• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Application of Hidden Markov Model to Auto Telematics Data and the Effect of Universal Demand Law Change on Corporate Risk Taking in the U.S. Property & Casualty Insurance Industry

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jiang_temple_0225E_15096.pdf
    Size:
    1.028Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2022
    Author
    Jiang, Qiao
    Advisor
    Shi, Tianxiang
    Committee member
    Grace, Martin Francis, 1958-
    Viswanathan, Krupa S.
    Basu, Sudipta, 1965-
    Department
    Business Administration/Risk Management and Insurance
    Subject
    Business administration
    Hidden Markov Model
    Insurance
    Organizational structure
    Risk-taking
    Telematics data
    Universal law
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8344
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8315
    Abstract
    There are two themes in this dissertation, that is, the effect of universal demand law change on corporate risk-taking in the U.S. property & casualty insurance industry, and the application of hidden Markov model to auto telematics data. The first chapter presents my study in the first theme and the rest two chapters present the other theme. In Chapter 1, "Does Shareholder Litigation Affect Corporate Risk-Taking? Evidence from the Property-Casualty Insurance Industry", I explore whether shareholder litigation affects corporate risk-taking differently depending on distinct organizational structures. I use a law change, called Universal Demand (UD) Law, as an exogenous shock and develop three risk-taking measures that are unique in the U.S. property-casualty insurance industry: leverage risk, asset risk, and underwriting risk. The insurance industry provides an interesting opportunity for the study as shareholders in mutual insurers are an ambiguous concept in the legal world, as opposed to the common argument in the insurance literature. The results show that along with UD law adoption, insurers increase their risk-taking. After taking organizational structures into account, the impact of the law change differentiates. Stock insurers increase all three risk-taking measures while mutual insurers decrease their Leverage Risk and increase Asset Risk measures. For different time windows, stock insurers respond faster with respect to their Asset Risk compared to mutual insurers. In addition, I proceed to examine the main economic channel for the impact and find that the free cash flow argument is not the main channel. Chapters 2 and 3 present the study in auto telematics data using a proprietary data source. Both studies are based on the application of hidden Markov model (HMM). Specifically, Chapter 2, "Auto Insurance Pricing Using Telematics Data: Application of a Hidden Markov Model", develops an HMM-based clustering framework to predict auto insurance losses using driving characteristics extracted from telematics data. Through a simulation experiment based on a proprietary telematics data set, I show that HMM can effectively classify driving trips using model-implied hidden states, and HMM-based pricing methods provide better predictive power measured by both deviance statistics and mean squared error. Importantly, the proposed framework not only enables us to price usage-based insurances at a granular level, but it is also viable for estimating long-term insurance losses utilizing the limiting properties of HMM. Chapter 3, "Theoretical Framework of a 3-Layer Hidden Markov Model for Auto Insurance Pricing", is a theoretical extension of the second chapter to improve the framework at a more granular level. I develop a 3-layer HMM for risk classification, which links driving behavior characteristics with risk classes and loss estimation. The proposed model presents a direct structure among all variables and utilizes time series data without aggregation. Furthermore, this study provides a theoretical framework to estimate the 3-layer HMM using the Expectation-Maximization (EM) algorithm. The parameters of Bernoulli distributed loss count (per unit of time) and Gamma distributed loss severity can be solved at least numerically, and the negative definite Hessian matrix indicates that the solution of the first-order condition of the log-likelihood function achieves its local maximum.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.