Show simple item record

dc.contributor.advisorTükel, Çagla
dc.creatorOlubajo, Sophia
dc.date.accessioned2023-09-03T15:02:52Z
dc.date.available2023-09-03T15:02:52Z
dc.date.issued2023-08
dc.identifier.urihttp://hdl.handle.net/20.500.12613/8961
dc.description.abstractBiofilms are aggregates of bacterial cells enclosed within a self-generated extracellular matrix, forming a three-dimensional structure that allows the bacteria cells to firmly attach to both living and non-living surfaces. The extracellular matrix of Salmonella enterica serovar Typhimurium (STm) biofilms is composed of curli, cellulose, BapA, O-antigen capsule, colanic acid and extracellular DNA (eDNA) and protects the resident bacteria from diverse environmental stresses such as antibiotics and the host immune response. Studies have shown that curli, which accounts for 85% of the extracellular matrix, plays a significant role in the establishment of the matrix. Curli interacts with eDNA and cellulose to create a mesh-like network that stabilizes the biofilm, aids in surface adherence, and confers elasticity to the biofilm. Although curli, cellulose, eDNA, and their interactions have been studied, it is not clear how BapA, O-antigen capsule, and colanic acid contribute to Salmonella biofilm structure. Here, we examined the individual role of the matrix components utilizing various isogenic mutants for curli (csgBA), cellulose (bcsE, bcsA), enterobacterial common antigen (wecA), BapA protein (bapA), colanic acid (wza-wcaM), O-antigen capsule (yihQ) and csgD, a master regulator for biofilm formation. We characterized the colony biofilm morphology by Congo red-Coomassie blue staining and the biomass in pellicle biofilms by crystal violet assay. Next, we utilized a computational 4D approach that was developed in collaboration with the Quiesser and Buttaro Labs to identify the contribution of each matrix component into the material properties of the biofilm. Finally, by utilizing the above-mentioned assays, we explored the influence of different culture media on biofilm formation and architecture comparing Tryptic Soy broth (TSB) and No salt Luria Broth (LB No salt) media for biofilm growth. In our studies, we found that only curli-containing strains maintained the ability to form biofilms comparable to wildtype STm and irrespective of the media condition, indicating a key role for curli in the establishment of biofilms. However, when characterizing the physical properties of the biofilms utilizing the 4D assay, we saw a different phenotype between the two culture media conditions. We observed that when biofilms were formed in LB No salt culture condition, curli was the most significant contributor to the rigidity of biofilms such that, in the absence of curli, biofilms were more fluid-like and less rigid when compared to curli-containing strains. In TSB media, curli production was decreased although there was no loss of biofilm rigidity. Overall, our data suggests that different culture conditions could lead to different material properties of STm biofilm matrix, which in turn affects the physical properties such as the rigidity of the biofilms. Additionally, the biofilm matrix components may play redundant roles and another component could compensate for the loss of curli.
dc.format.extent102 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMicrobiology
dc.titleThe Role of the Extracellular Matrix components of Salmonella enterica serovar Typhimurium Biofilms in Biofilm Formation and Architecture via in vitro analysis
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberButtaro, Bettina A.
dc.contributor.committeememberTam, Vincent
dc.contributor.committeememberQueisser, Gillian
dc.description.departmentBiomedical Sciences
dc.relation.doihttp://dx.doi.org/10.34944/dspace/8925
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreeM.S.
dc.identifier.proqst15451
dc.date.updated2023-08-24T16:11:12Z
refterms.dateFOA2023-09-03T15:02:53Z
dc.identifier.filenameOlubajo_temple_0225M_15451.pdf


Files in this item

Thumbnail
Name:
Olubajo_temple_0225M_15451.pdf
Size:
12.69Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record