• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A BAYESIAN DECISION THEORETIC APPROACH TO FIXED SAMPLE SIZE DETERMINATION AND BLINDED SAMPLE SIZE RE-ESTIMATION FOR HYPOTHESIS TESTING

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Banton_temple_0225E_12445.pdf
    Size:
    746.6Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2016
    Author
    Banton, Dwaine Stephen
    Advisor
    Sobel, Marc J.
    Committee member
    Zhao, Zhigen
    Han, Xu
    Carides, Alexandra
    Anni, Eleni
    Department
    Statistics
    Subject
    Statistics
    Biostatistics
    Bayesian Decision Theory
    Blinded Sample Size Re-estimation
    Intrinsic Loss Function
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/735
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/717
    Abstract
    This thesis considers two related problems that has application in the field of experimental design for clinical trials: • fixed sample size determination for parallel arm, double-blind survival data analysis to test the hypothesis of no difference in survival functions, and • blinded sample size re-estimation for the same. For the first problem of fixed sample size determination, a method is developed generally for testing of hypothesis, then applied particularly to survival analysis; for the second problem of blinded sample size re-estimation, a method is developed specifically for survival analysis. In both problems, the exponential survival model is assumed. The approach we propose for sample size determination is Bayesian decision theoretical, using explicitly a loss function and a prior distribution. The loss function used is the intrinsic discrepancy loss function introduced by Bernardo and Rueda (2002), and further expounded upon in Bernardo (2011). We use a conjugate prior, and investigate the sensitivity of the calculated sample sizes to specification of the hyper-parameters. For the second problem of blinded sample size re-estimation, we use prior predictive distributions to facilitate calculation of the interim test statistic in a blinded manner while controlling the Type I error. The determination of the test statistic in a blinded manner continues to be nettling problem for researchers. The first problem is typical of traditional experimental designs, while the second problem extends into the realm of adaptive designs. To the best of our knowledge, the approaches we suggest for both problems have never been done hitherto, and extend the current research on both topics. The advantages of our approach, as far as we see it, are unity and coherence of statistical procedures, systematic and methodical incorporation of prior knowledge, and ease of calculation and interpretation.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.