• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Multimodal Wireless Implantable Medical Device (MW-IMD) Platform

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Islam_temple_0225E_15085.pdf
    Size:
    11.22Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2022
    Author
    Islam, Sayemul cc
    Advisor
    Kim, Albert
    Committee member
    Kim, Albert
    Biswas, Saroj K.
    Helferty, John J.
    Hwang, Geelsu
    Department
    Electrical and Computer Engineering
    Subject
    Electrical engineering
    Biomedical engineering
    Health care management
    Biomedical
    Devices
    IMDs
    Implantable
    Oxygen
    Piezoelectric
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/8314
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/8285
    Abstract
    Implantable medical devices (IMDs) have advanced significantly in the last few decades due to innovations in microelectronics and power sources. Today, IMDs can perform various vital functions such as stimulating muscular organs (e.g., heart, bladder, neurons) to maintain the body mechanics and regulating physiological fluid (e.g., blood, hormone, urine, etc.). All of these effectively improve the quality of life and prolong life expectancy. However, many existing IMDs often blindly deliver therapeutic means without knowing the state of the disease. Since IMDs are usually surgically introduced to the human body, post-operation adjustments are difficult, resulting in chronic stimulation. As such, the long-term operation of IMDs shall be precisely regulated based on the current state of the body, i.e., closing the loop, especially with unprecedented communication and powering techniques. The goal of this research is to develop an implantable medical device (IMD) platform that can close the loop not only between sensing and stimulation within the IMD itself but also between other IMDs and the outside world. Thus, we first demonstrate a standalone closed-looped IMD that regulates oxygen generation based on physiological levels. Second, the IMD platform can also bridge other passive implantable sensors to the outside world. To this end, this report discusses a passive sensor in the form of a Smart Stent that senses and transmits arterial blood pressure information to the IMD platform via magnetic resonance (MR) coupling. Therefore, such MR coupling intrabody communication in the body is rigorously investigated. Lastly, we report an effective and efficient powering technique for the IMD platform. Ultrasonic waves in the human body can travel long distances with relatively low attenuation, reaching deep tissue. In this thesis, we enhance the ultrasonic powering method for IMDs with a novel receiver design for omnidirectional powering. Overall, the proposed multifunctional, multimodal, wireless IMD platform can operate reliably for the long term due to novel MR coupling communication and omnidirectional ultrasonic powering.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.