• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mining Complex High-Order Datasets

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Barnathan_temple_0225E_10380.pdf
    Size:
    2.246Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2010
    Author
    Barnathan, Michael
    Advisor
    Megalooikonomou, Vasilis
    Committee member
    Obradovic, Zoran
    Lakaemper, Rolf
    Mohamed, Feroze B.
    Faro, Scott H.
    Department
    Computer and Information Science
    Subject
    Health Sciences, Radiology
    Co-clustering
    Data Mining
    Fmri
    Svd
    Tensors
    Wavelets
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/746
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/728
    Abstract
    Selection of an appropriate structure for storage and analysis of complex datasets is a vital but often overlooked decision in the design of data mining and machine learning experiments. Most present techniques impose a matrix structure on the dataset, with rows representing observations and columns representing features. While this assumption is reasonable when features are scalar and do not exhibit co-dependence, the matrix data model becomes inappropriate when dependencies between non-target features must be modeled in parallel, or when features naturally take the form of higher-order multilinear structures. Such datasets particularly abound in functional medical imaging modalities, such as fMRI, where accurate integration of both spatial and temporal information is critical. Although necessary to take full advantage of the high-order structure of these datasets and built on well-studied mathematical tools, tensor analysis methodologies have only recently entered widespread use in the data mining community and remain relatively absent from the literature within the biomedical domain. Furthermore, naive tensor approaches suffer from fundamental efficiency problems which limit their practical use in large-scale high-order mining and do not capture local neighborhoods necessary for accurate spatiotemporal analysis. To address these issues, a comprehensive framework based on wavelet analysis, tensor decomposition, and the WaveCluster algorithm is proposed for addressing the problems of preprocessing, classification, clustering, compression, feature extraction, and latent concept discovery on large-scale high-order datasets, with a particular emphasis on applications in computer-assisted diagnosis. Our framework is evaluated on a 9.3 GB fMRI motor task dataset of both high dimensionality and high order, performing favorably against traditional voxelwise and spectral methods of analysis, discovering latent concepts suggestive of subject handedness, and reducing space and time complexities by up to two orders of magnitude. Novel wavelet and tensor tools are derived in the course of this work, including a novel formulation of an r-dimensional wavelet transform in terms of elementary tensor operations and an enhanced WaveCluster algorithm capable of clustering real-valued as well as binary data. Sparseness-exploiting properties are demonstrated and variations of core algorithms for specialized tasks such as image segmentation are presented.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.