• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE APPLICATION OF SINGLE-POINT EDGE-EXCITATION SUB-DIFFRACTION MICROSCOPY FOR THE STUDY OF MACROMOLECULAR TRANSPORT

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Tingey_temple_0225E_15223.pdf
    Size:
    5.443Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2023
    Author
    Tingey, Mark cc
    Advisor
    Yang, Weidong
    Committee member
    Liberles, David
    Habas, Raymond
    Tuzel, Erkan
    Department
    Biology
    Subject
    Cellular biology
    Molecular biology
    Biophysics
    mRNA
    NPC
    Nuclear basket
    Nups
    SPEED microscopy
    Super-resolution
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8497
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8461
    Abstract
    The development of super-resolution microscopy made it possible to surpass the diffraction limit of optical microscopy, enabling researchers to gain a nanometer scale understanding of cellular structures. While many applications have benefited from standard super-resolution microscopy, gaps remained making high-speed dynamic imaging in live cells impossible. To address this problem, single-point edge-excitation sub-diffraction (SPEED) microscopy was developed. This methodology enables the nanometer imaging of dynamic cell processes within live cells, the evaluation of subcellular structural information, the capacity to derive three-dimensional information from two-dimensional images within rotationally symmetric structures, and the interrogation of novel questions regarding the transport dynamics of macromolecules in a variety of cellular structures. Here, I have described the theory and method behind the current iteration of SPEED microscopy that we have developed and validated via Monte Carlo simulation. Further, a detailed description of how we have further developed SPEED microscopy to derive structural information within the nuclear pore complex as well as how SPEED has been applied to evaluate the export kinetics of mRNA.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.