c·(1−`c)

−β)·( 1
(1−`c)·β )·

(
cw+σ
α·ck

)
−
(
σ
ck

)
·( `c

1−`c )·(ℵB−( cwσ +1)·WB)

= ( 1
`c·(1−`c)

−β)·( 1
(1−`c)·β )·

(
cw+σ
α·ck

)

−
(
mR−cE

ck

)
·( `c

1−`c )·(ℵB−( cwσ +1)·(WA−φ·ˆ̀+ 1
α
·ln( `c

1−`c )))

= ( 1
`c·(1−`c)

−β)·( 1
(1−`c)·β )·

(
cw+σ
α·ck

)
−
(
σ
ck

)
·( `c

1−`c )·(ℵA+
ck
σ
·KA)

−
(
σ
ck

)
·( `c

1−`c )·(ℵB−( cwσ +1)·( 1
α
·ln( `c

1−`c )−φ·
ˆ̀))

KA·(1+ `c
1−`c ) = ( 1

`c·(1−`c)
−β)·( 1

(1−`c)·β )·
(
cw+σ
α·ck

)
−
(
σ
ck

)
·( `c

1−`c )·(ℵB−ℵA)

+
(
σ
ck

)
·( `c

1−`c )·(
cw
σ

+1)·( 1
α
·ln( `c

1−`c )−φ·
ˆ̀)

K∗A = (`c)·
(
σ
ck

)
·(ℵA−ℵB)+

(
cw+σ
ck

)
·(( 1

α)·( 1
`c·(1−`c)·β

−1)+ `c
α
·ln( `c

1−`c )−(`cφ)·ˆ̀).
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Similarly for warlord B,

KB = ( 1
`c·(1−`c)

−β)·( 1
`c·β )·

(
cw+σ
α·ck

)
−KA·( 1−`c

`c
)

= ( 1
`c·(1−`c)

−β)·( 1
`c·β )·

(
cw+σ
α·ck

)
−( 1−`c

`c
)·(`c)·(ℵA−ℵB)·

(
σ
ck

)

−( 1−`c
`c

)·
(
cw+σ
ck

)
·(( 1

α)·( 1
`c·(1−`c)·β

−1)+ `c
α
·ln( `c

1−`c )−(`cφ)·ˆ̀)

=
(
cw+σ
α·ck

)
·(α·(1−`c)·(φ·ˆ̀+ln( 1−`c

`c
))+( 1

`c·(1−`c)·β
−1)·( 1

`c
− 1−`c

`c
))+(1−`c)·

(
σ
ck

)
·(ℵB−ℵA)

K∗B =
(
cw+σ
α·ck

)
·(α·(1−`c)·(φ·ˆ̀+ln( 1−`c

`c
))+( 1

`c·(1−`c)·β
−1))+(1−`c)·

(
σ
ck

)
·(ℵB−ℵA).

Substituting the equilibrium level of capital K∗A, from equation (4.8), into warlord

A’s constraint from equation (3.38) leads to the equilibrium number of warriors W ∗
A,

found in equation (4.6):

W ∗A·(
cw
σ

+1) = ℵA−( ckσ )·KA

= ℵA−`c·(ℵA−ℵB)+( cw+σ
σ )·(( 1

α)·( 1
`c·(1−`c)·β

−1)+ `c
α
·ln( `c

1−`c )−(`cφ)·ˆ̀)

= ℵA·(1−`c)+ℵB ·`c−( cwσ +1)·(( 1
α)·( 1

`c·(1−`c)·β
−1)+ `c

α
·ln( `c

1−`c )−(`cφ)·ˆ̀)

W ∗A = ( σ
cw+σ )·(ℵA·(1−`c)+ℵB ·`c)−(( 1

α)·( 1
`c·(1−`c)·β

−1)+ `c
α
·ln( `c

1−`c )−(`cφ)·ˆ̀).

Similarly, substituting the equilibrium level of capital K∗B, from equation (4.9), into

warlord B’s constraint from equation (3.38) leads to the equilibrium number of war-
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riors W ∗
B, found in equation (4.7):

W ∗B ·(
cw
σ

+1) = ℵB−( ckσ )·KB

= ℵB−( cw+σ
α·σ )·(α·(1−`c)·(φ·ˆ̀+ln( 1−`c

`c
))+( 1

`c·(1−`c)·β
−1))+(1−`c)·(ℵB−ℵA)

= ℵA·(1−`c)+ℵB ·`c−( cw+σ
α·σ )·(α·(1−`c)·(φ·ˆ̀+ln( 1−`c

`c
))+( 1

`c·(1−`c)·β
−1))

W ∗B = ( σ
cw+σ )·(ℵA·(1−`c)+ℵB ·`c)− 1

α
·(α·(1−`c)·(φ·ˆ̀+ln( 1−`c

`c
))+( 1

`c·(1−`c)·β
−1)).

To show the second-order conditions, the bordered Hessian for warlord A again is

HBA =



0 −
(
cw
σ

+ 1
)
− ck

σ

−
(
cw
σ

+ 1
)

∂2VA
∂W 2

A

∂2VA
∂WAKA

− ck
σ

∂2VA
∂KAWA

∂2VA
∂K2

A


(A.65)

and is satisfied when the determinant, |HBA|, is greater than zero; that is,

|HBA| = ( cwσ +1)·( ckσ )·
(

∂2VA
∂WAKA

)
−( ckσ )·

(
( ckσ )·

(
∂2VA
∂W2

A

)
−( cwσ +1)·

(
∂2VA

∂KAWA

))
>0

= ( cwσ +1)·
(

∂2VA
∂WAKA

)
−( ckσ )·

(
∂2VA
∂W2

A

)
+( cwσ +1)·

(
∂2VA

∂KAWA

)
>0

= 2·( cwσ +1)·
(

∂2VA
∂WAKA

)
−( ckσ )·

(
∂2VA
∂W2

A

)
>0

Using equations (A.55), (A.56), (A.62), (A.63), taking the appropriate derivatives
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and substituting into the above equation

|HBA| = 2·( cwσ +1)·

 e
α·(WB−WA+φ`c)(

1+e
α·(WB−WA+φ`c)

)2

·(α·m)·(1−`c)·β

−( ckσ )·

 e
α·(WB−WA+φ`c)

(
e
α·(WB−WA+φ`c)−1

)
(

1+e
α·(WB−WA+φ`c)

)3

·(α·m)·K̂>0

= 2·( cwσ +1)·(α·m)·(1−`c)·β−
(
e
α·(WB−WA+φ`c)−1

e
α·(WB−WA+φ`c)+1

)
·(α·m)·K̂>0

= 2·( cwσ +1)·(1−`c)·β−( ckσ )·
(

`c
1−`c

−1

`c
1−`c

+1

)
·
(
cw+σ
ck

)
·( 1
`c·(1−`c)·β

−1)>0

= 2·(1−`c)·β−(2`c−1)·( 1
`c·(1−`c)·β

−1)>0

= 2·β−2·`c·β− 2·`c−1
`c·(1−`c)

+2·`c·β−β>0

= β> 2·`c−1
`c·(1−`c)

= `c·β−`2c ·β>2·`c−1

= 0>`2c ·β+`c·(2−β)−1,

where `2
c · β + `c · (2− β)− 1 = 0 when

`c =
β − 2±

√
(2− β)2 + 4 · β
2 · β

=
β − 2±

√
4 + β2

2 · β
.

Therefore, |HBA| > 0 when β − 2±
√

4 + β2 > `c · (2 · β).
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To check that the second-order condition is satisfied for warlord B,

HBB =


0 −

(
cw
σ

+ 1
)
− ck

σ

−
(
cw
σ

+ 1
)

∂2VB
∂W 2

B

∂2VB
∂WBKB

− ck
σ

∂2VB
∂KBWB

∂2VB
∂K2

B

 (A.66)

and is satisfied when the determinant, |HBB|, is greater than zero; that is,

|HBB | = ( cwσ +1)·( ckσ )·
(

∂2VB
∂WBKB

)
−( ckσ )·

(
( ckσ )·

(
∂2VB
∂W2

B

)
−( cwσ +1)·

(
∂2VB

∂KBWB

))
>0

= ( cwσ +1)·
(

∂2VB
∂WBKB

)
−( ckσ )·

(
∂2VB
∂W2

B

)
+( cwσ +1)·

(
∂2VB

∂KBWB

)
>0

= 2·( cwσ +1)·
(

∂2VB
∂WBKB

)
−( ckσ )·

(
∂2VB
∂W2

B

)
>0

Using equations (A.57), (A.58), (A.62), (A.63), taking the appropriate derivatives
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and substituting into the above equation

|HBB | = 2·( cwσ +1)·

 e
α·(WA−WB−φ`c)(

1+e
α·(WA−WB−φ`c)

)2

·(α·m)·`c·β

−( ckσ )·

 e
α·(WA−WB−φ`c)

(
e
α·(WA−WB−φ`c)−1

)
(

1+e
α·(WA−WB−φ`c)

)3

·(α·m)·K̂>0

= 2·( cwσ +1)·(α·m)·`c·β−
(
e
α·(WA−WB−φ`c)−1

e
α·(WA−WB−φ`c)+1

)
·(α·m)·K̂>0

= 2·( cwσ +1)·`c·β−( ckσ )·
(

1−`c
`c
−1

1−`c
`c

+1

)
·
(
cw+σ
ck

)
·( 1
`c·(1−`c)·β

−1)>0

= 2·`c·β−(1−2`c)·( 1
`c·(1−`c)·β

−1)>0

= 2·`c·β− 1−2·`c
`c·(1−`c)

+β·(1−2·`c)>0

= β·`c−`2c ·β>1−2·`c

= −`2c ·β+`c·(2+β)−1>0,

where −`2
c · β + `c · (2 + β)− 1 = 0 when

`c =
−(2 + β)±

√
(2 + β)− 4 · β

−2 · β
=

(2 + β)± (−1) ·
√

(2 + β)− 4 · β
2 · β

.

Therefore, |HBA| > 0 when `c · (2 ·β) >
(2+β)±(−1)·

√
(2+β)−4·β

2·β . From the above analysis,

the second-order conditions for warlord A and warlord B are both satisfied when the

location of the point of conflict satisfies equation (4.4).

� Proof for Theorem 10:
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Equation (4.12) is found by substituting in equation (A.61), found in the above

proof, into equation (3.41). Explicitly,

π∗A =
1

1 + eα·(W
∗
B−W

∗
A+φ· ˆ̀c)

=
1

1 + `c
1−`c

=
1− `c

1− `c + `c

= 1− `c.

Equation (4.13) follows by

π∗B = 1− π∗A

= 1− (1− `c)

= `c.
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