• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Magnetic Signature Estimation Using Neural Networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bosack_temple_0225M_11200.pdf
    Size:
    1.916Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2012
    Author
    Bosack, Matthew James
    Advisor
    Biswas, Saroj K.
    Committee member
    Ferrese, Frank
    Higgins, Frank P.
    Silage, Dennis
    Department
    Electrical and Computer Engineering
    Subject
    Engineering
    Magnetic Signature
    Neural Network
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/837
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/819
    Abstract
    Ferrous objects in earth's magnetic field cause distortion in the surrounding ambient field. This distortion is a function of the object's material properties and geometry, and is known as the magnetic signature. As a precursor to first principle modeling of the phenomenon and a proof of concept, the goal of this research is to predict offboard magnetic signatures from on-board sensor data using a neural network. This allows magnetic signature analysis in applications where direct field measurements are inaccessible. Simulated magnetic environments are generated using MATLAB's Partial Differential Equation toolbox for a 2D geometry, specifically for a rectangular shell. The resulting data sets are used to train and validate the neural network, which is configured in two layers with ten neurons. Sensor data from within the shell is used as network inputs, and the off-board field values are used as targets. The neural network is trained using the Levenberg-Marquardt algorithm and the back propagation method by comparing the estimated off-board magnetic field intensity to the true value. This research also investigates sensitivity, scalability, and implementation issues of the neural network for signature estimation in a practical environment.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.