This item is non-discoverable
Loading...
Non-discoverable
Prospects for making polar molecules with microwave fields
Kotochigova, S
Kotochigova, S
Citations
Altmetric:
Genre
Journal Article
Date
2007-08-17
Advisor
Committee member
Group
Department
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
10.1103/PhysRevLett.99.073003
Abstract
We propose a mechanism to produce ultracold polar molecules with microwave fields. It converts trapped ultracold atoms into vibrationally excited molecules by a single microwave transition and entirely depends on the existence of a permanent dipole moment in the molecules. As opposed to production of molecules by photoassociation or magnetic-field Feshbach resonances, our method does not rely on properties of excited states or existence of Feshbach resonances. We determine conditions for optimal creation of polar molecules in vibrationally excited states of the ground-state potential by changing frequency and intensity of the microwave field. We also explore the possibility to produce vibrationally cold molecules by combining the microwave field with an optical Raman transition or by applying a microwave field to Feshbach molecules. The production mechanism is illustrated for KRb and RbCs. © 2007 The American Physical Society.
Description
Citation
Citation to related work
American Physical Society (APS)
Has part
Physical Review Letters
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu