• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MONITORING STORMWATER INFILTRATION IN A VACANT LOT COMPARING TIME-LAPSE ELECTROMAGNETIC INDUCTION AND ELECTRICAL RESISTIVITY TOMOGRAPHY

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Carsillo_temple_0225M_13453.pdf
    Size:
    7.643Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2018
    Author
    Carsillo, Vincent John
    Advisor
    Toran, Laura E.
    Committee member
    Nyquist, Jonathan
    Ravi, Sujith
    Department
    Geology
    Subject
    Hydrologic Sciences
    Geophysics
    Water Resources Management
    Electromagnetic Induction
    Infiltration
    Urban Hydrology
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/914
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/896
    Abstract
    Vacant lots in cities and surrounding urban areas can potentially be used for stormwater management because they are pervious. However, the extent to which vacant lots provide pervious cover to increase infiltration and reduce stormflow is poorly understood. The goal of this study was to develop faster methods for monitoring stormwater infiltration to improve characterization of heterogeneous urban systems. Geophysical techniques are capable of mapping and characterizing subsurface materials, but are often limited by time and sensitivity constraints. In this study, the infiltration characteristics of a vacant lot created by the demolition of a house was characterized using a series of modeling, field and lab experiments. Site characterization under background conditions with an EM Profiler was used to map zones of different fill materials. Three zones were identified in the study site: grass area, driveway area, and a former house area. Transient soil moisture conditions were monitored during irrigation tests using two geophysical methods (electrical resistivity tomography [ERT] and electromagnetic induction [EM]) to evaluate method sensitivity and differences between the three zones. ERT proved more sensitive than EM profiling at detecting changes in the three zones. Soil moisture changes in the driveway area were particularly difficult to detect using EM. The EM Profiler showed a reduction rather than increase in conductivity at the start of irrigation and storms, which was attributed to flushing of high conductivity pore fluids by dilute irrigation or rain water. This explanation was supported using Archie’s Law to model the response of apparent conductivity under highly conductive pore fluid conditions. The EM Profiler was also used under natural precipitation conditions to quickly monitor areas too large for the ERT to reasonably survey. The results suggested that EM instrument drift needs to be corrected to make the method more sensitive. It was difficult to detect differences in hydrologic characterization between areas of the vacant lot using traditional soil point measurements because of the inherent spatial variability. The most useful point measurement was soil moisture loggers. Data from soil moisture loggers was used to parameterize the model; in addition, the soil moisture loggers showed a slow drying period. By combining the EM Profiler method with soil moisture data and applying corrections for drift, some improvement in sensitivity might be achieved. Quantitative characterization of fill material was shown by ERT, which detected more heterogeneous infiltration in the area of the former house than in the grass area.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.