• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE ROLE OF INTERNAL WATER STORAGE DESIGN ON NITROGEN FATE

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Donaghue_temple_0225E_14686.pdf
    Size:
    9.559Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2021
    Author
    Donaghue, Adrienne cc
    Advisor
    McKenzie, Erica R.
    Committee member
    Toran, Laura E.
    Ryan, Robert
    Maimone, Mark
    Struck, Scott D. (Scott Duane), 1972-
    Department
    Environmental Engineering
    Subject
    Environmental engineering
    Water resources management
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/7223
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/7202
    Abstract
    Green stormwater infrastructure (GSI) is implemented in urban landscapes to manage stormwater quantity and quality. Bioretention is an infiltration-based GSI strategy and demonstrates variable performance for total nitrogen (TN) removal. Internal water storage (IWS) is a sub-grade design feature that uses an underdrain with an elevated outlet to force a submerged layer. When a carbon source is present, often woodchips, IWS facilitates denitrification—the microbial reduction of nitrate (NO3-) to nitrogen gas (N2). This work considers the impact of IWS underdrain configuration, geometry, and IWS media on hydraulics, TN, and NO3- removal to enhance IWS design. To explore the impact of underdrain height, three laboratory columns with underdrains located at the bottom (0 cm), middle (15 cm), and top (30 cm) of a gravel-woodchip IWS were coupled with USGS VS2DRTI simulations. For narrow IWS geometries, width to depth (w/d) ratio < 1, hydraulic efficiency (ev) decreased from 1.0 to 0.76 as underdrain height increased from the bottom (0 cm) to top (30 cm). Changes in ev were attributed to the presence of immobile (low flow) zones below raised underdrains that limited solute transport. The presence of immobile zones impacted NO3- removal efficiency which decreased from 63% (bottom underdrain) to 32% (top underdrain) for a hydraulic loading rate (HLR) of 2.5 cm/h. However, simulated scenarios beyond the lab scale revealed ev varied less than 10% for IWS w/d ratios > 1 and indicated flow dynamics observed for narrow columns do not always translate to wider field systems. Under transient flow conditions, minimizing effluent NO¬3- concentrations and loads ranked least to greatest in the order bottom > middle > top underdrain configurations and dual isotopes in NO3- confirmed the presence of denitrification in mobile zones. Laboratory columns with bottom underdrain configurations considered three IWS media compositions of gravel, gravel-woodchip, and gravel-woodchip-biochar. Synthetic stormwater was modified to include dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and trace organic nitrogen compounds. Under continuous flow conditions, NO3- removal efficiency ranked in the order gravel-woodchip (78%) > gravel-woodchip-biochar (61%) > gravel (-10%) for a HLR of 2.5 cm/h. During antecedent dry periods, the gravel-woodchip-biochar and gravel-woodchip IWS removed NO3- within 18 hours following a transient event. However, the presence of biochar resulted in ammonium (NH4+) generation and effluent concentrations exceeded levels toxic to aquatic life. High-frequency field monitoring of an IWS with a raised underdrain was performed for eight storms over ten months. IWS nitrogen concentrations during storm events revealed that peak TN concentration generally occurred within the first hour during the rising limb of the IWS water level and that TN was likely exported from the system in the form of DON and NO3-. Additionally, NH4+ washout from unsaturated soil occurred during February through May and was attributed to sodium dispersion due to road salt application. This work coupled laboratory columns, modeling, and field studies to address the complexities of nitrogen management in bioretention as impacted by IWS underdrain height, geometry, ev, media selection, absorbent amendments, and seasonal patterns. When approaching IWS design for water quality enhancements, practitioners are encouraged to consider all these variables but recognize that the desired TN removal will not be achieved in some cases.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.