• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Exploring Hadron Structure Through Monte-Carlo Fits and Model Calculations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Cocuzza_temple_0225E_15187.pdf
    Size:
    12.71Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2023
    Author
    Cocuzza, Christopher cc
    Advisor
    Metz, Andreas
    Committee member
    Constantinou, Martha
    Surrow, Bernd
    Gamberg, Leonard
    Department
    Physics
    Subject
    Nuclear physics and radiation
    Global analysis
    Parton distribution functions
    Quantum chromodynamics
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8531
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8495
    Abstract
    Since the discovery in the 1960's that the proton is not a fundamental particle but instead composed of even smaller particles known as quarks and gluons, there has been a concerted effort to understand the proton's internal structure. There still remain many mysteries about the proton and the theory that describes the interactions within: Quantum Chromodynamics (QCD). The distributions of quarks and gluons are encoded in objects known as parton correlation functions. Physicists use high-energy scattering experiments to access these functions by means of QCD factorization. This process of extracting information is known as a global QCD analysis. Further insight can be gained through first-principles calculations in lattice QCD as well as models for the strong interaction. In this thesis, we will use global QCD analyses to provide information on the one-dimensional (1D) structure of the proton using the latest experimental data available. Among the mysteries that remain within the proton, we provide insight on the non-perturbative nature of the proton's sea quarks, for both cases where the proton is unpolarized and longitudinally polarized. We also bring new information on the "proton spin puzzle," which concerns the delegation of the proton's spin into its constituent quarks and gluons. We shed light on the proton's transversely polarized structure, where current results from global QCD analyses and lattice QCD fail to paint a consistent picture. Our analyses also reveal a new feature of nuclear effects within light, highly asymmetric nuclei such as helium and tritium. Finally, we perform derivations in a spectator diquark model to glean information on the proton's 3D structure, and calculate moments that can be used in future lattice QCD studies.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.