• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    COMBINED STRUCTURAL ANALYSIS OF CORE AND IMAGE LOG OF TGH MB 76-31 EAST OF MOUNT BAKER, WASHINGTON STATE

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Stowe_temple_0225M_14855.pdf
    Size:
    9.479Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2022
    Author
    Stowe, Breeann Nicole
    Advisor
    Davatzes, Nicholas
    Committee member
    Davatzes, Alexandra K.
    Terry, Dennis O., 1965-
    Department
    Geology
    Subject
    Geology
    Core
    Geothermal
    Play fairway
    Washington state
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/7736
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/7708
    Abstract
    Despite active volcanism, few geothermal energy resources have been developed in the Cascades Range. Temperature Gradient Hole (TGH) MB 76-31 was drilled to approximately 440 m measured depth to probe for zones where fractures provide fluid conduits that transport deep volcanic heat to shallow depths that could support baseload, carbon neutral electrical generation. These zones were predicted by a Play Fairway assessment (PFA) of resource potential along a zone 11 km west-southwest of the summit of Mount Baker Volcano, Washington State. Rock core, temperature logs, and an acoustic image log were obtained. By comparison to outcrops, the core is interpreted as the Chilliwack Group, comprised of partially metamorphosed basaltic to andesitic volcanics, but due to similar physical and mineral composition may represent the Nooksack Formation. Mapping of core reveals complex, steeply dipping networks of fractures and brecciation along slickensided strike slip faults; clay alteration is common in many of these structures. Most fractures are thoroughly healed by layers of chlorite and calcite, whereas chlorites and vermiculite line open fractures. Fracture porosity is primarily hosted by very dense fractures a few centimeters or less in length. These small fractures are not clearly evident or interpretable in image logs, leading to under-estimated fracture density and secondary porosity, although the image log provides good insights into frequency and attitude of fractures that fully transect the core. The combination of complex, non-planar fracture zones containing many short fractures and healing promote misinterpretation of natural fracture attitude and density in the image log. The equilibrated measured temperature reaches a maximum temperature 32°C at 408 m measured depth along a conductive gradient of 64ºC/km and calculated heat flow of 145 mW/m2 which is more than twice the regional average of 30ºC/km. The presence of vermiculite and several chlorite minerals lining fractures is consistent with the conductive temperature gradient measured in the well below a shallow isothermal zone, although, several fractures are open or only partially healed and resulted in fluid entries into the well. Together, the temperature gradient and vermiculite formation in the fractures indicate local influence of the Mt Baker magmatic system at the Little Park Creek TGH site and that TGH MB 76-31 reaches the upper edge of a caprock above a much deeper hydrothermal system. Do you conclude that this site will/will not support electrical generation? Should have a sentence here describing this since you start your abstract with the idea that you’re testing viability.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.