• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    EXPLORATION AND MECHANISTIC STUDY OF WEAKLY COORDINATING ANIONS UNDER THERMAL AND PHOTOCHEMICAL CONDITIONS FOR SELECTIVE TRANSFORMATIONS OF C-C MULTIPLE BONDS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Singh_temple_0225E_15304.pdf
    Size:
    6.950Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2023
    Author
    Singh, Saibal
    Advisor
    Dobereiner, Graham E
    Committee member
    Valentine, Ann M.
    Wengryniuk, Sarah E.
    Hruszkewycz, Damian P.
    Department
    Chemistry
    Subject
    Inorganic chemistry
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8511
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8475
    Abstract
    The underlying focus of this work has been to acknowledge the effects of anions in transition metal-based systems. In this respect, a novel family of weakly coordinating anions (imadazolylphenyl or IMP anions) in addition to traditional anions were compared under both thermal and photochemical conditions. A significant portion of this work has also been employing and analyzing computational techniques in transition metal-based systems for developing luminescent materials. In the second chapter, development of [(Ipr)Au(NCMe)]+ [IMP-H] catalytic system to deliver a mild condition for internal alkyne hydration reaction was developed. Studies on the roles of solvents, temperature, and substrate into the mechanism were accomplished through rate and kinetic isotope effect experiments. In the third chapter, a series of ion pairs in metal-based systems featuring [Ru(bipyridine)3]2+ and non-metallic systems featuring [HN(Et)3]+ were synthesized to dissect and specifically study the ion pairing vs ion coordination effects. NMR and DFT studies were performed to investigate and model those results. The Ru-based ion pairs were also employed to showcase the crucial nature of anions in light mediated E/Z isomerization reaction of an activated alkene proceeding through energy transfer pathway. In the fourth chapter, computational and photophysical studies of anionic NHC-based systems using Cu were performed. TDDFT studies to predict the energies of the singlet and triplet excited states to rationalize the luminescent properties of synthesized the complexes were attempted. In the fifth chapter, a collaboration between the Chemical Development (CD) unit of GSK at Upper Providence (PA) and Dobereiner lab (Temple University) to develop and optimize the conditions for a palladium catalyzed allylic amination reaction was undertaken. A systematic study on the roles of solvent, ligand loadings, and additives was conducted using High Throughput Experimentation, HPLC, and LCMS facilities at the GSK site.  
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.