• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Validation of Smartphone-Derived Digital Phenotypes for Cognitive Assessment in Older Adults

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hackett_temple_0225E_15346.pdf
    Embargo:
    2025-08-24
    Size:
    1.302Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2023
    Author
    Hackett, Katherine cc
    Advisor
    Giovannetti, Tania
    Committee member
    Drabick, Deborah A.
    Smith, David V.
    Alloy, Lauren B.
    Tan, Chiu C.
    Barnett, Ian J.
    Department
    Psychology
    Subject
    Clinical psychology
    Aging
    Digital phenotyping
    Neuropsychological assessment
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8974
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8938
    Abstract
    As the global burden of dementia continues to plague our healthcare system, efficient, objective, and sensitive tools to characterize cognition and detect underlying neurodegenerative disease increasingly are needed. Digital phenotyping relies on passive, continuous collection of smartphone sensor data during everyday life to measure activities, behaviors, and mood. The present study explored the feasibility, acceptability, and validity of a digital phenotyping protocol as a novel method for characterizing cognition and function among a heterogeneous group of older adults. Validation analyses were based on a recently proposed conceptual model explaining activity level and variability as a function of cognitive ability level. Exploratory analyses aimed to examine and account for a range of participant and environmental factors that may be associated with digital phenotyping data. A total of 22 participants ages 65 - 81 years with either healthy cognition or mild cognitive impairment (MCI) used their own personal smartphones naturally during a four-week study period while a secure software application unobtrusively and continuously obtained Global Positioning System (GPS)-based movement trajectories. Participants completed gold-standard neuropsychological measures and questionnaires of everyday function, mood, and mobility habits at a baseline visit intended to evaluate construct validity. In-depth informed consent and a comprehension of consent quiz also were administered at baseline to inform feasibility of explaining digital phenotyping study procedures to older adults. Debriefing questionnaires were completed at the end of the study period, including questions pertaining to acceptability. Correlation analyses showed that measures of GPS activity and variability were positively associated with validators of cognition, everyday function, mood, and mobility habits. Potential confounding factors included season of study participation, unexpected health changes, and highest lifetime household annual income, whereas participant demographics such as education, sex, and race were not significantly associated with GPS features. Metrics on study withdrawal, comprehension of consent, and satisfaction ratings at study completion revealed good feasibility and acceptability. In sum, digital phenotyping shows promise as a feasible, acceptable, and potentially valid method to efficiently and objectively assess cognition, function, and mood in a cohort of older adults. Future studies will benefit from incorporating these preliminary findings and testing predictions in larger, more diverse cohorts both cross-sectionally and over time in longitudinal designs.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.