Show simple item record

dc.contributor.advisorDarvish, Kurosh
dc.creatorChen, Ji
dc.date.accessioned2020-10-21T14:27:03Z
dc.date.available2020-10-21T14:27:03Z
dc.date.issued2010
dc.identifier.other864884728
dc.identifier.urihttp://hdl.handle.net/20.500.12613/958
dc.description.abstractThe ability to control head orientation relative to the body is a multi-sensory process that mainly depends on three sensory pathways namely, proprioceptive, vestibular, and visual. A system to study the sensory integration of head orientation was developed and tested. A test seat with five-point harness was assembled to provide the passive postural support. A light-weight head-mount display (HMD) was designed for mounting multi-axis accelerometers and a mini- CCD camera to provide the visual input to virtual reality (VR) goggles with 39° horizontal field of view. A digitally generated sinusoidal signal was delivered to a motor-driven computer-controlled sled on a 6m linear railing system. A data acquisition system was designed to collect acceleration data. A pilot study was conducted to test the system. Four young healthy subjects were seated with their trunks fixed to the seat. Subjects received a sinusoidal anterior-posterior translation with peak acceleration of 0.06g at 0.1Hz and 0.12g at 0.2Hz, 0.5Hz and 1.1Hz. Four sets of visual conditions were randomly presented along with the translation. These conditions included eyes open looking forward, backward, and sideways, and also eyes closed. Linear acceleration data were collected from linear accelerometers placed on the head, trunk and seat and were processed using Matlab. The head motion was analyzed using Fast Fourier Transform (FFT) to derive gain and phase of head pitch acceleration relative to seat linear acceleration. A randomization test for two independent variables was used to test significance of visual and inertial effects on response gain and phase shifts. Results show that the gain was close to one with no significant difference among visual conditions across frequencies. The phase was shown to be dependent on the head strategy each subject used. The ability to control head orientation relative to the body is a multi-sensory process that mainly depends on three sensory pathways namely, proprioceptive, vestibular, and visual. A system to study the sensory integration of head orientation was developed and tested. A test seat with five-point harness was assembled to provide the passive postural support. A light-weight head-mount display (HMD) was designed for mounting multi-axis accelerometers and a mini- CCD camera to provide the visual input to virtual reality (VR) goggles with 39° horizontal field of view. A digitally generated sinusoidal signal was delivered to a motor-driven computer-controlled sled on a 6m linear railing system. A data acquisition system was designed to collect acceleration data. A pilot study was conducted to test the system. Four young healthy subjects were seated with their trunks fixed to the seat. Subjects received a sinusoidal anterior-posterior translation with peak acceleration of 0.06g at 0.1Hz and 0.12g at 0.2Hz, 0.5Hz and 1.1Hz. Four sets of visual conditions were randomly presented along with the translation. These conditions included eyes open looking forward, backward, and sideways, and also eyes closed. Linear acceleration data were collected from linear accelerometers placed on the head, trunk and seat and were processed using Matlab. The head motion was analyzed using Fast Fourier Transform (FFT) to derive gain and phase of head pitch acceleration relative to seat linear acceleration. A randomization test for two independent variables was used to test significance of visual and inertial effects on response gain and phase shifts. Results show that the gain was close to one with no significant difference among visual conditions across frequencies. The phase was shown to be dependent on the head strategy each subject used.
dc.format.extent79 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectEngineering, Mechanical
dc.subjectEngineering, Biomedical
dc.subjectHealth Sciences, Rehabilitation and Therapy
dc.subjectGain
dc.subjectHead Orientation
dc.subjectLinear Acceleration
dc.subjectPhase
dc.subjectSystem
dc.subjectVirtual Reality
dc.titleDesign and Usability of a System for the Study of Head Orientation
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberWright, William Geoffrey
dc.contributor.committeememberKeshner, Emily Anne
dc.description.departmentMechanical Engineering
dc.relation.doihttp://dx.doi.org/10.34944/dspace/940
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreeM.S.
refterms.dateFOA2020-10-21T14:27:03Z


Files in this item

Thumbnail
Name:
Chen_temple_0225M_10342.pdf
Size:
1.451Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record