• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MECHANICAL ABUSE MODELING OF LITHIUM-ION BATTERIES WITH ELECTROCHEMICAL COUPLING

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Keshavarzi_temple_0225E_15278.pdf
    Embargo:
    2025-05-18
    Size:
    22.82Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2023
    Author
    Keshavarzi, Mohammad Mehdi cc
    Advisor
    Sahraei, Elham
    Committee member
    Darvish, Kourosh
    Ren, Fei
    Soudbakhsh, Damoon
    Oancea, Victor
    Wunder, Stephanie
    Department
    Mechanical Engineering
    Subject
    Mechanical engineering
    Detailed layered modeling
    Finite element analysis
    Homogenized modeling
    Lithium-ion batteries
    Mechanical Integrity
    Multi-physics modeling
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8466
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8430
    Abstract
    Electric vehicles contain hundreds of high-energy density lithium-ion batteries. The crashworthiness of these vehicles can be improved by better understanding the response of these batteries in an event of an accident or abusive loads. These loads can induce short-circuit and thermal runways in extreme cases. Therefore, an efficient finite element model of a battery that can precisely predict the coupled multi-physics behavior of a cell in a real-world application is desired. This investigation incorporates detailed and homogenized multi-physics modeling of various form factors of lithium-ion batteries. In the first two chapters of this thesis, a multi-physics homogenized model of a pouch cell was developed and validated in a wide range of multi-disciplines of the battery. In contrast to other similar models described in the literature, which are only applicable in certain scenarios, this model has a much broader range of applications due to the innovative techniques developed for material calibration and cell modeling. In addition, due to the homogenized nature and computational cost efficiency of this technique, the developed model has significance in the crashworthiness analysis of battery packs and electric vehicles where hundreds of these batteries exist. In the final chapter, a detailed layered model of an 18650 cylindrical cell was developed. Component and cell-level tests were performed on the cell to calibrate the material properties and extract the geometries of all the components of the cell. This model is the first of its kind that precisely predicts the load-displacement response and shape of deformation in various loading scenarios. This developed model has crucial importance in the safety assessment of the batteries by providing insight into the sequence of deformation of the internal layers and components and their interplay during mechanical abuse loadings. Overall, the two developed models in this thesis provide battery-related industries with a tool to improve the safety of future electrified industries.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.