• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Optical Approaches to Study Nanoscale Electrochemical Processes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Monaghan_temple_0225E_15103.pdf
    Size:
    4.197Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2022
    Author
    Monaghan, Joseph cc
    Advisor
    Willets, Katherine A.
    Committee member
    Strongin, Daniel R.
    Sun, Yugang
    Patil, Chetan Appasaheb
    Department
    Physiology
    Subject
    Physical chemistry
    Analytical chemistry
    Nanoscience
    Electrochemistry
    Nanoparticles
    Optical microscopy
    Silver nanoparticles
    Silver sulfide
    Single entity
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8587
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8551
    Abstract
    In this work, we use optical approaches to study and provide mechanistic insight into electrochemical reactions occurring at the surface of single nanoparticles. Correlated optical-electrochemical studies offer several advantages over single nanoparticle electrochemical studies including, higher spatial resolution, the ability to interrogate many nanoparticles at the same time and identify populations of inactive nanoparticles. Throughout this dissertation, two optical techniques are discussed in detail, dark-field scattering and super-localization imaging. In the first set of experiments, we describe calcite-assisted localization and kinetics (CLocK) microscopy, a multiparameter super-localization imaging technique. By placing a rotating birefringent calcite crystal in the infinity space of an optical microscope, CLocK provides immediate polarization and orientation information while still maintaining the ability to localize a single nanoparticle with < 10 nm resolution. Additionally, we demonstrate that the CLocK point spread function encodes kinetic information that we quantified to be an order of magnitude shorter than the integration time of the camera. In this work, CLocK provides new mechanistic insight into dynamic processes such as the dissolution of single gold nanorods as well as single-molecule surface-enhanced Raman scattering. In the second work, dark-field scattering was employed to monitor a proposed post-synthesis silver nanoparticle surface cleaning strategy to improve homogeneity across a population. Here, a sacrificial silver-sulfide sulfide shell is chemically grown on single silver nanoparticles to outcompete surface impurities. We demonstrate that upon electrochemical removal of the shell, a more reactive and reproducible silver surface can be achieved as revealed by enhanced electrodissoluion of the freshly cleaned silver nanoparticles. In these experiments, we additionally found a sulfide-dependent formation of multiple sulfide-species as well as mixed character sulfide shells on single nanoparticles themselves, thus demonstrating the sensitivity provided by optical microscopy at identifying multiple surface chemistries. Overall, the work in this dissertation highlights the ability of optical tools at revealing heterogeneity in single particle studies providing insight into structure-function relationships.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.