Loading...
Thumbnail Image
Non-discoverable
Item

Understanding band gaps of solids in generalized Kohn-Sham theory

Perdew, JP
Yang, W
Burke, K
Yang, Z
Gross, EKU
Scheffler, M
Scuseria, GE
Henderson, TM
Zhang, IY
Ruzsinszky, A
... show 4 more
Citations
Altmetric:
Genre
Pre-print
Date
2017-03-14
Advisor
Committee member
Group
Department
Permanent link to this record
Research Projects
Organizational Units
Journal Issue
DOI
10.1073/pnas.1621352114
Abstract
The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS densityfunctional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.
Description
Citation
Citation to related work
Proceedings of the National Academy of Sciences
Has part
Proceedings of the National Academy of Sciences of the United States of America
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
Embedded videos