• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    CHARACTERIZATION OF IMMORTALIZED HUMAN PROSTATE EPITHELIAL CELLS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hashmi_temple_0225M_15144.pdf
    Size:
    3.893Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2023
    Author
    Hashmi, Rumesa
    Advisor
    Grana, Xavier
    Committee member
    Shore, Scott
    Whelan, Kelly
    Campbell, Kerry
    Department
    Biomedical Sciences
    Subject
    Cellular biology
    Biology
    CDKN2A
    Epithelial
    Immortalized cells
    p14
    p16
    Prostate
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8550
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8514
    Abstract
    Prostate cancer (PCa) accounts for an estimated 20% of new cancer cases and 10% of deaths in just US males in 2020. Despite this prevalence, the molecular basis of its development and initiation remains unclear. To help identify the molecular basis of PCa progression, it is important to generate a collection of human prostate epithelial cells (hPrEC) that remain karyotypically normal and represent the epithelial cell types present in the human prostate. hPrEC can only go through a limited number of passages before they become senescent. Immortalization prevents senescence and enables continuous cell division. Our lab previously immortalized hPrEC cells by the expression of human telomerase (hTERT) with concomitant CRISPR inactivation of the CDKN2A locus, which directs the expression of both p16INK4A and p14ARF genes.Characterization of the two clonal cell lines that were generated showed that they maintained normal cell growth characteristics with intact p53 and pRb pathways, near normal karyotypes and have characteristics of basal cell origin. Subsequently, our lab sought to determine if expression of hTERT with knockout of just p16INK4A alone was also sufficient for immortalization, using CRISPR technology to inactivate exon 1α of the CDKN2A locus along with ectopic expression of the hTERT transgene. Knockout of p16INK4A but not p14ARF along with exogenous expression of hTERT resulted in the generation of a new immortal clone. Using these immortalized clones, along with primary hPrEC from ATCC our goal is to further characterize these cells to aid in future attempts aimed at immortalizing normal PrEC from multiple individuals and for the efficient establishment of a primary prostate cancer cell line. Our first approach included immunophenotyping our generated immortal hPrEC clones and ATCC hPrEC’s to identify the cell populations defining each of our clones and the different cell populations present in the primary hPrEC. We also characterized the expression of cells using 3D cell culture to determine their morphology and the expression of relevant markers. Finally, we identified the differentially expressed genes by RNA-seq in our immortalized hPrEC clones and ATCC hPrEC to determine their closest lineage identity as well as find suitable markers to use for future studies. These cell lines will also serve as a model to study transformation of PrEC in culture and xenograft tumorigenesis in mice.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.