Show simple item record

dc.contributor.advisorSun, Yugang
dc.contributor.advisorWunder, Stephanie L.
dc.creatorLi, Mingrui
dc.date.accessioned2022-05-26T18:14:45Z
dc.date.available2022-05-26T18:14:45Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.12613/7706
dc.description.abstractAs an important part of the periodic table, metal elements have attracted widespread attention due to their special physical and chemical properties, as well as effective functionalities. Many metals at the nanoscale level exhibit a wide array of applications, ranging from catalysis to photonics, electronics, energy conversion/storage, and medicine. To obtain a more effective functionality in application, it is indispensable to synthesize uniform metal nanoparticles with well-defined size, morphology, composition, and crystal structures. In this dissertation, we will demonstrate high-boiling point solvent method for synthesizing metal nanocrystals, ranging from single metal nanocrystals (e.g., iridium (Ir), ruthenium (Ru), germanium (Ge), bismuth (Bi)) to binary metal nanocrystals (e.g., Sn-Ge), and ternary intermetallic compounds (e.g., Pt1-xPdxBi). By varying different halogen ions, we can get different morphologies of metal nanocrystals. We will further study the catalytic effect of Pd metal nanocrystals supported on silicon spheres and realize the hydrodeoxygenation reaction of vanillin under mild conditions.First, we used bismuth as an example to study the shape-controlled synthesis of metal nanocrystals by adjusting the injection temperature and the added halide ions (e.g., Cl-, Br-). Our findings indicated that due to the different electronegativities, halide ions are selectively adsorbed on specific crystal planes during the growth of Bi NCs, leading to different morphologies. Then we proposed a tungsten hexacarbonyl (W(CO)6)-assisted reduction strategy for obtaining uniform metal nanoparticles (e.g., Ir, Ru, Ge, Bi) of different metal salts. This strategy was extended to the synthesis of uniform binary metal (e.g., Sn-Ge) nanoparticles, which we can get tunable bandgap (0.51 eV to 0.72 eV) based on the controlled reaction of Ge2+ precursor solution with uniform tin (Sn) nanocrystals (NCs) as the template. Next, we realized the synthesis of intermetallic Pt1-xPdxBi nanoplates with controllable compositions, including Pt0.5Pb0.5Bi, Pt0.25Pd0.75Bi, and Pt0.75Pd0.25Bi via the sequential complexation-reduction-sorting method. Furthermore, we used palladium (Pd) metal nanoparticles (NPs) as a photocatalyst to trigger the hydrodeoxygenation reaction of vanillin. We demonstrated a model to disperse free-standing Pd NP on dielectric silica nanospheres (SiOx NSs). The spherical shape of SiOx can cause scattering resonance, thereby enhancing the local electric field on or near the surface to enhance light absorption of Pd NPs, further realizing a more effective catalyze on chemical reactions. We found that the adsorption of H2 on Pd is too strong to support the reaction effectively, but light absorption can reduce the "poisoning effect" by weakening the adsorption of hydrogen on Pd surface. Overall, we use innovative strategies to effectively synthesize a variety of high-quality metal nanomaterials. Our work shows that the Pd-NP/SiOx-NS composite nanostructure using dielectric SiOx as an optical nanoantenna is a promising photocatalyst that can drive photonic chemical conversion with high efficiency.
dc.format.extent162 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectInorganic chemistry
dc.subjectMaterials science
dc.subjectPhysical chemistry
dc.subjectElectron transfer
dc.subjectMaterial characterization
dc.subjectMaterial synthesis
dc.subjectMetal nanomaterials
dc.subjectPhotocatalysis
dc.titleMETAL NANOMATERIALS: SYNTHESIS, DESIGN, AND APPLICATIONS
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberQuan, Zewei
dc.contributor.committeememberBorguet, Eric
dc.contributor.committeememberZhang, Yuanzhu
dc.description.departmentChemistry
dc.relation.doihttp://dx.doi.org/10.34944/dspace/7678
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreePh.D.
dc.identifier.proqst14793
dc.date.updated2022-05-11T16:09:15Z
dc.embargo.lift05/11/2023
dc.identifier.filenameLi_temple_0225E_14793.pdf


Files in this item

Thumbnail
Name:
Li_temple_0225E_14793.pdf
Embargo:
2024-05-11
Size:
7.514Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record