• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluation of the approximations involved in analyzing high rate shear experiments of brain tissue using finite element analysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bao_2011_155932.pdf
    Size:
    1.615Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2011
    Author
    Bao, Jing
    Advisor
    Darvish, Kurosh
    Committee member
    Hutapea, Parsaoran
    Pillapakkam, Shriram
    Department
    Mechanical Engineering
    Subject
    Engineering, Mechanical
    Brain Tissue
    Finite Element Analysis
    Large Deformation
    Shear Test
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/737
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/719
    Abstract
    The results of brain tissue finite element (FE) models under high rate shear deformation are affected by several factors. This thesis evaluated the effects of hourglass control, Poisson's ratio and element type in such simulations. Moreover, a comparison of FE and analytical models were performed related to boundary conditions. The simulations and optimizations were executed in ANSYS, LS-DYNA and LS-OPT. A Rivlin hyperelastic material model with linear viscoelasticity was used to describe the mechanical response of brain tissue. Examples of inverse FE material characterization of representative brain shear experiments at strain rates of 800, 500, 120 and 90 S-1 were studied and the results were validated by the ability to predict wave traveling times and deformed configurations. The difference between experimental and idealized shear strain increased with aspect ratio. One-point-integrated brick element combined with stiffness hourglass control gave the best result. A smaller Poisson's ratio that is still physically meaningful, e.g. 0.495, is preferable.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.