Measuring the Neutron Spin Asymmetry A1n in the Valence Quark Region in Hall C at Jefferson Lab
Genre
Thesis/DissertationDate
2023Author
Cardona, Melanie LeighAdvisor
Sparveris, NikolaosCommittee member
Meziani, Zein-EddineMetz, Andreas
Sawatzky, Brad
Department
PhysicsSubject
PhysicsParticle physics
Nuclear physics and radiation
Hadronic physics
Medium energy nuclear physics
Spin asymmetry
Spin structure
Valence quarks
Permanent link to this record
http://hdl.handle.net/20.500.12613/8584
Metadata
Show full item recordDOI
http://dx.doi.org/10.34944/dspace/8548Abstract
The quest to understand how the nucleon spin is decomposed into its constituent quark and gluon spin and orbital angular momentum (OAM) components has been at the forefront of nuclear physics for decades. Due to the non-perturbative nature of Quantum Chromodynamics (QCD) - the theory describing how quarks and gluons bind together to form protons and neutrons - making absolute predictions of nucleon spin structure is generally difficult, especially as a function of its quark and gluon longitudinal momentum fraction x. Measurements involving nucleon spin structure serve as a sensitive test for QCD, including ab-initio lattice QCD calculations due to the advent of the quasi-PDF formalism, and various predictions that diverge at large-x. The neutron spin asymmetry A1n at high-x is a key observable for probing nucleon spin structure. In the valence domain (x > 0.5), sea effects are expected to be negligible, and so the total nucleon spin is considered to be carried by the valence quarks. The valence region can therefore enable us to study the role of quark OAM and other non-perturbative effects of the strong force. A1^n was measured in the deep inelastic scattering region of 0.40 < x < 0.75 and 6 < Q^2 < 10 GeV^2 in Hall C at Jefferson Lab using a 10.4 GeV longitudinally polarized electron beam, upgraded polarized He-3 target, and the High Momentum Spectrometer (HMS) and Super High Momentum Spectrometer (SHMS). E12-06-110 provides the first precision data in the valence quark region above x = 0.60, and its preliminary results proved consistent with earlier data disqualifying a pQCD model that excluded quark OAM. Combined with previous world proton data, the ratio of the polarized-to-unpolarized up quark momentum distribution (∆u + ∆anti-u)/(u + anti-u) remained positive at large-x, and the down quark (∆d + ∆anti-d)/(d + anti-d) remained negative.ADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduCollections
Related items
Showing items related by title, author, creator and subject.
-
In situ characterization of nanoparticles using rayleigh scatteringSantra, B; Shneider, MN; Car, R; Santra, Biswajit|0000-0003-3609-2106 (2017-01-10)© The Author(s) 2017. We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C 60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.
-
Effect of two-beam coupling in strong-field optical pump-probe experimentsWahlstrand, JK; Odhner, JH; McCole, ET; Cheng, YH; Palastro, JP; Levis, RJ; Milchberg, HM (2013-05-02)Nonlinear optics experiments measuring phase shifts induced in a weak probe pulse by a strong pump pulse must account for coherent effects that only occur when the pump and probe pulses are temporally overlapped. It is well known that a weak probe beam experiences a greater phase shift from a strong pump beam than the pump beam induces on itself. The physical mechanism behind the enhanced phase shift is diffraction of pump light into the probe direction by a nonlinear refractive index grating produced by interference between the two beams. For an instantaneous third-order response, the effect of the grating is to simply double the probe phase shift, but when delayed nonlinearities are considered, the effect is more complex. A comprehensive treatment is given for both degenerate and nondegenerate pump-probe experiments in noble and diatomic gases. Results of numerical calculations are compared to a recent transient birefringence measurement and a recent spectral interferometry experiment. We also present results from two new experiments using spectrally resolved transient birefringence with 800 nm pulses in Ar and air and degenerate chirped pulse spectral interferometry in Ar. Both experiments support the interpretation of the negative birefringence at high intensity as arising from a plasma grating. © 2013 American Physical Society.
-
DEVELOPMENT OF MAGNETO-OPTIC SENSORS WITH GALLIUM IN BISMUTH DOPED RARE-EARTH IRON-GARNET THICK FILMSTao, R. (Rongjia); Riseborough, Peter; Wu, Dong Ho; Won, Chang-Hee, 1967- (Temple University. Libraries, 2017)We have investigated the Faraday effect of bismuth-doped rare-earth iron-garnets with varying doping levels of gallium from z = 1.0 to 1.35. We used lutetium to control the film's in-plane magnetic properties and found that gallium doping levels above the compensation point caused a loss of anisotropy control, a canted out-of-plane magnetization in the film, and an extremely weak but linear coercivity above 10 micro-Tesla fields. Using these results we focused on in-plane films to create 8 layer stacks of 500 um thick films to achieve a minimum detectable field of 50 pT at 1 kHz. Unlike previous Magneto-Optic (MO) studies that typically used thin films of approximately 1um thickness, we used approximately 400um thick films to allow experimentation with the final, robust, ideal form the MO sensor would take. We measured what most other MO studies with garnets neglected: the magnetic anisotropy axis or structure within the film. Knowledge of this structure is essential in improving the sensitivity of a stacked MO probe. Studying thick films proved to be key to understanding the magnetic anisotropy and domain properties that can degrade or enhance the sensitivity of the Faraday rotation in bismuth doped rare-earth iron-garnets to an applied magnetic field and to pointing the direction of future research to develop the conditions for rugged magnetometer sensors.