• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High Resolution Spectroscopy Study of the Rubidium Dimer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Arndt_temple_0225E_15001.pdf
    Size:
    4.781Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2022
    Author
    Arndt, Phillip Todd
    Advisor
    Lyyra, A. Marjatta
    Committee member
    Ruzsinszky, Adrienn
    Yan, Qimin
    Borguet, Eric
    Department
    Physics
    Subject
    Molecular physics
    Optics
    Quantum physics
    Perturbations
    Rubidium
    Spectroscopy
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/7997
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/7969
    Abstract
    This dissertation reports high-resolution experimental study and numerical analysis of the rubidium dimer 31Πg, "6" ^"1" "Σ" _"g" ^"+" , "3" ^"3" "Π" _"g" , and "4" ^"3" "Σ" _"g" ^"+" excited electronic states. The term energies of over 2 400 observed ro-vibrational levels spanning a large range of rotational and vibrational quantum numbers were measured with the perturbation facilitated optical-optical double resonance technique 24 000 cm-1 – 26 000 cm-1 above the ground state minimum of Rb2. The excited electronic states were probed by exciting Rb2 molecules from the thermally populated ro-vibrational levels of the "X" ^" 1" "Σ" _"g" ^"+" ground electronic state through intermediate levels of the mixed" " "A" ^"1" "Σ" _"u" ^"+" " ~ " "b" ^"3" "Π" _"u" electronic states. Probe laser resonance was detected by measuring the laser induced fluorescence from the excited electronic states to the "a" ^"3" "Σ" _"u" ^"+" triplet ground state. The ro-vibrational term energies from each electronic state were fit to molecular constants using the Dunham expansion. These molecular constants were subsequently used to generate Rydberg-Klein-Rees model potential energy functions. The spin multiplicity of the electronic states as well as the vibrational numbering of the triplet electronic states were determined by resolving the bound-free emission from the excited ro-vibrational levels to the triplet ground state.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.