• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    UNCOVERING THE RADIATIVE AND NON-RADIATIVE DECAY PATHWAYS OF N-CYANOINDOLE FLUORESCENT PROBES IN AQUEOUS SOLUTION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    AbouHatab_temple_0225E_15030.pdf
    Size:
    11.92Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2022
    Author
    Abou-Hatab, Salsabil
    Advisor
    Matsika, Spiridoula
    Committee member
    Carnevale, Vincenzo
    Borguet, Eric
    Remsing, Rick
    Department
    Chemistry
    Subject
    Physical chemistry
    Chemistry
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8337
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8308
    Abstract
    n-Cyanoindole (n=2-7) fluorescent probes were developed for studying the structure and dynamics of proteins. It has been observed that cyano substitution at the 4-position of the bicyclic ring of indole dramatically increases the relative fluorescence intensity, lifetime, and quantum yield, while functionalizing other positions quenches the fluorescence in aqueous solution. We studied the positional substituent effect on the absorption and fluorescence properties using high-level quantum mechanical methods. In addition, we modeled the important solvation effects found in the interaction between the parent probe, indole, and water solvents using explicit solvation models and molecular dynamics simulations. We have unraveled the important non-radiative decay pathways that govern the fluorescence quenching of the probes in aqueous solution using water cluster models. It was found that upon excited state relaxation, water solvent stabilizes the La(ππ∗) excited state below the Lb(ππ∗) state when substitution takes place on the 6 membered ring causing (4-7)-cyanoindole to fluoresce from the bright La state and 2- and 3-cyanoindole to fluoresce from the dim Lb state. 4-cyanoindole was found to exhibit optimal fluorescence properties because it absorbs to and emits from the S1 excited state and has a high energy barrier in the S1 state potential energy surface along the N-H bond stretch which minimizes access to all non-radiative decay pathways. We also found that explicitly modeling the mutual polarization effects is essential to reproducing the features of the absorption spectrum of indole and the state inversion during fluorescence in aqueous solution. Furthermore, we found that the formation of a cyclic excimer structure results in different photochemical reaction paths such as excited state hydrogen transfer, excited state proton transfer, and excited state proton-coupled electron transfer processes, which if accessed, have the potential to rapidly quench the fluorescence intensity. However, the presence of a high energy barrier traps the 2-, 6-, and 7-cyanoindole-(H2O)1−2 clusters at the S1 state minimum, and thus the fluorescence is quenched due to vibrational relaxation and internal conversion from the S2 state at absorption to the S1 equilibrium geometry at emission.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.