Loading...
Quantum Stable Process
HUANG, SHIH TING
HUANG, SHIH TING
Citations
Altmetric:
Genre
Thesis/Dissertation
Date
2015
Advisor
Committee member
Group
Department
Mathematics
Permanent link to this record
Collections
Research Projects
Organizational Units
Journal Issue
DOI
http://dx.doi.org/10.34944/dspace/3015
Abstract
It is believed that in the long time limit, the limiting behavior of the discrete-time quantum random walk will cross from quantum to classical if we take into account of the decoherence. The computer simulation has already shown that for the discrete-time one-dimensional Hadamard quantum random walk with coin decoherence such that the measurement operators on the coin space are defined by A0 = Ic √1 − p, A1 = |R > < R| √p and A2 = |L > < L > < L| √p is diffusive when 0 < p ≤ 1 and it is ballistic when P = 0. In this thesis, we are going to let p to be dynamical depending on the step t, that is, we consider p = 1/tß, ß ≥ 0 and we found that it has sub-ballistic behavior for 0 < ß < 1. Furthermore, we study not only the coin decoherence, but the total decoherence, that means the measurement operators apply on the Hilbert space H = Hp ⊗ Hc instead of the coin space only. We find that the results are both sub-ballistic for the coin and total decoherence when 0 < ß < 1. Moreover, according to the model given in [T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. A 67, 032304 (2003)], we know that if the walker has chance to hop to the second nearest neighbor lattice in one step, the long-time behavior is also sub-ballistic and it is similar to that the walker can hop to the third nearest neighbor lattice in one step. By the way, we also find that if we combine the classical part of the model given in [Jing Zhao and Peiqing Tong. One-dimensional quantum walks subject to next nearest neighbor hopping decoherence, Nanjing Normal University, preprint (2014)] with different step length, then this decoherence will also cross from quantum to classical. Finally, we define the quantum γ-stable walk and obtain the quantum γ-stable law with decoherence. By this decoherence, we can see that the limiting behavior of the quantum stable walk will also cross from quantum to classical and we shows that it spreads out faster than the classical stable walk.
Description
Citation
Citation to related work
Has part
ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
