• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Role of the Aspartyl Protease SpoIIGA in the Compartmentalization of Sigma Factor Activation During Sporulation of Bacillus subtilis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Baltus_temple_0225M_11207.pdf
    Size:
    4.146Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2012
    Author
    Baltus, Andrew Joshua
    Advisor
    Piggot, Patrick
    Committee member
    Buttaro, Bettina A.
    Tükel, Çagla
    Department
    Microbiology and Immunology
    Subject
    Microbiology
    Cellular Biology
    Biochemistry
    Bacillus Subtilis
    Bacteria
    Sigma Factor
    Spoiiga
    Sporulation
    Translational Fusion
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/732
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/714
    Abstract
    Sporulation in Bacillus subtilis is triggered by starvation for carbon and nitrogen sources. The process of endospore formation involves a highly orchestrated program of gene expression resulting in morphological change. A key early event is the asymmetric sporulation division, which yields the smaller prespore and larger mother cell. The transcription factor σF becomes active in the prespore, and directs the transcription of approximately 50 genes. One of those genes, paramount to this study, is spoIIR. The SpoIIR protein is exported, and localizes to the inter-membrane space of the sporulation septum, which may be mediated directly by SpoIIGA. SpoIIR and SpoIIGA are essential for the activation of σE from its inactive precursor, pro-σE. Pro-σE, encoded by spoIIGB, is part of a two-gene operon that also includes spoIIGA located immediately upstream. SpoIIGA is an integral membrane protein, and is an aspartyl protease that cleaves 27 residues from the N-terminus of pro-σE to yield active σE. The N-terminal portion of SpoIIGA contains five membrane-spanning hydrophobic domains. The C-terminal portion lies within the mother cell cytoplasm, and contains the proteolytic domain with residue D183 acting as the catalytic aspartate. Activation of the proteolytic domain of SpoIIGA is dependent on signaling through SpoIIR at the septum. The interaction with SpoIIR is thought to cause a conformational change in the proteolytic domain of SpoIIGA, which activates it. Normally, σE only becomes active in the mother cell. The current model for σE compartmentalization suggests that before septation SpoIIGA is evenly distributed throughout the entire cell membrane. Once septation occurs, there is a higher amount of SpoIIGA in the mother cell than in the prespore. SpoIIGA is then concentrated in the septum and the mother cell outcompetes the prespore for the limited amount of SpoIIR available. We are investigating the role of SpoIIGA in compartmentalization of σE. To accomplish this, a spoIIGA-gfp translational fusion was used. The fusion was introduced into a B. subtilis SpoIIGA mutant (SpoIIGA49) that lacks functional SpoIIGA because of a point mutation, G100R. The mutation is located within the fourth membrane-spanning domain. The spoIIGA-gfp fusion was also introduced into a spoIIGA knockout strain (spoIIGA-null) in order to assess the effect of SpoIIGA-GFP on sporulation without influence from SpoIIGA-G100R. The SpoIIGA49 strain that expressed spoIIGA-gfp in the prespore from the σF-directed promoter, PspoIIQ showed a weak GFP signal in the prespore, and restored sporulation to parental levels. The same fusion also showed a weak prespore GFP signal in the spoIIGA-null background, however sporulation was not restored. This result suggests that the fusion protein could interact with SpoIIGA-G100R across the septum through SpoIIR, restoring proteolytic activity to SpoIIGA-G100R. In both cases, fluorescence was only detected after σE had become active. Expression of spoIIGA-gfp from its natural promoter also largely complemented SpoIIGA49, but only partially complemented spoIIGA-null. Again, GFP fluorescence was weak, and was only detected after σE had become active. Possible explanations for the poor fluorescence are: 1, GFP function is impaired. 2, SpoIIGA-GFP is present at low levels. To assess the amount of protein present, western blot analysis was performed using anti-GFP antibodies. The results indicated weak expression. When spoIIGA-gfp was expressed from PspoIIG, protein was detected two hours after entry into stationary phase (T2), which was before GFP fluorescence was detected, with or without SpoIIGA-G100R. Detection of SpoIIGA-GFP from PspoIIQ occurred by T4 in with and without influence from SpoIIGA-G100R. Because PspoIIQ requires σF to be active and PspoIIG is active prior to septation, it was expected that SpoIIGA-GFP expressed from PspoIIG would be detected earlier. Weak bands representing SpoIIGA-GFP were observed which suggests low levels of SpoIIGA-GFP. Overall, the PspoIIG promoter appeared to drive more expression of spoIIGA-gfp before septation than PspoIIQ in the prespore alone.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.