• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ON THE NONLINEAR INTERACTION OF CHARGED PARTICLES WITH FLUIDS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Abdo_temple_0225E_15388.pdf
    Size:
    686.8Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2023-08
    Author
    Abdo, Elie
    Advisor
    Ignatova, Mihaela
    Committee member
    Gutiérrez, Cristian E., 1950-
    Mitrea, Irina
    Glatt-Holtz, Nathan
    Department
    Mathematics
    Subject
    Fluid mechanics
    Mathematics
    Dynamics
    Electroconvection
    Electrodiffusion
    Global regularity
    Navier-Stokes equations
    Nernst-Planck
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8873
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8837
    Abstract
    We consider three different phenomena governing the fluid flow in the presence of charged particles: electroconvection in fluids, electroconvection in porous media, and electrodiffusion. Electroconvecton in fluids is mathematically represented by a nonlinear drift-diffusion partial differential equation describing the time evolution of a surface charge density in a two-dimensional incompressible fluid. The velocity of the fluid evolves according to Navier-Stokes equations forced nonlinearly by the electrical forces due to the presence of the charge density. The resulting model is reminiscent of the quasi-geostrophic equation, where the main difference resides in the dependence of the drift velocity on the charge density. When the fluid flows through a porous medium, the velocity and the electrical forces are related according to Darcy’s law, which yields a challenging doubly nonlinear and doubly nonlocal model describing electroconvection in porous media. A different type of particle-fluid interaction, called electrodiffusion, is also considered. This latter phenomenon is described by nonlinearly advected and nonlinearly forced continuity equations tracking the time evolution of the concentrations of many ionic species having different valences and diffusivities and interacting with an incompressible fluid. This work is based on [1, 2, 3] and addresses the global well-posedness, long-time dynamics, and other features associated with the aforementioned three models. REFERENCES:[1] E. Abdo, M. Ignatova, Long time dynamics of a model of electroconvection, Trans. Amer. Math. Soc. 374 (2021), 5849–5875. [2] E. Abdo, M. Ignatova, Long Time Finite Dimensionality in Charged Fluids, Nonlinearity 34 (9) (2021), 6173–6209. [3] E. Abdo, M. Ignatova, On Electroconvection in Porous Media, to appear in Indiana University Mathematics Journal (2023).
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.