• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    OPTIMIZED BIODEGRADABLE FIBRIN HYDROGELS AS IN VITRO MODELS OF WOUND HEALING

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Patel_temple_0225M_14895.pdf
    Size:
    7.784Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2022
    Author
    Patel, Hardika cc
    Advisor
    Lelkes, Peter I.
    Committee member
    Har-el, Yah-el
    Wang, Karin
    Department
    Bioengineering
    Subject
    Bioengineering
    Second harmonic collagen imaging
    Skin regeneration
    Wound healing
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/7769
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/7741
    Abstract
    Skin is the largest organ of the body. Its integrity plays a crucial role in maintaining physiological homeostasis, protects against mechanical forces and infections, fluid imbalance, and thermal dysregulation. Numerous pathological states, such as diabetes mellitus, peripheral vascular disease, thermal injuries, or degloving lead to inadequate wound healing, necessitating medical intervention. Established wound healing techniques such as autologous and allogeneic skin grafts are inefficient due to the limited availability of donor tissues or probable immunogenic reactions. Current research in the field of tissue engineering aims to facilitate wound healing and restore skin functionality, focusing on key aspects of wound healing, such as extracellular matrix (ECM) reorganization, cell growth, and collagen synthesis/deposition. The research aims at developing and characterizing an in-vitro fibrin gel culture model system that stimulates the process of wound healing. The specific goal of this research is to investigate how the varied chemical composition of fibrin hydrogels can enhance fibroblast proliferation and promote accelerated collagen matrix formation, which is a significant step in tissue repair and regeneration.The fibrin gels are optimized by modulating the primary gel constituents (i.e. the concentrations of fibrin and thrombin). The ensuing hydrogels are characterized using Scanning Electron Microscope and compression testing to test for fiber size, porosity, elasticity, and mechanical properties. Cultured fibroblasts are used to investigate the effects of varying fibrin concentrations on cell-biomaterial interactions, including cell proliferation, cellular infiltration, and network formation. Furthermore, matrix formation and maturation as a function of fibrinogen concentration as defined by collagen matrix deposition, are also studied. Increasing the fibrinogen concentration, lead to an increase in elasticity and Young’s modulus, while a decrease in thrombin concentration generated a stronger fiber structure. Additionally, a decrease in fibrinogen concentration resulted in an increased proliferation rate of fibroblast cells, suggesting better cell adhesion and network formation within the gel substrate. These results were consistent and confirmed by quantifying a mature collagen matrix deposited by fibroblasts when subjected to ascorbic acid. In summary, this research investigates how the varied chemical composition of fibrin hydrogels can enhance fibroblast proliferation and promote accelerated collagen matrix formation, which is a significant step in tissue repair and regeneration.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.