• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SYMMETRY-ENABLED DISCOVERY OF QUANTUM DEFECTS IN TWO-DIMENSIONAL MATERIALS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Tsai_temple_0225E_14992.pdf
    Embargo:
    2023-08-11
    Size:
    16.97Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2022
    Author
    Tsai, Jeng-Yuan cc
    Advisor
    Yan, Qimin
    Committee member
    Perdew, John P.
    Wu, Xifan
    Carnevale, Vincenzo
    Department
    Physics
    Subject
    Materials science
    Computational physics
    Computational chemistry
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/7983
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/7955
    Abstract
    Quantum revolution has a great potential to impose massive impact on information technology. Point defects in solid-state materials such as NV center in diamond have been demonstrated to be promising qubit candidates. Defect levels in band gaps are analogous to molecular orbitals, serving as an excellent platform for quantum applications. Atomically thin two-dimensional materials are under the spotlight in recent years, as the sheet-like geometry brings advantages for operations of quantum defects. That includes the realization of patterned qubit fabrication, operation at room temperature, and improvement of coherence time through a highly-efficient isotope purification process. Although using point defects in 2D materials is a promising route toward quantum applications, searching for viable defects satisfying the criteria of magneto-optical properties for quantum applications is challenging. Thanks to the continued development of density functional theory, sophisticated multi-electron systems can be accurately simulated on the atomistic level to evaluate multiple ground-state properties, including total energy, magnetic polarization, and atomic orbitals. In addition to that, implementing constrained DFT renders the insight of excited-state properties. Benefited from the application of data-science tools in material science, we are now capable of performing data-driven analysis based on high-throughput computational techniques, including data mining/storage and automatic discovery workflow. Adopting the above tools and physical-principle-enabled symmetry analysis, we are able to identify a large set of quantum defects in a vast material space. We show that antisite defects in 2D transition metal dichalcogenides (TMDs) can provide a general platform for controllable solid-state spin qubit systems. Using high-throughput atomistic simulations that are enabled by a symmetry-based hypothesis, we identify several neutral antisite defects in TMDs that create defect levels deep in the bulk band gaps and host a paramagnetic triplet ground state. Our in-depth analysis reveals the presence of optical transitions and triplet-singlet intersystem crossing processes for fingerprinting these defect qubits. Finally, as an illustrative example, we discuss the initialization and readout principles of an antisite qubit in WS2, which is expected to be stable against interlayer interactions in a multilayer structure for qubit isolation and protection in future qubit-based devices. Motivated by the insight gained from the study of antisite defect qubits in TMDs, we significantly expanded the searching domain to all the binary 2D materials. As mentioned above, searching for defects with triplet ground states is one of the most crucial steps to identify more quantum defects that support multiple quantum functionalities. We design a comprehensive workflow for screening promising quantum defects based on the site-symmetry-based hypothesis. The discovery efforts reveal that the symmetry-enabled discovery workflow of quantum defects significantly increases the probability of finding triplet defects. To identify multiple functionalities for these quantum defects, including qubits and quantum emitters, the magneto-optical properties of triplet defects are comprehensively calculated. We demonstrate that 45 antisite defects in the various hosts, including post-transition metal monochalcogenides (PTMCs) and transition metal dichalcogenides (TMDs) are promising quantum defects. Most importantly, we propose that 16 antisites (both anion and cation based) in PTMCs can serve as the most promising quantum defect platform based on 2D materials, due to their well-defined defect levels, optimal magneto-optical properties, and the availability of host materials. This set of data-driven discovery efforts opens a new pathway for creating scalable, room-temperature spin qubits in 2D materials, including TMDs, PTMCs, and beyond. The comprehensive defect data created in this work, combined with experimental verification and demonstration in the future, will eventually lead to the fertilization of a 2D defect design platform that facilitates the design of point defects in 2D material families for multiple quantum functionalities, including quantum emitters, quantum sensor, transductor, and more.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.